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Single —particle contributions to certain classes of algebraic sum rules*
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Phenornenological and theoretical aspects of single-particle contributions to sum rules de-
rived from commutation relations are considered. A derivation of sum rules arising from
an equal-time axial-charge algebra evaluated between arbitrary single-particle states is
given. A phenomenological analysis of these sum rules is carried out. An analogous deriva-
tion of sum rules associated with the sigma operator is shown to be invalid. An amended
form for the sum rules is derived. Finally, we comment on relations obtained by taking
vacuum-vacuum or vacuum-single-particle matrix elements of certain commutators.

I. INTRODUCTION

[ V', (O, x), V'(0)] =25'(x)V', (0) (2)

were all evaluated at q' =O. The sum rules were
evaluated in resonance approximation. With ex-
perimentally determined decay widths as input, it

We present in this paper a study of phenomeno-
logical and theoretical aspects of single-particle
contributions to sum rules arising from matrix
elements of various commutator algebras. In all
cases, we restrict the invariant momentum trans-
fer, q', across these matrix elements to be either
zero or small (~ q' ~& 0.5 Gev').

The motivation for undertaking this study arose
from a calculation by Qolowich and Holstein' in
which a model for vector and axial-vector current
excitation of the pion into arbitrary-spin single-
particle states was formulated and solved. This
model parameterized the momentum transfer de-
pendence, for small q', of matrix elements of the
operators V,",A,",B„A," (a = l, 2, 3) by means of
p, A„m poles, as well as allowing for higher-mass
contributions by means of constants. Current al-
gebra, the "partially conserved axial-vector cur-
rent" hypothesis (PCAC), and the Bjorken-John-
son-Low (ML) theorem were used to constrain
the parameters of the model. A rigorous conse-
quence of the conditions just enumerated is that
excitation of the pion to single-particle states with
spin J ) 4 is forbidden. This result led to a study
of sum rules associated with commutators of time
components of currents at zero or small q' taken
between single-pion states at infinite momentum.
In particular, a Fourier transform of the charge-
density algebra

[A ', (0, x),A ' (0)] = 253 (x)V,'(0)

(in this paper, J„=—J, +iJ, for any isospin-carrying
operator J,), its first derivative with respect to
q', and the first derivative with respect to q' of
the Fourier transform of

was found that resonances of spin J& 4 were suc-
cessful in nearly saturating the sum rules. ' On
this basis, it was conjectured in Ref. I that damp-
ing of small-q' current-induced transitions for
which the difference in spin exceeds some moder-
ate value (perhaps b J-4) might be a general had-
ronic phenomenon.

Further thought has tempered, to some extent,
our enthusiasm for this outlook. It is possible
that the underlying reason for the success of the
saturated sum rules lies in the subtractive nature
of the commutators in Eqs. (l) and (2). That is,
the terms which arise from the two different or-
derings of the operators in these particular com-
mutators contribute to the sum rule with opposite
relative signs. Thus, terms associated with large
mass contributions may have little effect on the
commutator due to cancellation, although each
could be individually large.

Without deeper theoretical understanding, it is
not easy to judge the relative importance of these
two mechanisms. Conceivably, either can be true
to a greater or lesser degree. At any rate, we
have been stimulated to examine a phenomenologi-
cal aspect of this subject, a numerical evaluation
of resonance saturated sum rules associated with
the equal-time charge algebra

(3)

taken between arbitrary, diagonal single-particle
states. This analysis is given in Sec. II. Our pri-
mary aim is simply to ascertain how the numbers
come out in light of existing experimental data.
As a matter of principle, it is important to keep
subjecting relations like Eq. (3) to new experimen-
tal tests, even though previous studies' lead us to
accept its validity. The cleanest signal of some-
thing wrong with Eq. (3) would be oversaturation,
in which contributions to the left-hand side exceed
the bound given by the right-hand side. We also
wish to exhibit the problems one encounters in
practice while attempting to evaluate the charge-
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fl F', (0), s„w»(O)] =2o(0), (4)

where o (the "cr operator") is assumed for simplic-
ity to carry zero isospin. As will be described in
Sec. III, this turns out to be impossible. The sum
rules which result are not valid because the math-
ematical procedures used in deriving them are not
legitimate. A method suggested by Jaffe and co-
workers for eliminating this difficulty is dis-
cussed, and an amended class of sum rules is
written down. The emphasis in this section is al-
most entirely theoretical.

Thus far, we have discussed the contribution of
single-particle intermediate states to certain
commutation relations evaluated between single-
particle states. In the interest of thoroughness,
we devote Sec. IV to a brief survey of the status
of "simpler" commutator matrix elements, in

a.lgebra sum rules: What are the phenomenological
limitations to these sum rules? Finally, we hope
to stimulate experimental work in the difficult sub-
ject of higher meson and baryon resonances. The
sum rules can provide, in individual cases, a
quantitative measure of the extent to which further
couplings to a given hadron are to be anticipated
in order that the sum rule be saturated.

A natura, l extension of the work lbased on Eq.
(3)] just described is to apply the same methods
to the equal-time commutator

which one or both of the external states is the vac-
uum state.

The paper concludes in Sec. V with a summary
of our results and a discussion of their signifi-
cance.

II. AXIAL - CHARGE COMMUTATOR

Our goal, to perform a phenomenological analy-
sis involving the commutation relation of Eq. (3)
taken between arbiter"y diagonal single-particle
states, actually dictates that the single-particle
intermediate states play a central role. Other-
wise we would end up with formulas generally hav-
ing no realistically obtainable experimental con-
tent.

We shall begin with derivations containing enough
detail to establish our notation as well as to make
the paper self-contained for the reader. ' Suppose
the commutation relation in Eq. (3) is sandwiched
between initial and final states

I
o. (p, r)&, & o. (p', r) I

respectively, where r is a helicity label. In the
numerical work to be discussed later, we shall
consistently choose n to be the state of highest
weight in its isospin multiplet. For definiteness,
we shall assume that it carries charge +1 in the
following derivation. I.et us insert an intermediate
state consisting of some particle y, not belonging
to the same isotopic multiplet as u, and also sum
over the helicity r of particle a. We find

{&o(p', r)IF', (0) ly (q, r')& &y'(q, r') IF'(0) ln(p, r)&
I

—&~(P', r) IF '(o)
I

y" (q, r')& &y" (q, r') IF', (o) I ~(P, r)) j+
= 2(2&)'T,(a)(2J„+1)N„5'(p' —p), (5)

where the normalization of single-particle states
is given by

& o'(p', r')
I o'(p, r)& = (»)'N. 5„5'(p' —p) (5)

The normalization factor N~ need not be specified
any further in this section because it will cancel
out of our equations. Next, express each axial
charge in terms of its charge density and use
translation invariance to carry out the spatial in-
tegrals. As a result, all states n and y have the
same momentum p. Thus, if we employ

&~(p, r)ls„a,"(o)ly'(p, r )&

=f(p' -p', )&o'(p r) I&', (0) I y'(p, r')& (7)

a,long with the PCAC relation

& o' (p, r ) I
s „A.,"(0) I y '(p, r '))

m. 'F.
& ~(p, r) l~,"(0)

I y'(p, r')&

where J+ is the pion current' and F„-=94 MeV,
we obtain

l&~(p, r) I&„'(0)
I
y'(p, r')& I'-

I &~(p, r) I
J'(0)

I
y" (p, r')& I', . . . 1

2N„Ny T,(n)(2j~+ 1)(P~ —Py)

Upon taking the limit lp I- ~, we may relate the
above squared matrix elements to decay widths if
Imz —m I& m, . For definiteness, we temporarily

take m z
& m „+m„. The association of the above

matrix elements with physical decay widths is not
exact. The latter are proportional to squa. red ma-
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trix elements having momentum transfer q' = m„',
whereas the former have q' = 0 in the limit

~ p ~- ~.
We shall assume that the physical decay widths
can be used without appreciable error. ' This is
the main point at which we employ the PCAC hy-
pothesis. We can then express Eq. (9) in the form

8m' 2J, +1
T,(a) 2j„+1 k(mz' —m ')'

x [r(y '- a w ) —r(y"- aw')]
+ ~ ~ = 1, (10)

where q=2 if the particle n is a pion, q=1 other-

wise, and k is the decay momentum evaluated in
the parent rest frame. There is a question as to
whether k should be evaluated with the pion mass
taken as zero or physical. We have chosen to use
the former, thus implying

A relation analogous to Eq. (10) can be written
down for the case m „&m

&
+ m» where now g = 2

if y is a pion. Summing over all contributions of
single-particle states y, we finally obtain

16' 2 ~~» 2Jy+1
2J„+1 T,(a)

r(y'-aw ) —r(y"-aw')
m '(1-m, '/m ')'

I'(a -&'~') —I'(a -y" tI
)IT,(a ) m „'(1—m „'/m „')'

(12)

The superscripts on the summation symbols refer
to (1) mz &m +m, and (2}m„&mz+m„. Contri-
butions not explicitly included in Eq. (12}must
have mass within a band m„+ m, . There are only
a finite number of these.

Equation (12) will form the basis of our phenom-
enological analysis. Its content can be clarified
somewhat by writing it in terms of spin-averaged
total cross sections o, pertaining to the center-of-
mass scattering of charged (+) pions off the parti-
cle a. Starting from a relation like Eq. (9) and

taking account of the initial-state flux factor and
final-state phase space, it is not difficult to ex-
press the sum rule as

ds , [a (s) —V„(s)]+discrete terms
s S —m~Sp

= 2T,(a. ),
(13)

where s is the invariant energy and s, =. (m + m„)'.
The "discrete terms" in Eq. (13) correspond to
contributions with mass less than m ~+ m„. We
can recover Eq. (12}from Eq. (13) by using the
narrow-resonance Breit-Wigner formula

contributions. Its origin lies in the antisymmetric
behavior of Eq. (3) under (+—-), a property not
universally shared by all comrnutators as we shall
see in Sec. III. A second noteworthy feature of
the sum rules, more easily apparent in Eq. (12),
is the existence of contributions not expressible in
terms of decay widths or cross sections. These
terms are known only in special cases —more of-
ten, we lack even a reasonable theoretical esti-
mate of them. It is this, along with the fact that
these terms become more numerous (albeit finite
in number) as the mass of the state chosen for a
is increased, which constitutes the major limita-
tion in confronting the sum rules (12) with experi-
mental data. As candidates for the external states
n, we shall consider first the baryons, then the
mesons. Unless otherwise specified, the data are
taken from Ref. 8.' In order of their appearance,
the baryons to be surveyed here are N'(938},
b "(1233), N*+(1470), Z "(1189), Y', (1384), and
:- '(1315).

N" (938). This is naturally the case for which,
of all the hadrons, the most data are available.
Numerical results are exhibited in Table I. A

summary of contributions is given by

4w 2J) +1 wl (w'a)
k' 28„+1 2 ™ (14) g~' + 0.544 —0.975 —0.175+ ~ ~ =1,

nucleon g= 1/2 4(1233) 2' = 3/2
(15)

where W =s'~' and k is given in Eq. (11).
Before commencing our numerical study of Eq.

(12), we wish to point out two features of Eqs. (12)
and (13). First is the convergent nature of the sum
rules for large-mass contributions, as evidenced
especially in Eq. (13}via the Pomeranchuk theo-
rem. This is one of the mechanisms mentioned in
the Introduction which tend to make this class of
sum rules approximable in terms of single-particle

where the T = —,', 2 contributions group together all
resonances of a given isospin. There are two ways
in which Eq. (15) might naturally be interpreted:
(i) Simply insert the existing experimental value
for g„, thereby testing how well Eq. (15) is satu-
rated. With g„=1.25, we obtain 0.96+ ~ ~ =1. (ii)
Use Eq. (15) to compute g„. This is a traditional
way of using algebras, often with poor success be-
cause the number of intermediate states taken into
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account is truncated too severely. From Eq. (15),
we find g„' = 1.606 or g~ =-1.27. In this case, na-
ture has supplied us with enough data to give a
reasonably good estimate of g„.L"(1233). The only intermediate-state contri-
bution not estimable in terms of a decay width is
that of A(1233) itself. The parameter which char-
acterizes this contribution is a form factor E„(q'),

= fu. (P', ~')r, rr"a "S' (q')+ ~ ] u~(p, x), (16)

evaluated at q' =0. Analogous to g~ of the nucleon
axial-vector matrix element, let us define
f„=—E„(0)for the A(1233) axial-vector matrix ele-
ment. Referring to the values given in Table II,
we have

We find f„'= 2.1, whereupon the sum rule (17)
reads 0.82+ ~ ~ ~ =1. See the Appendix for further
dls cuss ion.

N*'(1470). This state is the lowest in mass of
the essentially continuous spectrum of highly ex-
cited wN resonances. As such, it represents the
first case where our ability to test the sum rule
(12) becomes seriously hindered. There is a band
of width 2m, surrounding N*(1470) for which con-
tributions to the sum rule cannot be estimated ex-
perimentally. This band contains the states
N*(1520) and N*(1535) with spin-parity 8 = 2 and

, respectively. Of course, there is also the
contribution of N*(1470), expressed in terms of a
parameter g„* entirely analogous to g„. The sum
rule reads

—,', f„'+ 0.244 + 0.149+ 0.03 + ~ ~ ~ =1.
nucleon T = 1/2 T= 3I2

(17)
g~~' + 0.126 —0.207

N + (1470) nucleon +(1233)

Unfortunately, it is not realistic to expect an ex-
perimental determination of f„. Rather than an-
ticipate Eq. (17) will provide a good value for f„
provided that we assume the above numbers al-
ready saturate the sum rule, we prefer instead
to adopt the more conservative stance of testing
the degree of saturation in (17) by obtaining some
estimate of f„. This is done by first expressing
f„in terms of the coupling constant g„z,z via a
Goldberger- Treiman relation and then using
SU(6)~ to relate g, ~~ to the known quantity g„».

TABLE I. Resonance contributions to axial-charge
sum rule with proton external state. The first four col.—

umns list properties of each intermediate state and the
final. two columns give individual and cumulative contri-
butions to the sum rule Eq. (12). See Eq. (15).

+ N*(1520) + N*(1535) + ~ ~ ~ = 1. (18)

The possibility of theoretically estimating g„ is
discussed in the Appendix. Naturally, for the
more massive states n, the amount of data per-
taining to resonances which decay into n plus a
pion gets scarcer. This explains the paucity of
numerical information in Eq. (18) relative to that
in Tables I and II. However, this does not consti-
tute a fundamental difficulty like the discrete con-
tributions just discussed. If experiments in had-
ron spectroscopy continue, we can hope that tran-
sitions from one higher resonance to another can
ultimately be unravelled. This is not easy but at
least it is possible. At any rate, all we can infer
from the numbers in Eq (18) is. that the sum of the
discrete contributions equals 1.1, given the nucleon
and b (1233) contributions.

1470 0.5
1525 1.5
1550 0.5
1678 2.5
1685 2.5
1715 0.5
1755 0.5
1815 1.5
2130 3.5
2223 4.5

1233 1.5
1655 0.5
1695 1.5
1880 2.5
1858 0.5
1955 3.5
2385 5.5

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

1.5
1.5
1.5
1.5
1.5
1.5
1.5

140
64
37
58
86

120
40
64
74
44

115

46
36
48
68
99
34

0.125
0.089
0.023
0.067
0.097
0.041
0.012
0.032
0.035
0.0214

—0.975

-0.019
-0.026
-0.030
-0.015
-0.069
-0.015

0.125
0.215
0.238
0.305
0.402
0.443
0.455
0.488
0.522
0 544

-0.431

-0.451
-0.477
-0.507
—0.522
-0.591
-0.606

Partial
Mas.s width
(Me V) Spin Isospin (MeV) Individual Cumulative

Partial.
Mass width
(MeV) Spin Isospin (MeV) Individual Cumulative

939 0.5

1470 0.5
1525 1.5
1678 2.5
1685 2.5
1755 0.5

1655 0.5
1695 1.5
1858 05
1953 3.5

0.5

0.5
0.5
0.5
0.5
0.5

1.5
1.5
1.5
1.5

115

58
35
80
38
60

57
62
27
36

0.244

0.052
0.035
0.039
0.018
0.006

0.008
0 ~ 014
0.001
0.005

0.244

0.296
0.331
0.369
0.387
0.393

0.402
0.416
0.418
0.423

TABLE II. Resonance contributions to axial-charge
sum rule with 8 (1233) external. state. The first four
columns list properties of each intermediate state and
the final two columns give individual and cumulative con-
tributions to the sum rule Eq. (12). See Eq. (17).
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Z'(1189}. This state is of interest because it
has the lowest mass for which the sum rule (12) is
testable in a channel with nonzero strangeness and
baryon number one. There are two discrete con-
tributions, so that the sum rule reads

—2(g~„~)'+—,'(g~„~)'+ resonances = 1. (19)

We use SU(3), with an E/D parameter a = '-„ to
(g+ p0) (K+A)estimate the quantities g„and g„The

resonance contributions are exhibited in Table III.
Altogether, the numbers are

0.174 + 0.231+ 0.142+ 0.055+ ~ ~ ~ =1,
E A T=o T=1

(2o)

or in total, 0.60+ ~ ~ ~ =1. There remains a fairly
substantial contribution to be made from as yet un-
observed decays of hypercharge-zero baryon reso-
nances into Z~. Note that the low-mass —,

"and &'

contributions to the proton sum rule add to 0.588,
whereas for the Z' sum rule they give 0.442. How-

ever, the higher resonances for the intensively
studied mN system sum to 0.369, whereas the more
complicated system of hypercharge-zero higher
resonances contributes only 0.16.

Y,'(1385}. The problem of unobservable contri-
butions to the Y,'(1385) sum rule is not serious.
There is the contribution of Y', (1385) which we can
estimate from SU(6)„just as we did for the
L'(1233) contribution to the b "(1233}sum rule.
In addition, the unitary singlet state Y,*(1405) can
contribute in principle. However, this transition
proceeds only through SU(3) breaking effects.
Thus, we can hope that its effect on the sum rule
is minor. Our numerical analysis gives

0.383 + 0.120+ 0.019+ 0.086
Y1(1385) A Z F0(1520)

+ 0.008+ 0.013+ =1,
F$1815) Y 1(1765)

(21)

or 0.62 + ~ ~ ~ = 1, which is a reasonably high amount
of saturation considering the large mass of the ex-
ternal state.

='(1315). Despite the experimental effort which
has been put into the hypercharge-1 baryon chan-
nel, distressingly little is known about the particle
spectrum at this time. Our =' sum rule reads

0.173+ 0 196 + ~ ~ ~ =1,
g + (]530)

(22)

0.292+ 0.047 + 0.097 + 0.47 + 0.043+ ~ ~ ~ =1,
~(700) ~ ' (1000) f (1260) P(765) g (1680)

(23)

where we have used SU(3) to estimate the = (dis-
crete) contributions. Equation (22) sums to
0.37+ ~ ~ ~ =1, so the dominant contributions to the
=' sum rule remain to be detected. We can only
await a correct interpretation of the resonant be-
havior around energy 1820 MeV, which has for so
long resisted efforts at classification. This con-
cludes our survey of the baryon sum rules.

The main difference between the structure of the
baryon and meson sum rules is that those inter-
mediate states y which lie in the same isotopic
spin multiplet as the external state a are forbidden
to contribute to the latter by G parity. We shall
consider, in turn, sum rules for the following me-
son states: w', p'(765), A2(1310),K'(494), Kv(892),
Kr(1421), where the subscripts V, A, , and T de-
note vector (1 ), axial-vector (1'), and tensor (2'),
respectively.

n'. This sum rule, also studied in Ref. 1, gives

Partial
Mass width
(MeV) Spin Isospin '(MeV) Individual Cumulative

1405 0.5
1520 1.5
1670 0.5
1690 1.5
1815 2.5
1830 2.5
2100 3.5
1385 1.5
1670 1.5
1765 2.5
2030 3.5

0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
1.0
1.0
1.0

40
7

11
31

9
42

5

4
20
1
5

0.094
0.010
0.003
0.015
0.004
0.016
0.001

0.037
0.016
0.007
0.002

0.094
0.104
0.107
0.122
0.125
0.141
0.142

0.179
0.195
0.196
0.197

TABLE III. Resonance contributions to axial-charge
sum rule with Z+(1189) external state. The first four col-
umns list properties of each intermediate state and the
final. two columns give individual and cumulative contri-
butions to the sum rule Eq. (12). See Eq. (20).

g~p, e„sq, k e (k, r')q" e "(q,r).
The p' sum rule can then be written as

(24)

6 (Ii„g p„)'+ 0.078+ 0.189 + 0.042 + ~ ~ ~ =1.
A 1(1100) A2(1310)

(25)

where mv total widths I'(eww) = 300 MeV, I'(e'wm)
= 50 MeV have been employed. " The above contri-
butions come close to saturating the sum rule,
yielding 0.95+ ~ ~ ~ =1. Thus the lowest-mass bary-
on and meson states have their resonant-dominated
sum rules saturated to within five percent.

p'(765). The only contribution to the p' sum
rule which is not directly measurable comes from
the v intermediate state. However, we may use
Eq. (9} in conjunction with the Gell-Mann-Sharp-
Wagner model" of the e- my transition to estimate
it. We define a coupling constant g ~„ for the pro-
cess u(k, r')- p(q, x)+v(p), with a momentum-
space i nteraction amplitude
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for the A,' sum rule, with the "B(1237}term"
~ 0.78.

K(494). There are data at present for us to take
the contribution of just two resonances into ac-
count,

(27)0.375 + 0.084 + ~ ~ ~ =1,
Ey (892) E g (1421)

or 0.46+ ~ ~ =1. The analogous two states contrib-
ute 0.57 to the pion sum rule, so at this level the
difference in convergence between the m and K
sum rules is not large. However, the predomi-
nantly isoscalar meson e(700) contributes signifi-
cantly to the pion sum rule but not at all to that of
the kaon. The kaon sum rule must make up the
difference with the more massive states, "a situ-
ation which suggests a deep relation between the
chiral algebra and the spectrum of hadron states.

K~(892). The status of the K~(892) sum rule

A recent determination" of g~~„ is quoted as
g ~, =14.4 GeV ', so the degree of saturation of
the p' sum rule is 0.62+ ~ ~ ~ =1.

A,'(1310). This is the largest-mass nonstrange
meson whose sum rule we shall analyze numerical-
ly. The extent to which contributions from states
lying within energy m, above or below the A2 mass
affect the sum rule is not clear because of our rel-
ative ignorance of the particle spectrum at these
energies. An amusing example of the difficulty in
estimating one of these contributions is provided
by the axial-vector meson B(1237). In principle,
A, (1310}can decay into B(1237)m because the finite
widths of these resonances provides a certain
amount of phase space. " The decay A2 - ewe has
been observed, "and noting that B- (dm is essen-
tially the only decay mode of B(1237), we can ob-
tain an upper bound on the rate for A.2- Br. This
upper bound would imply a huge contribution from
B(1237) of 0.78 to the A, sum rule. However, it
would also imply a dimensionless P-wave coupling
constant g (A,Bm)/4m =70, which in our opinion is
too large to be believed. Therefore, we summa-
rize the present situation as

0.024+ 0.01 + B(1237) term+ ~ ~ ~ =1 (28)
P(765) q(549)

would be clarified if more information on the axi-
al-vector kaons in the mass range 1200-1400 MeV
were available. For our calculation, we have as-
sumed that the axial-vector kaon with mass 1242
decays into K/892)v with a width of 127 MeV. ' We
find

(28)0.0168+ 0.0272 + 0, 33 + ~ ~ ~ =1,
K(494) E ~ (142 1) IC (1242)

or 0.48+ ~ ~ ~ =1, a fair degree of saturation.
Kr(1421). Like its SU(3) partner A,'(1310), the

Kr(1421) has but two well-determined contributions
to its sum rule,

(29)0.017 + 0.027 + ~ ~ ~ ——1,
SC( ) E~( 92)

or 0.044+ ~ ~ ~ =1. The 0 and 1 states are thus
seen to contribute almost negligibly to the sum
rules of the tensor mesons A,'(1310) and Kr(1421).

Further comments on the analysis just presented
are reserved for the, Conclusion. In Sec. III, we
consider an algebra which at first sight appears
amenable to a similar treatment.

m. 0 OPERATOR

The 0 operator has been defined in terms of an
equal-time commutation relation in Eq. (4). Not
much empirical knowledge exists regarding ma-
trix elements of this operator. The nucleon ma-
trix element is thought to be given, to a good ap-
proximation, by the combination of isospin-even
pion-nucleon amplitudes A ' + vB ' evaluated at
s = m„', t = 2m, '. A variety of recent phenomeno-
logical efforts" points to a value 40~ (N~o ~N)
~ 70 MeV although a definitive evaluation has yet
to be performed. The pion matrix element can be
estimated in terms of a low-energy theorem to be
(bio ~w) =m, '. This evaluation is suspect because
itinvolves extrapolation over a distance m, ' of a
quantity itself of order m„'. However, it does pro-
vide an order-of-magnitude estimate.

We may use the methods of the previous section
to derive a class of sum rules for the o-operator
matrix element taken between single-particle
states. Upon doing so we find"

~~,&
2J&+I I'(y'-o!& )+I'(y"-» ) ~&g I'(&-'Y v )+I'(o'-r v )

+ ~ ~ ~ (30)

1 meson

2m baryons
(31)

where the superscripts on the summation symbols
have the same meaning as in Eq. (12). The constant

occurs because meson and baryon matrix elements
of the 0 operator have different units. A formula
relating the 0-operator matrix elements to cross
sections, analogous to Eq. (13), can also be de-
rived,
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4.&a(p, ~) lo(0) l~(p, &)&
P V pVat g

W]'" =-g"'W+P P W -z
2

ds[ F (s) +(7, (s)] + discrete terms .
2 4+ 2~ 2 5 & (35)

(32)

There are several features of Eqs. (30) and (32)
that warrant immediate discussion. The widths
and cross sections are seen to add, whereas in
Eqs. (12) and (13) they contribute with opposite rel-
ative sign. This is not a mistake, but rather re-
flects the behavior of the commutation relation (4)
under the interchange (+—-). Qf greater signifi-
cance is that, given existing estimates (e.g. , Reg-
ge) of the asymptotic behavior of hadronic cross
sections, our formulas for the o-operator matrix
elements are seen to diverge. Even if these as-
ymptotic estimates turn out to be wrong and the
integrals in (32) a.ctually converge, the situation
is still bleak because the dominant contributions
to (30) and (32) are of the wrong sign. " As an ex-
ample, the resonances exhibited in Table I give
&Nlo(0)lN& = -0.92m„according to Eq. (30). In
the same manner, we calculate &7)'lo(0}l7)'&
= -36m„' upon using the mw resonances listed in
Sec. DI. Neither of these values can coexist with
the estimates discussed at the beginning of this
section.

It turns out that one can employ a rather differ-
ent derivation for the q' =0 sum rule (32}, the re-
sult of which exhibits remnants of its original
form, while at the same time patching up its weak
spots. Much of the work is already done in Ref. 3,
so in the following we shall just outline the neces-
sary steps.

First, we rederive Eq. (32) as a q' =0 sum rule
involving structure functions for neutrino scatter-
ing. " Consider the spin-averaged quantity

where W, =W, (q', v), v=q P, and use the crossing
property

W,'(q', v) = -W,'(q', —v),
we obtain

p „&(r(p) I o(0) I
a (p)&

2
(3S)

[where W= s'~2, k = (s —m„')/2s] in conjunction with
Eq. (37) to regain Eq. (32). In other words, the
steps leading to Eq. (37) are not valid.

The method suggested in Ref. 3 to deal with
these difficulties is to consider the spin-averaged
amplitude

e'"(q', e)=(f d'ee"'*e(e')

x &o'(p) I
[z"(x), z "(0)]

I o'(p)&

+ seagull terms,

where

Im T" (q2, v) = 2))'W" (q~, v) .

(39)

(40)

The seagull terms are polynomials in q which
might be needed in order for T" to be a legitimate
second-rank tensor. The decomposition used in
Ref. 3 for W"" is the same as our Eq. (35) except
for -the presence of

dxx[W,'(0, x)+W,"(0,.}] . (37)
Vl fe(e Q

But if the lepton mass is neglected, we can use the
q' =0 relation

4 5 'xW""(q, P}= — d 'x e" '"
4m g

& (p)l[~l( ), ~"(o)]I (p)&,

Vl V
W, W, —,W, —,W, ,

2vW'=W + —W5 5 2 2

(41)

y.&~(p) lo(0) l~(p)& = -J dq'q'W"(q', p)

If we define a set of kinematic-singularity-free
structure functions"

(34)

(33)

where J+" is the AY=0 weak current which raises
the hadronic charge. The v-operator matrix ele-
ment is obtained by contracting Eq. (33) with q,
and setting q = 0,

in place of our W4, . The above decomposition, al-
though not kinematic singularity free for q'-0,
has the advantage that only W4 5 contribute to
q„W" . The amplitude T""of Eq. (39}has a sim-
ilar decomposition in terms of amplitudes
T,', i =1, . . . , 5. The key point is that appropriate-
ly subtracted dispersion relations can be written
for each of the T,'(q', v). Thus, the high-energy
(v -~) behavior is properly accounted for. In par-
ticular, the dispersion relation for T,'(q, v) is
seen to contain a subtraction constant T,'(q', 0}.
Information regarding the o operator is obtained
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by taking the BJL limit of q„T (q, v). It is
found that

4 2

0

(43)

where F~~, are the scaling limits of v'W4, /m„,
and E4, =E4, -E... where E4~, are the Regge
fits which include all singularities with 1» u(0)»0.
Notice that Eq. (43) gives information on the sub-
traction constant T,'(q', 0). The C, ,(q') can be re-
lated to fixed-pole residues P;(q') (i = 1, . . . , 5) of
the kinematic -singular ity -free amplitudes by an
equation identical in form to (41). With the as-
sumptions that the P;(q') are polynomials in q'
and that v'T~, /m „' scale, it follows from Eqs.
(42), (43) that

lim q'F,'(q', 0) = -m „'P,(0)
q2~ ~00

+8m '
M", +E,) —,

Q X

(u(p)lo(0)l u(p)& =, lim q4T,'(q', 0),
Pl

f&f Q 2~ ~oo

(42)

where the quantity T4(q', 0) is that part of T,'(q', 0)
which varies as q

~ in the limit q2-~. At this
point, the situation for expressing (u Io I

u & in
terms of measurable quantities admittedly looks
hopeles s.

One way out of this impasse is to conjecture the
existence of J =0 fixed poles" in the T4, ampli-
tudes. The fixed poles can be extracted from
T4, by subtracting off from these amplitudes all
Regge contributions in the range I » u(0)»0. One
finds for their residues in the limit q ——~,

4 oo

g, (q') - T,'(q', 0) —, P(;+P 4) —,
0

for the nucleon, the structure function E4 will be
extremely difficult to measure. That is, the for-
mula (46), while sound in principle, is not likely
to be of any use in practice.

IV. VACUUM MATRIX ELEMENTS

il.Q(0), A(o)] = II(0) . (4V)

Sandwiching this commutator between vacuum
states and inserting single-particle intermediate
states yields

&0I&(0)10& = —g &0ls) ~"(o)Ir&&r IA(o)lo& (48)
y

where BvJ" is the divergence of the current as-
sociated with charge Q. The sum rule (48) can
also be derived as a low-energy theorem as-
sociated with the propagator

Thus far, we have studied diagonal single-par-
ticle matrix elements of the axial-charge and co-

operator commutation relations. The sum rules
thereby generated are expressible in terms of
pion cross sections and structure functions per-
taining to neutrino-induced processes. %e have
shown that at least two of the axial-charge sum
rules are almost entirely saturated by single-
particle intermediate states and that several
others give promise of behaving accordingly as
more data become available. In this section, we
allow one or both of the external states to be the
vacuum. Again, we focus on the contributions
of the single-particle intermediate states and also
clarify the physical content of the algebra sum
rules.

First, we treat the vacuum-vacuum matrix ele-
ments. Suppose we have an algebra in which some
charge operator Q is commuted at equal times
with local operator A(0) to produce local operator
B(0),

But by its very definition

(44)
d(d')=(f d xe"''( (TB„0(x)Ad(0)(0) (49)

P (0)=, dxxlW;(0, x)+W,'(0, x)]. (45)~n 0

Finally, we have

4 &u(p)lo(o)u(p)&

= 4m „' dxx(J",'+P, )

Therefore, this type of sum rule relates the vacu-
um expectation value of a local operator to the
zero-energy value of a related propagator.

Let us briefly explore the consequences of sin-
gle-particle dominance in a model where the
chiral nonsymmetric part of the energy density is

Ldp pp Qp + QQ8 (50)
dxxlW, (0, x)+W,'(0, x)] . (46)

B1 O' 0

Upon comparison with the original formula Eq.
(3'I) for the o-operator matrix element, Eq. (46)
is seen to solve the divergence problem as well as
include the necessary positive contribution. How-
ever, the triumph is rather hollow because even

and the trace of the energy-momentum tensor is
8 = (4 —d) (u, + cu, ), (51)

where up, transform as 0' isoscalar members of
(3, 3*)+(3*,3) with dimension d. Letting operators
B„J"and A of Eq. (49) become s„A,", s„A,", first
with &, 5 = 1, 2, 3, then with +, b = 4, 5, 6, '7, we find
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m, 'F,'=- —'(v 2 +c)(~(olu, lo&+(olu, lo&} (52)

2~2 —c
~K FE

Qg Q — Qgg Q 53

If the vacuum is taken to be approximately SU(3)-
invariant, (olu, lo& —= 0, then the approximate num-
erical relation

and then

(56)

where E, , g, are defined by

&0 I8(0)l (P)&= (57)

(o lo(0) I e(P)& = ~.'F.g, (58)

We have obtained Eqs. (52)-(58) by approximating
zero-energy two-point functions in terms of
0 (v, K) and then 0'(c) intermediate states. The
over-all picture given by Egs. (54) and (55)-(58)
is that c is near —vY and that F, and F, are of
the same order of magnitude.

There is nothing outlandish about the results just
derived. They are in qualitative accord with esti-
mates of c and F,/F, arising from at least nomi-
nally different approaches. " In fact, given the
structure of the vacuum-vacuum matrix elements,
dominance of the m, K, e states in the relations
(52)—(56) can be given an aura of respectibility by

~ 13(F„/F„)'-1
26(F~/F, )' 1+

is obtained. " Next replace sg" of Eq. (49) by the
operator 0 and for A substitute first 0, then 0.
We therefore find

appealing to the "nearby singularity" argument of
analytic function theory. However, in our opinion,
justification for these single-particle truncations
is not so clear. Unfortunately, because of the dif-
ficulty in detecting low-spin hadrons with high
mass and then revealing their properties„ it is
not likely that more than a few intermediate states
can be explicitly taken into account in the vacuum-
vacuum sum rules (48). Thus, calculable correc-
tions to these relations are not expected to be
forthcoming. This is in marked contrast to the
sum rules of Sec. II. Moreover, the "nearby sin-
gularity" justification mentioned above is probably
specious. In a recent paper, "Baluni and Broad-
hurst have used rigorous theoretical bounds on

K» form factors along with reliable experimental
data to show that the dimension of the (3, 3*)
+(3*,3) operators more than likely exceeds the
value two. Since the high-q' behavior of two-point
functions goes as (q')~ ', this means that spectral
representations of the (3, 3*)+(3*,3) propagators
must be at least once subtracted. Thus, the singu-
lar high-energy behavior is capable of upsetting
zero-energy estimates by introducing an unknown
subtraction constant into the calculation. The only
means of evasion from this dilemma is to view
propagator pole and cut contributions perturbative-
ly in the context of chiral and scale symmetry
breaking. It is then argued that any effect arising
from the cut is of second order in symmetry
breaking and hence negligible relative to the pole.
However, this argument is certainly not compel-
ling for the kaon channel and is even less so for
the c channel.

It is instructive to consider commutation rela-
tions of various of the (3, 3*)+(3*,3) operators
taken between a vacuum and a single-particle
state. The problems associated with truncating
the number of contributing intermediate states re-
main but without the "successes" of the vacuum-
vacuum matrix elements. It will suffice to give
some examples. Employing the notation of Eq.
(47), the general form of the "vacuum —single-
particle" sum rule becomes

~ & o I&(0) Ir(p)&& r(p) le~&" (o) I o'(p)&, g& o
I s~& "(o) IP (o)&&0(0) I&(0) I o'(5)&

(59)

In the following we shall choose the charge opera-
tor to be E5, @=1,2, 3, and we shall take the limit
Ip I-~. If hadronic form factors of local opera-
tors vanish for infinite momentum transfer q'
q' ~, then a truncated form of the second term
in Eq. (59) will not contribute. The physical con-
tent of the sum rule at this level of approximation
is seen to involve relations between q'=Q form

factors and various constants associated with
vacuum-single-particle matrix elements of local
operators,

-(o
I &(0) I ~(p)&

r & o I&(0) lr(p)&& r(p) I
s ~&"(0) 1~(p)&

2 2
my m+
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In our examples, 8&J" will be the axial-vector
divergence, so we can estimate the q' =0 form
factors by means of Goldberg- Treiman formulas.
Substituting S&A~ (b =1, 2, 3) for A, a' for B, and e
for n in Eq. (60), we obtain

(61a)

whereas the replacements o for A, -8&A," for B,
and v for e yield

8' &7IE'e7I7I

mQ Pl
7f

(61b)

From the estimate I'(eww) =300 MeV, we obtain
E,g„,/m, ' =0.5. Thus Eq. (61a) implies g, —=0.5,
whereas (61b) gives g, = 2.0. This disagreement
can probably be blamed on the deficiency of the
truncation approximation —not enough of the inter-
m.ediate states have been taken into account. A
more striking failure of the truncation approxima-
tion emerges upon making the replacements 8 for
A, -(4 —d)8&A," for B, and e for o, . Then we find
from Eq. (60) that

2
f~6 7T7f ~ ~ ~

2 2+'''.
m 7I Pl Q Pl

(61c)

The left-hand side is an order of magnitude or so
smaller than the right-hand side of this "equa-
tion. " A result like this increases one's apprecia-
tion for the success of hard-meson off-shell
method

We have derived Eqs. (59)-(61c)by considering
scalar operators and states. Analogous relations
can be obtained for operators (like V",A", 0" )
and states (like p, A„f) which carry spin. " Sim-
ilar negative results are found.

V. CONCLUSION

The underlying theme of our study has been to
survey the contributions of single-particle inter-
mediate states to sum rules generated by various
commutation relations.

For the class of axial-charge sum rules cata-
logued in Sec. II, considered as a whole, single-
particle contributions afford the only realistic
phenomenological test. Aside from using the-
oretical estimates for certain nonmeasurable
terms, our analysis was phenomenologically
oriented. In particular, we made no effort to
classify intermediate states according to algebraic
representations. We found almost complete satu-
ration for two sets of external states (n, N), and'
varying degrees of saturation of all the rest: 82%
for 6(1233), roughly 60% for Z, Y,(1385), and p,
somewhat under 50'% for K and K„(892), under 40%
for .(1315), and not much information for the re-

2

where m~ is the quark mass and m is the mass
of hadron n. Equation (46) then becomes

(p
p X

(62 )

(63)

This relation affords an estimate of the bare quark
mass in terms of the o matrix element and ob-
servable neutrino structure functions. Although

maining cased examined. Notice from Eq. (13)
that if the asymptotic equality of particle and anti-
particle cross sections were not valid, we might
expect to see some effect of nonconvergence in
our sum rules. However, in none of the cases was
oversaturation detected. We are optimistic that
with further experimental effort in hadron spectro-
scopy enough information can be gathered to allow
almost complete saturation of the h(1233), Z,
Y, (1385), p, K, and Kv(892) sum rules, and sub-
stantially more information gathered regarding
the .(1315) sum rule. In principle, there is noth-
ing to prevent this. However, we do not envisage
there being substantial phenomenological appli-
cability of the sum rules associated with external
states n of higher mass. Since contributions for
which the mass of the external state exceeds that
of the intermediate state do not appear to be large,
decay widths where n appears in a final state will
be needed. These are hard to measure. More-
over, the number of nonmeasurable contributions
will increase. Whether our theories of hadrons
will improve enough to allow calculation of these
is a matter of conjecture. A relevant example is
discussed in the Appendix.

The work of Sec. III essentially speaks for it-
self and warrants little discussion here. While
it is commendable to see that the q'=0 v-operator
sum rule can be written in such a way that its
original defects are eliminated, the resulting phe-
nomenological distortion is such that the sum rule
loses almost all its attractiveness. In particular,
the low-energy pion-nucleon system will remain
the best area in which to attempt determination
of the nucleon matrix element of the o operator.
However, we would like to point out here one pos-
sible extension of our analysis. It is observed in
Ref. 3 that in a model where hadrons contain
quarks intera, cting with gluons, P, (0) [defined in
Eq. (45)] is proportional to the quark-gluon cou-
pling constant. Ordinarily, one might expect this
quantity to be large. But, in models of hadrons
such as the MIT bag, ""'"it is possible for the
quark-gluon coupling to be small, thus allowing
P, (0) —=0. If so, it follows that'
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its theoretical foundations are open to criticism,
the content of Eq. (63) is sufficient to warrant
further study.

Despite the rather extensive employment by
previous workers of the vacuum-vacuum and vacu-
um-single-particle sum rules of the general type
in Sec. IV, it is our conclusion that these systems
are far from being under theoretical control. At
the very least, the probable need for subtraction
constants" in the (3, 3*)+(3*,3) propagators is
an ominous signal that the usual truncation pro-
cedures adopted might be inadequate. In addition,
there is the recent ee annihilation data, which,
for example, shows that the p contribution to
Weinberg's first sum rule is only ~30 that of the
higher-mass continuum" in the vector current
propagator probed so far by the experiments. It
remains to be seen whether other calculations
based on single-particle dominance of the vacu-
um-vacuum and vacuum —single-particle matrix
elements will fail so resoundingly.
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APPENDIX

In Sec. II, we have carried out a phenomeno-
logical analysis of the axial-charge algebra, Eq.
(3), taken between arbitrary hadronic single-par-
ticle states. As the mass of the external state
becomes larger, we encounter increasingly the
difficulty that matrix elements occurring in our
analysis are unmeasurable because of kinematic
reasons. To overcome this problem, we must
refer to dynamical models to provide estimates
for the unknown matrix elements. In the following,
we shall employ the "MIT bag model"" as an il-
lustration of how one could proceed.

Consider the following case, The axial-charge
algebra taken between 6'+ states has an unknown
contribution from the 6' intermediate state. In
particular, the unknown quantity is a parameter,
f„, defined in Fq. (16) and again below. We employ
a Goldberger-Treiman relation in Sec. II to relate
fz to a coupling constant g, ~~ which is itself ex-
pressed in terms of g„» by means of SU(6)~ sym-
metry. An alternative method for obtaining an
estimate for f„ is to use a variant of the MIT bag
model. " Recall the definition given in Eq (16), .

f.X'(~') ~; X(&) =, (~"(~') I&.'(0)
I
~"(~)&,

where f~ -=F„(0}and the 6"wave function with
spin component A. is given by the vector-spinor
y(A). These spin wave functions obey

X= -3/2
(A2)

If the axial-vector current is carried by quarks,
and baryons are entities (called bags) in which
quarks are permanently bound, we have

d'K y'(x) 7;o,y(x) s"(x = —,')

(A3)

The particular bag model" we employ here in-
volves the quantum modes of massless Dirac fields,
which carry quark quantum numbers, enclosed
within a static spherical boundary. The scale of
the model is fixed by normalizing its only free pa-
rameter to the N(938)-6(1233) average mass. The
following kind of spectrum for strangeness-zero
baryons is found: degenerate N, d at 1180 MeV,
degenerate spin & and —', negative-parity states at
1421 MeV, degenerate spin —,

' and —,
' positive-parity

states at 1626 MeV and a similar set at 1657 MeV,
etc. The mass of each state is determined from
an eigenfrequency ~„„where the index n labels
the mode and v distinguishes the parity. For ex-
ample, some of the modes which a quark may
occupy are 1S,t, (e, , =2.04), 1P,~, (w, , = 3.84),
2$, t, (e, , = 5.4), etc. Further details of the
model are given in Ref. 29. Upon evaluating Eq.
(A3) in the bag model, we find

f~ = ~~I (~,
~ i),

where

(A4)

3((d„q+ K)
(A5)

The v 3 in Eq. (A4) is the value of fz in the most
naive quark model, uncorrected by any kind of
dynamical considerations. ' Numerically, we find
f„=1.16 from (A4). A similar phenomenon occurs
for the nucleon axial-vector coupling in this bag
model; the naive quark value, g~ =~3 is reduced to
g„=1.09. Below, we summarize the situation as

(~"(p', ~ ) ~A, (0)
~
~'(p, ~))

= u,'+(p', A. ') [Fz(t)g.,r" r, + ]I', (p, &) .

Performing an isospin rotation and, for conven-
ience, evaluating the above in the static limit, we
find for tt = i (i = 1, 2, 3}
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regards the axial-charge sum rule evaluated be-
tween 5"' states.

Status of sum rule,
Eq. (17)

0.98+ ~ ~ = 1

Q. 66+ ~ ~ =-1

Goldber ger -Treiman 1.43
relation

Q 8Q+. ~ ~ ~ 1

The naive quark estimate for f„ is seen to give
rise to almost total saturation of the charge-al-
gebra sum rule, in light of existing data. In view
of the rather limited information pertaining to
resonance decay of baryons into 4m modes, and
the fact that each contribution to the 6"sum rule
is positive, total saturation of the sum rule would
have to be considered with some suspicion. On
this basis, we feel that both the bag model and
Goldberger- Treiman estimates of the unmeasured
parameter f„are superior to the naive quark esti-
mate. Unfortunately, it is not possible to judge
the relative merit of the former two estimates
solely on the basis of the 6'+ charge-algebra sum
rule without further data.

In principle, it is possible to analyze even-
higher-mass external states in the same way. The

next baryon external state would be ¹(1470).The
¹{1470)sum rule has a contribution coming from
the iP'(1470) intermediate state itself. This con-
tribution depends on the value of an axial-vector
coupling gg, defined analogously to the nucleon
axial-vector coupling g„. Upon calculating gg in
the bag model, we find

gg =—'„'[2h((u, ,) +h((u, ,)], (A6a)

where we assign ¹(1470)to the —,
'" state occurring

in the bag model with mass 1626 MeV {1S,~,
' 2S, ~,

configuration). Numerically, we find gg =0.96.
However, in the bag model, there is a —,

"state
with nearly the same mass (1657 MeV, 1S,~, 2P, ~,

'
configuration) for which

o2 =
~8 [2@(&i,i) +it(~i, -i)] (A6b)

or numerically gg =0.66. The relation between
either of these 2' states and the one seen in Nature
at 1470 MeV is far from clear. Evidently, a con-
siderable degree of mixing can take place, the
calculation of which must await a more realistic
model. In other words, to pursue the consequences
of this p3rticular bag model any further in our
phenomenological analysis seems to us of little
more than academic interest. We await further
progress in our theoretical understanding of ex-
cited baryon states.
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derivation involves an extrapolation over a range m„,

2

and so cannot be used with absolute confidence to
provide an accurate estimate of (c.Ic(0)Iu). However,
our interest in these relations is not so much pheno-
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menological as theoretical. The real issue is to de-
termine what modifications are necessary to obtain
meaningful sum rules.

~SHereafter, we concentrate on the continuum contribu-
tion to (c.(o~o,'), completely ignoring the discrete terms
arising from contributions below the ~0. physical
threshold.
We assume time-reversal invariance.
A J=0 fixed pole shows up as a contribution to Re T&'

in the limit & with energy dependence the same as
that of an n =0 Regge pole.
Unfortunately the charge algebra reduced to a triviality
in this case.

23We realize that this formula is already familiar to
many readers. We are simply using it as an example
in the course of our discussion.

24For example, see M. Gell-Mann, R. J. Oakes, and
B. Renner, Phys. Rev. 175, 2195 (1968), and P. A.
Carruthers, Phys. Rev. D 3, 959 (1971), respectively.
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Phys. Lett. 34B, 91 (1971).
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course» even though SU(6)w is used to relate the
coupling constants g~~ and g„~~, there is no reason
that the Goldberger-Treiman and naive quark estimates
should be identical.


