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Parity-violating asymmetry in nucleon-nucleon scattering at higher energies*
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The parity-violating asymmetry of the total cross section for the scattering of longitudinally polarized
nucleons from unpolarized proton targets is calculated for energies of 300 MeV-20 GeV. One-pion, p,
and co exchanges are included in the computation of the weak force between nucleons. Below energies
of roughly 1 GeV, the Watson theorem is adapted to compute the asymmetry. At higher energies an
absorptive model is used to take into account hadronic distortion effects.

I. INTRODUCTION

In a recent paper, Brown and we' reported on a
theoretical investigation of the parity-violating
(PV) asymmetry in nucleon-nucleon scattering up
to about 300 MeV. This limit on the energy was
determined by meson threshold effects and the
use of a nonrelativistic PV potential. An experi-
ment which searched for this asymmetry in PP
scattering gave a null result, (I+ 4)&&10 '.'

Since experiments are planned at higher ener-
gies, ' both at the Argonne National Laboratory and
at the Los Alamos Meson Physics Facility
(I AMPF), it is clearly of interest to extend our
calculations. The difficulty of carrying out such
theoretical predictions stems from a lack of de-
tailed knowledge of both the hadronic and weak
interactions. The former of these is required for
calculating distortion effects on the weak scatter-
ing amplitude as well as for the hadronic matrix
element which interferes with the weak one to pro-
duce the PV asymmetry.

In this note we report on a simple extension of
our previous calculation for the asymmetry' a,

V+ —0'
a=

G++(X

have been outlined earlier. " Because of the short
range of the weak interactions, it will probably be-
come advantageous to seek PV effects in the high-
momentum-transfer region at very high energies.
We briefly discuss such experiments at the end
of this work.

II. THEORY

In paper I, a PV potential. was developed to com-
pute PV effects at energies below 300 MeV. The
potential arose from single-boson exchanges, as
in Fig. 1(a), and from two-pion exchange. In the
present work we omit two-pion-exchange effects,
include one-pion-, p-, and e-exchange diagrams,
but do not make the nonrelativistic potential ap-
proximation. For a given total angular momen-
tum, j, the PV-admixed state is one which differs
in orbital angular momentum by one unit from
the "normal" state. The direct inclusion of con-
tributions of PV admixtures (e.g. , 2 states) to
the nucleon ground state, Fig. 1(b), requires quark
or other models. ' The model dependence of such
effects and those of intermediate N* states, as in
Fig. 1(c), contributes to the uncertainty of the
strength of the effective PV vertex, G„-f, in Fig.
1(a). We do not explicitly include contributions

of the total nucleon-nucleon scattering cross sec-
tions at energies from 300 MeV to 20 GeV. This
asymmetry measures the dependence of the total
cross section on the helicity of the incident beam.
The cross section for positive (negative) helicity
is denoted by c, (o ). The restriction to total cross
section allows us to use the optical theorem

Vhod, N

7P) p) Qf

Geff i)t- N+

Im II) g
= 20 0 8 0'g (2)

so that we only need to compute the imaginary
part of the forward elastic scattering matrix,
5R, „ for a given helicity state. In Eq. (2) 0 is the
magnitude of the c.m. momentum and s is the in-
variant c.m. squared energy.

The experimental advantages of detecting parity
violation in total-cross-section measurements
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FIG. 1. Some Feynman diagrams for PV nucleon-
nucleon elastic scattering. The weak interaction is
denoted by a triangle; the oval loop represents a general
hadronic interaction.
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from diagrams such as those of Figs. 1(b) and

1(c), but assume that they are included in G,«.
W'e use scaling arguments to obtain a further esti-
mate of the magnitude of the PV asymmetry to be
expected in high-energy scattering searches.

W'e split the energy region under consideration
into two parts, from 300 MeV to roughly 1 GeV,
and from approximately 1 GeV to 20 GeV. As we
shall show, the imaginary part of the weak elastic
scattering amplitude is proportional to the zeal
part of the hadronic elastic scattering amplitude,

In the region below - 1 GeV, Re +"'"'varies
rapidly with energy, '"whereas it is a much more
slowly varying function of energy above 1 GeV. To
a large extent, it is Re+"' ', rather than the wea, k
interaction, which determines the energy depen-
dence of the asymmetry a.

If we write the matrix SR, Eq. (2), as

3g =M+ m,

where M is the hadronic PC (parity conserving)
scattering amplitude and m is the PV matrix, then

M~, ~„~,~4™-~,-~„-~,-~4 ~

g~ X2, X,3 X.4 - X~- X.2,- &3- &4

(4)

and

Im(m+q ++ + pl+ + )

Im(M++ +q +M+ + )

Im(m„„+m, „)
4kvs o

where o is the spin-averaged total cross section,
o= —,(o, +o ). For this cross section, we use ex-
perimental data. ' For the weak matrix element,
m, we use only one-boson-exchange interactions.
We include' p, e exchanges for which we assume
&I=0 and w' exchange with &I= 1, where 4I is the
change of isospin carried by the weak interaction. In
Born approximation, m-I3, the helicity projected
amplitudes for pP scattering, for instance, are

B~ 8 =-16 k M+
k' (1+p.„)sin'(—' 6) + cos'( —' 6) (1+p «)cos'( —' 6)+sin'( —,

' 6)
E + M m&'+ 4k'sin'( —,

' 8)
~ g + I '+4k'cos'( —,

' 6)

8~, (8) =0,

where 6 is the c.m. scattering angle. For e ex-
change, we obtain the same form, except that p, &

=0, and fpg~~ is replaced by f g „. Similar ex-
pressions are obtained for the isospin-zero Born-
approximation matrix elements, except that the
expectation value of 7; ~ &, = -3 in this state. For
the n matrix, only m' exchange occurs. There is
thus no one-pion contribution to the PP weak ma-
trix element and only an exchange contribution
for neutron-proton scattering, nP -Pn. The
charge-exchange (c.e.) cross section at 160 con-
tributes to the elastic (el. ) forward scattering, so
that

&"~",~ ~ ~, x, (8) =&~,"i'„~,~, (&-8),

&+' ', + (o ) =&'+', + (16o ),

a', (&)= &2f,g,B„k( +~M)

cos'(-,' 8)
4k'cos'( —,

' 8)+ p'

Similar considerations hold for p exchange in Eq.
(6). Although we have given the Born-approxima-

tion matrix elements, because we shall make use
of them later on, it is actually the distorted-
wave (DW) matrix

m=(y lII„I(') (6)

which is required in order to take hadronic dis-
tortion effects into account.

A. 0.3~ T~1GeV

In the energy region bounded from above by 1
GeV, it is, in principle, feasible to continue to
use the DWBA (distorted-wave Born approxima-
tion) method employed at energies below 300 MeV.
However, as meson production and relativistic
effects increase in importance, the use of the
Schrodinger equation and a potential become sus-
pect. It is, however, also difficult to use the ab-
sorption model (Sec. IIB) to compute distortion
effects in this energy region because (a) the real
part of the forward scattering amplitude varies
rapidly with energy and (b) the elastic differential
cross section decreases slowly with increasing
momentum transfer so that spatial symmetry con-
siderations become awkward to manage. Despite
these difficulties we have used the model to check
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the approximate phase-shift method described
next.

Phase-shift analyses have been carried out at
several energies' between 300 MeV and 1 GeV.
We shall extend' the Watson theorem" to evaluate
the phase of the weak matrix element, Eq. (8).
For the magnitude of the matrix element, we use
the Born approximation for a1.1 angular momentum
states other than those which require an orbital
angular momentum zero phase. For /=0 the short-
range repulsive core between nucleons reduc'es the
magnitude of any short-range PV matrix. " For
those PV p- and v-exchange matrix elements which
mix orbital angular momenta 0 and 1 (j=0, I"1-
and j= 1, 1=0), we assume that the short-range re-
pulsion gives rise to a reduction of the magnitude
of the Born-approximation matrix element by a
factor of 5. This somewhat arbitrary factor is in
line with that suggested by Gari and others" for
the short-range correlations introduced by the re-
pulsion between nucleons. For the PV pion-ex-
change matrix element no reduction factor was
introduced since this interaction has a considerab-
ly larger range.

If it were not for the tensor force, which mixes
orbital angular momentum states l=j+1 and l
=j-1, we could use a straightforward application'
of the %'atson theorem to determine the phase of
the weak PV elastic scattering matrix element.
That is, for a given angular momentum j, unitarity
of the S matrix completely determines the phase
of the off-diagonal PV matrix. Owing to the pres-
ence of the tensor force, it is necessary to gen-
eralize the Watson theorem. In the representa-
tion where S, &, and S, ;„are (decoupled) diag-
onal, this generalization is readily accomplished
and we obtain

PV matrix elements &,. and c,'. are given by the
angular momentum projections of the Born-ap-
proximation matrix elements, Eqs. (8) and (7),
reduced by exp(-Im(o+b )] or exp[-Im(o+b, )j,
whichever applies. This factor is in addition to
that introduced by short-range correlation effects,
described earlier, which reduces the asymmetry
by roughly a factor of 2-4 at the energies con-
sidered. With these reductions, the asymmetry
computed from the extended Watson theorem
matches well the asymmetry computed from dis-
torted waves, Eq. (8), at 800 MeV. ' Asymmetries
were computed for gQ =+a 2 g~f~.

m= 2m bdb J,(qb)B(b)e' "

where q=k-k' is the momentum transfer, b= I/O

is the impact parameter, B(b) is the Born-approx-

TABLE I. Phase shifts used for calculating the dis-
tortion effects due to the hadronic interaction (H, ef. 4).
The real parts are listed in degrees and exp(-Im6) is
given in parentheses when this factor differs from 1.
Only isospin I = 1 phases are available at 970 MeV. The
diagonal phases are given for cases of tensor force
mixing.

425 MeV 630 MeV 970 MeV

B. 0.85 4 T == 20 GeV

For kinetic energies above approximately 1 GeV
we use the Gottfried-Jackson absorption model"
to calculate the distorted-wave weak matrix ele-
ment, Eq. (8). Even here, however, the param-
eters required for computing the hadronic dis-
tortion are not free of ambiguities. The weak
matrix can be written as

~ ~(s+s )

ref(6+ 6-)

~c f(&+ &+)

z ~ &e&(~+ &+)
) (9)

where 5, 0, 0+ are the phase shifts for scattering
in the states l=j-l, j,j+1, respectively, and &, ~'
are the magnitudes of the PV matrix elements
which connect the states l =j,j-1 and l =j,j +1,
respectively. Thus the imaginary part of the
forward scattering amplitude is

Imf =e Ime' ' -+c'Ime'j
where the phases are generally complex. For the
cases of no tensor-force mixing, the S& matrix
is a 2&&2 matrix. This corresponds to &z or Eg =0
in Eqs. (9) and (10). For the analyses carried out
at 425, 630, and 970 MeV, the real and imaginary
parts of the phase shif ts employed by us are listed
in Table I. We assume that the magnitude of the
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imation matrix for impact parameter b, and g is
the hadronic distorting phase. The phase factor
)((b) is found from the elastic scattering amplitude
F(q) by

absorption model to calculate the PV asymmetry
at a laboratory kinetic energy of 865 MeV in order
to overlap with the lower-energy computations. In
addition we have computed the asymmetry at kinet-
ic energies of 7.2, 11.6, and 18.7 GeV.

e' ""= 1+— qdq F(q) J,(qb) .
0

(12)
III. RESULTS AND DISCUSSION

Re F(q) = u Im F(q)

= n Im F(0)e (13)

where y is the slope parameter for do„/dq' and
a =ReF(0)/ImF(0). Both of these parameters are
known from experiments. '

(2) Although assumption (1) is simple, it is not
realistic. From Eq. (13) we expect that Ree'x~ ),

Re e' xi") = 1- — qdq Im F(q) J,(qb),& x(&)

0
(14)

is close to unity for smaH impact parameter b

and falls off to zero in a region b ~ 1 fm, the ef-
fective interaction radius. On the other hand, we
expect Im e'~( ~

Im e'" ' = — qdq Re F(q) J,(qb),
0

(15)

to be zero for both small and large b and to be
peaked in the surface region. It thus seems more
reasonable to assume that

The imaginary part of m, Imm, is thus proportion-
al to Im e', which depends on the areal part of
the scattering amplitude F(q). Only Re& (0) is
known experimentally and a further assumption
for the q dependence of F(q) is required to find
Ime' ". We have used three models.

(1) The simplest assumption is

The results of the calculation outlined in Sec. II
are shown in Figs. 2-4 for P-P and n-P scattering
with f,g, = 4&& 10 ', and f„=4.3&& 10 '.' Since the
relative sign and magnitude of f„g„and graf& are
unknown, ' we have computed the asymmetry for
f g„= +&2f~ gp. It is difficult to assign an error
to our ignorance of the weak forces between ha-
drons; the error bars in Figs. 2-4 reflect our
lack of knowledge of the hadronic interaction. At
lower energies, this error is caused primarily
by the uncertainty of the behavior of the nuclear
force at distances & 0.5 fm and by our crude way
of taking the short-range repulsion into account.
At higher energies the error bar reflects the mod-
el dependence for the real part of the elastic scat-
tering amplitude. Even the ratio Re F(0)/Im F(0)
—= Q. is poorly determined at energies close to 1

GeV (Refs. 6, 7); hence the large error bars at
T= 900 MeV. We used n = -0.2 at this energy and
—0.3 at all energies above 1 GeV.

The reduction of the magnitude of the asym-
metry with increasing energy is caused by the de-
crease in the real part of the hadronic scattering
amplitude, and by the nucleon form factor as re-
flected in the weak force. The change of sign in
a at T=1-5 GeV for f g = W2fpg~ is re-lated to
the change of sign of n. Physically, the incident
nucleon wave packet is damped considerably by

Im e' "i = PdI Re e' "i' j /db . (16)

& x(&)Ime y(g f )

The constant of proportionality P is determined by
c., and Ree'xi') is found from Eq. (14), with
Im F(q) = Im F(0)e x' ~'

(3) Lastly, we note that Cheng, Chu, and Hendry"
have managed a good several-parameter fit of
P-P scattering data, incj.uding polarization with

2I

0
3
Q.
o —

I

O——2—

I I I I I III '
I

=Jztg
„=-Jz f g

I I I IIIII '
I I I

O E)

where f„ f„ f, are parameters given in Ref. 13.
We have also used this model to obtain Im e'

In all three cases we assume that the hadronic
spin-flip amplitudes are negligible, i.e., that the
hadronic elastic scattering amplitudes are spin-
and isospin-independent,

~ hadr +)&adr++,++ + —,+—

The validity of this assumption improves with in-
creasing energy. Nevertheless, we have used the

O. I 0.2 0.5 I 2 5 IO 20 50
LAe

FIG. 2. PV asymmetry due to p-~ exchanges in total
p-P (n-n) cross section as a function of laboratory kine-
tic energy'. The error bars indicate the range of results
obtained for various strong-interaction models. The
crosses and dotted squares are the values obtained for
the model described in Sec. II B, assumption (2). The
curves are drawn to guide the reader's eyes.
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hadronic effects before it reaches the weak-inter-
action region of range -mp '.

At high energies where the hadronic distortion
effects are smoothly varying functions of energy
and impact parameter, we find a~ ~ (g + g~).
Thus, as seen in Fig. 3, the ratio of the asym-
metry (a, ) in p-p scattering for f g =+ v 2 fz gp is

a', (pp) If.gi+ If gpl
a' (PP) If.g-. I+ f,g, l 0.4

For n-P scattering the contribution of pion (w')
exchange to the PV asymmetry is shown in Fig. 4
for the Cabibbo value' of f, =4.3X 10 ' and for
g„'/4m = 14.4. With this value of f„ the effect of
pion exchange is negligible at all energies and
decreases rapidly as the energy increases. Re-
cent gauge theories of weak (and electromagnetic)
interactions predict" that f, may be 20-50 times
larger than the Cabibbo value. Even such a large
increase of f, does not make the pion contribution
comparable to that from p and e exchanges above
1 GeV. The reason for this feature and for the
decrease of the pion contribution to the asym-
metry with increasing energy is that only charged
pions can be exchanged. The weak PV pion force
is thus of a purely charge-exchange character,
and hence decreases rapidly with increasing en-
ergy. The same conclusion is valid for p" ex-
changes. It follows that only p' and co' exchanges
contribute to the PV matrix at high energies.
Since the hadronic total cross sections for P-P
and n-P scattering are comparable at high ener-
gies, we find

a(np) gg„gp-fp
a(pp) gD +g,f,

for g& =Wag, fp,
6 f0r g~f~ = W2 g—pfp

. (19)

and

Gas
(40mb)'~'

s (GeV')
40 7 (20)

where s =40 GeV' corresponds to a laboratory
nucleon of energy =20 GeV. We believe that the

IO — '
I I I I lllll '

I I I I lllll '
I I I:

IO'

The ratio of the asymmetry in n-P to P-P scatter-
ing is thus sensitive to the relative sign of

gg)gpfp
The asymmetries plotted in Figs. 2-4 remain

small at all energies considered here. Scaling
arguments would lead one to expect that the asym-
metry increases with energy as Vs. In this case

I.O—
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I I I I I IIII '
I I I I I 'QtTIQ ' $ I I

irAcu v ~ ipQp

f g =-J2f gPP ~ ~p

CL
~ lo '
O
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O
x 05—
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O IO-lo

—I.O—

I I I I I I IJ I a I I I I I I I II i I I I

O. I 0.2 0.5 I 2 5 10 20 50
TLAB (GeV)

FIG. 3. PV asymmetry due to p-cu exchanges in total
n-P cross section. See Fig. 2 for legend. The asymme-
try for the model of Sec. II B, assumption (2), with
f ~g~=u2 f~p lies within the error bars, whereas for
f ~g~ ~2fp gp the asymmetry at energies above 5 GeV
is -2 x 10 ' and is indicated by arrows in the figure.

IO-II s I I I I IIIII s I I I I Igill f~5g I I

0. I 0.2 0.5 I 2 5 lo 20 50
TLAe (GeV)

FIG. 4. PV asymmetry due to rr exchanges in total
n-P cross section. See Fig. 2 for legend. The asymme-
try for the model of Sec. II B, assumption (2), is found

to be smaller by more than one order of magnitude above
5 GeV and is indicated by arrows in the figure.
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scaling value for a is an upper limit in that ab-
sorptive effects for o„„kare omitted; stated anoth-
er way, Eq. (20) assumes that the weak forward
elastic scattering amplitude is purely imaginary.
The asymmetry computed by us does not increase
as Wsbecause hadronic absorptive effects increase
with energy and reduce the amplitude of the in-
cident wave which reaches the short-range weak
interaction. In the absorption mode j. this effect is
felt through the exponential damping introduced
by exp[i'(b)] in Eq. (11).

Finally, we want to indicate that total-cross-
section measurements may not be the best way to
seek PV effects at high energies. Since the weak
interactions are due to short-range forces, their
effects should become more pronounced at large
momentum transfers. Furthermore, hadronic
cross sections decrease sharply at large momen-
tum transfers. Experiments and some theories
indicate that at a fixed scattering angle and k/vs,
we can expect inclusive reactions such as PP
-P+X, PP-@+X, mP-m+X to have cross sections
(measured in GeV ') (Ref. 15)

Edo'I, 1
d'P P '

For weak processes, simple scaling arguments
give

"" -G'
d'p

In the gauge theories of weak interactions, the
same dependence is obtained and the constant G

is the same [G= o. /(2 v 2 m ')] as long as q'«m '.

The interference of the weak and hadronic amp-
litudes, divided by the hadronic cross section,
i.e., the ratio of the weak to strong amplitudes,
becomes unity at P~ = G = 1 or P~ -17 GeV. Such
effects should certainly be detectable, if they are
present with this strength. Possible experiments
include the use of longitudinally polarized beams
and a search for the inclusive-cross-section de-
pendence at fixed ~ on the direction of the incident
beam's longitudinal spin. The interference of
weak and strong amplitudes can also be sought
with unpolarized beams. For instance, one can
look for the inclusive production of A' at large
momentum transfers. " The characteristic longi-
tudinal polarization, which would arise from an
interference of strong and weak amplitudes can be
detected from an analysis of the decays of the A'.
One may also search for the production of p me-
sons which are polarized in the scattering plane.
Their decays serve to analyze this polarization;
e.g. , one searches for an expectation

~&&'P~&&~'Pp&&P. &-&P( Pp &&P.&,
J

where p& is the incident momentum, pz that of the
p, and p, that of a decay pion.
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