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Asymptotically free field theories make definite predictions for the behavior of the hadronic vacuum

polarization tensor in the spacelike region. A theorem due to Meiman is used to combine these
predictions with the analyticity of the vacuum polarization tensor to derive in a rigorous way the
asymptotic behavior of the cross section for electron-positron annihilation into hadrons. Our theorems

allow this cross section to oscillate indefinitely about a well-defined value. An explicit example is

exhibited which demonstrates that such oscillations are not excluded and that the restrictions imposed
on the annihilation cross section at finite energies are very weak. Even if oscillations of the leading
term in the cross section which do not die out asymptotically are excluded as unphysical, very little
can be said about the behavior of the nonleading terms without making very restrictive assumptions.

I. INTRODUCTION

where a and b are exactly calculable in any partic-
ular theory [for example, in the SU(3)8 SU(3)' col-
or triplet model a =2, b =-,'] and s, is an arbitrary
momentum scale. With the precocious scaling of
the deep-inelastic . electroproduction structure
functions as a guide, it is expected that the as-
ymptotic behavior (1.2) will a,iso set in for rela-
tively small s, probably on the order of a few
Gev2.

The hadronic vacuum pola, rization tensor is re-
lated to the electron-positron annihilation cross
section into hadrons through the Kallen-Lehmann
representation

v(s) =-s "" ds' p(s')
7t „2 S' S —S+ZC4m~

(1.3)

where in the one-photon-annihilation approxima-
tion the spectral function is given by

Recently the electron-positron annihilation cross
section has received much attention as a testing
ground for asymptotically free field theories of the
strong interactions. These theories, through the
renormalization group, make definite predictions
about the behavior of the renormalized hadronic
vacuum polarization tensor

v„.(q) =(e,e. —g„.e')~(e')

in the spacelike region. In particular, Appelquist
and Georgi' and Zee' have shown that for asymp-
totically free field theories

dr(s) 1 b
T(s) -==—a+ -s largeds -s ln( —s/s, )

(1.2)

We have written the spectral representation in
once-subtracted form. If more subtractions were
required, then (1.2) could not possibly be correct.

Adler' has pointed out that the implications of
the annihilation reaction for the spacelike behavior
of the va.cuum polarization tensor can be most di-
rectly explored by studying the function T(s),
which, if one takes into account its definition and
the Kallen-Lehmann representation, can be writ-
ten as ),"

d P( )

v~4m ' (s s)

Now the observed annihilation cross section' into
hadrons remains roughly constant from 5 to 25
GeV'. Adler has shown that if this behavior con-
tinues up to 81 GeV' (this energy range will be
available at sPEAIt II) then the inequality

a+ bin( sll /s, ) ) "' d, P(s')
"4m S + S

obtained by truncating (1.5) at s =81 GeV' and
comparing it with the prediction (1.2) for a pre-
cociously asymptotic color triplet model, would
be violated. He ha, s also shown that if o'„„' (s) re-
mains constant up to s „=900GeV', then this pro-
cedure would rule out essentially all currently
popular parton or asymptotically free models. Qn
the other hand, if the annihilation cross section
decreases sufficiently to satisfy (1.6), then we will
learn nothing in this way.

The p~oblem of obtaining directly the implica-
tions of the spacelike predictions (1.2) for the an-
nihilation cross section is more difficult. Appel-
quist and Georgi' and Zee' simply calculated the
discontinuity of the continuation to the timelike re-
gion of their asymptotic form for v(s), e.g. ,

rs
w(s) =

J
T(s') ds' - -a ln(-s/s, ) —b ln ln(-s/s, ),
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and found

b
p(s)-m a+

They further assumed that this behavior sets in
for the same low values of s as was expected in
the spaeelike region. Of course, this procedure
is not in general justified, and a more rigorous
argument is desirable.

The difficulty with trying to obtain more precise
restrictions imposed by (1.2) on oh,; (s) for any
finite region of s is that in general we cannot ex-
clude the possibility that o'„,~' (s) has some oscil-
latory behavior which averages out in the spectral
representation to produce the smooth behavior
predicted in the spacelike region. 4 Indeed, we
cannot even rule out the possibility that such un-
pleasant behavior persists asymptotically.

In this paper we consider the problem of deter-
mining what restrictions on the asymptotic behav-
ior of the annihilation cross section follow from
(1.2). We show in Sec. II that if lim, „[v(s)/Ins]
exists or if, for large enough s, dp(s)/ds has one
sign [actually we require only that these proper-
ties be true when w(s) is averaged over some suit-
able interval around s] then

lim p(s) = wa,
$ ~QQ

(1.8)

at least on some infinite sequence of points [s„],
s„-~ as n-~. In Sec. III we prove that if dp(s)/ds
has one sign for large enough s and in addition
lim, „[[sT(s)—a]1ns] exists, then

b
p(s) = n a+

/ )
(1 9)

This result also need be true only on some infinite
sequence [s„j. The assumptions required to ob-
tain the nonleading behavior described by (1.9) are
of course much stronger than those used to derive
(1.8).

These results cannot be compared with data at
any finite s, since our theorems need hold only in
the limit s-~. If one has other reasons for be-
lieving that the asymptotic behavior sets in for
precociously small values of s and that oscillations
can be excluded, then the spectral function must
approach the form (1.9) for small s. However, in
Sec. IV we present an explicit example which
demonstrates that it is impossible to improve our
theorems to rule out asymptotic oscillation of p(s)
about the value ma and, in addition, that the as-
ymptotic-freedom prediction (1.2) for the spacelike
region does not severely restr ict the behavior of
the cross section for finite s. Even if lim, „p(s)
=7ta, the approach to this limit need not take the
simple logarithmic form (1.9) unless the rather

strong assumptions used to obtain this behavior
are fulfilled. Thus it is quite possible that mea-
surements of the annihilation cross section for
larger values of s may provide no evidence to
confirm or contradict the prediction (1.2).

One of our principal tools in obtaining our re-
sults is a theorem of Meiman' which is a conse-
quence of an inequality on harmonic measures.
This theorem has been used by Khuri and Kino-
shita' to examine the relation between the asymp-
totic behaviors of the total cross section and phase
of the scattering amplitude for strong interactions.
We refer the interested reader to their paper for
a discussion of the origin, use, and limitations of
Meiman's theorem.

II. LEADING ASYMPTOTIC BEHAVIOR

We examine here the restrictions imposed on the
asymptotic behavior of the spectral function p(s)
by the leading spacelike behavior of the hadronie
vacuum polarization tensor

m(s)

„ ln(-s) (2 1)

which is predicted in asymptotically free field the-
ories. We assume throughout that n(s) is analytic
and bounded by a polynomial in s in the once-cut
plane and continuous' on the cut, and that p(s) is
positive-definite for s & 4m, '. Define the function
fr(s) as the average of v(s) over an interval of
width hs around s:

$ + AS/Q

w(s) =
i

ds'n(s').
&s &s-~/2

(2 2)

This averaged function obviously possesses the
same analyticity, continuity, and positivity prop-
erties as does m(s). We will present two theorems
which determine the asymptotic behavior of p(s)
from (2.1).

Theorem I. If lim, „[w(s)/In(-s)] =-a and
lim, „„,[w(s)/lns] exists, then either

lim p(s) = na,
S

(2 3)

-v(E ')
2[ lnE —iw/2]

' (2.4)

Here g(E) is analytic in the upper half E plane out-
side of the unit semicircle, continuous on the real
axis, and satisfies

or there exists a sequence of points [s„], s„-~
as n-~, on which (2.3) holds. If
lim, „„,[w(s)/In(s)] does not exist, but we can
choose a b.s large enough that lim, „„,[fr(s)/Ins]
does exist, then the result (2.3) must again be true.

Proof. We define E =v s and construct the func-
tion
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g(-E + fe ) =g *(E+ f~) . (2.5)

The asymptotic freedom prediction for g is obvi-
ously

lim g(E)=a.
g -+ f co

(2.6)

The Phragmdn-Lindelof theorem' requires that the
value a is contained in the manifold of limit points
of g(E) for E-~. For the moment we assume
that lims „g(E) exists, in which ca,se

uniformly in 0 &argE & q.
For large real E

Img(E) =- — Imm(E)+ Bem(E)
2 lnE

Beg(E) —= — Be~(E) — Im7T(E)
2 lnE

lnF,

(2.8a)

1nE .

(2.8b)

lim g(E)=a, (2.7) There are now three cases to consider:

-v Rew(E) Imm(E) lnE n-
(a) Imv(E)& — for E&E, large and lim

2 lnE s Bew(E) 2

wBev(E) Imn'(E) lnE —w(b) 0&1m'(E)&—
2 lnE

for E&Eo and lim
Ben(E) 2

Imw(E) -m Imm(E)(c) lim
„Rem(E) 2 Rew(E) 2

lnE = —or lnE = —on some infinite sequence of points [E„)I, E„-~as n

Note that this covers the possibility where [Imv(E)/Hem(E)] lnE oscillates about the value -m/2.

Im g(E) const
Beg(E) InlEI

' (2.10)

Let g = u+iv and define u, to be the farthest
(from the origin) intersection with the positive
real g axis of the image of the semicircle in the
E plane of radius E,. Similarly, define u~ to be
the nearest intersection with the positive real g
axis of the image of the semicircle of radius E.
Let r(u) be the shortest distance between the point

In case (c) we have the desired result since then

Hem(E) . Imw(E)lim g(E) = a = —lim lj.m
Q -+ao 2 lnE E

(2.9)

at least on some sequence [E„).
It only remains to eliminate (a) and (b). To do

this we employ Meiman's theorem. Consider the
region of the upper half E plane bounded by two
semicircles centered at the origin and with radii
E, and E, both large and such that E»E,. This
region is mapped onto some region of the g plane.
Let F, and 1, be the images of the segments of the
upper edge of the real E axis from E, to F, and
from -E, to -E, respectively. Because of the
symmetry (2.5) the curves I', and I; are symmet-
rically located with respect to the real g axis.
Furthermore, F, and F, do not intersect because
the positivity of p(s) implies that on the positive
real axis Img is strictly negative in case (a) and
strictly positive in ca.se (b). In both cases the
curves I', and I', lie in the region (see Fig. 1) de-
fined by

u,„=Min(u „uz),
u =Max(u„us) .

Meiman's theorem states that'

(2.11)

r —,
' ln(E/E, ) .

"min

We know from (2.10) that

(2.12)

constr(u) & u sin8s & u
lnE (2.13)

Inserting (2.13) into (2.12) we obta, in the inequality

u,„ lnE E,ln '" & const ' = const.u min lnE (2.14)

g(EO)

}8E

! = Beg

FIG. 1. The g plane for large E in case (a). For
case (b) I'& and 1

&
are interchanged.

(u, 0) and the curve I', (or equivalently I', ). Finally
define
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lim p(s) = wa,
S

(2.15)

at least on some infinite sequence of points f s„],
s„-~ as n-~. Since p(s) is a continuous function
of s, this completes the proof of the theorem.

We would like to remove the condition that
lim, „[w(s)/Ins] exists. We are able to do this by
replacing it with a different condition, namely that
for large enough s the spectral function p(s) is an
increasing or decreasing function of s, at least
when averaged over a suitable interval around s.

Theorem II. If for s) s„s, large, dp(s)/ds ex-
ists, is bounded, and has one sign, and if the KNl-
len-Lehmann representation for w(s) requires at
most one subtraction, then the asymptotic-free-
dom prediction (2.1) implies that

lim p(s) =ma.
S

(2.16)

If p(s) is not monotonically increasing or decreas-
ing, but p(s) —= Imt(s) is, then

lim p(s) =ma.
S

(2.17}

Proof. The proof is very simple. For s&0 we

have

(-s)T(s) = —— ds' —,p(s')
w, 2 (s'+ fs f)' ' (2.18)

Integrating by parts for s') s„ taking s- -~, and

dropping terms which vanish in that limit we have

ma = p(s, ) + lim ds' dp/ds'
1+s' s

0

(2.19)

Consider first the case of dp/ds -0 for s - s,.
Cutting off the integral at some s, » s, we get the

inequality

Since g(E)- a uniformly in 0 & argE & v, by choos-
ing E, and E large enough we can make u, and u~
both arbitrarily close to a. The left-hand side of
(2.14) can then be made arbitrarily small, which
is a contradiction since the constant on the right-
hand side is fixed. This rules out cases (a) and
(b) and so (2.9) must be true.

If lim, „[m(s)/lns] exists only on the average in
the sense that lim, „[Fr(s)/jns] exists, then by re-
placing n'(E) by 77(E} in Eqs. (2.4) through (2.14) we
find that

dp s
wa = p(s, )+ lim ds'

s +s
0

= p(s, )+ I
ds', — lim ds'

0 0

dp& p(so) + ds'
s

Therefore, the equality sign must hold in (2.21)
and (2.22). Since dp(s)/ds exists and is bounded
for s ~ s, we can perform the integration and ob-
tain the desired result (2.16). The proof of (2.16)
for the case dp/ds &0, s ) s„ is the same as for
dp/ds ) 0 except that the inequalities (2.21) and
(2.22) are reversed.

If p(s) is not a monotonic function of s but p(s)
is, then p(s) should be replaced by p(s) in Eqs.
(2.18) through (2.22). Then we must have (2.17)
and the theorem is proved.

(2.22)

III. NONLEADING ASYMPTOTIC BEHAVIOR

Here we consider the following question: If

lim p(s) =ma,
8

(3.1}

then how is this limit approached? As we shall
see, much stronger (physically) assumptions are
required to treat this problem, and in the general
case we cannot determine the behavior of the non-
leading terms.

To begin we define the function

T(s) = [ -sT(s) —a]. (3.2)

Like T(s), our new function T(s) is analytic in the
cut plane. Its discontinuity is -s(dp/ds), which
we will assume to exist, and furthermore we will
assume that T(s) is continuous' on the real axis.
For spacelike s, the asymptotic-freedom predic-
tion for T(s) is

lim T(s) ln —=b .
S ~- So

(3.3)

We see that the properties of T(s) are very simi-
lar to those of w(s), the main difference being that
ImT(s) is not positive-definite and T(s) decreases
logarithmically, whereas w(s) increases logarith-
mically for s- —~. If we assume that dp/ds, and
hence ImT(s), has one sign for s ) s„s, large,
and that lim, „[T(s)ln(s)] exists, then the func-
tion

(2.20)6p~a) p(s, )+ ds'
As

Now we can choose s, as large as we please, so

g(E) = 2(lnE —iw/2)T(E ')

= 2(lnE —in/2) [ -E 'T(E) —a] (3.4)

ma) p(s, )+ ds' d,6p
S0

ds'

On the other hand,

(2.21)
satisfies the same conditions as did g(E) in (2.4).
Applying Meiman's theorem in precisely the same
fashion as we did to prove theorem I we obtain the
following theorem.
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Theorem III. If, for la.rge real s, dp/ds has one
sign, and if lim, „([-sT(s)—a] lns} exists, then
the asymptotic-freedom prediction (3.3) implies
that

dH(s) m(s +as/2) —m(s —ss/2)

and suitably chosen As

dp 8
lim s ln's = -mb,

ds
(3.5)

dp p(s+r s/2) —p(s —ss/2)
Qs Es

at least on some sequence of points (s„},s„-~ as
n-~. If the above conditions are satisfied only on
the average, in the sense that with

has one sign for large enough real s and
lim, „([—sT(s) —a]lns} exists, then we find in-
stead of (3.5)

dp, . p(s + b, s/2) —p(s —hs/2)
lim —s ln's = lim s ln's
s~ dS s Ds

(3.6)

It follows from this theorem that on some se-
quence of points the spectral function p(s) is de-
creasing like mb/lns to a constant value. lf
lim, „p(s) does not exist [e.g. , p(s) oscillates
around the value va], then p(s) need not approach
the value va on this sequence. But if (3.1) holds
and in addition lim, „[(dp/ds)s ln's] exist, then
combining (3.1) and (3.5) we find that for large
enough s

b
p(s)=m a+

/ )
(3.7)

We want to emphasize at this point that from a
physical point of view the assumption that
lim, „([-sT(s)—a] lns} exists is much stronger
than the assumption, used in proving theorem I,
that lim, „[z(s)/lns] exists. The reason of
course is that w(s) is the quantity with physical
meaning, and even if w(s) itself has "nice" (e.g. ,
nonoscillatory) behavior in the limit of large real
s, there is no reason to believe that every function
(in this case the function which describes its non-
leading a,symptotic behavior) constructed from it
will also be so well behaved.

IV. DISCUSSION

We would like to make a few remarks about our
theorems. First we must point out that from a
mathematical point of view the theorems do not
cover all cases since they do not apply if w(s)/lns
and p(s) oscillate with unbounded amplitude or pe-
riod as s-~. However, it is not clear that any
meaningful conclusion could be reached in such a
pathological situation, and while this behavior can-
not be ruled out mathematically it is extremely
unphysical. Therefore, we will not consider this
possibility further.

Next we ask whether theorems I and II could be
strengthened to exclude the possibility that p(s) os-
cillates indefinitely about the value ma as s-~.

That such an improvement is impossible, without
more information, is demonstrated by the follow-
ing simple example: Suppose we have a function
w, (s) which is analytic in the cut plane, is continu-
ous on the real axis, has positive absorptive part
p, (s), and satisfies

Let

m, (s) = c exp[ io. (s —M')'"], o, & 0 and M' ~ 4m, '

(4.2a)

v(s) = v, (s) + w, (s) + w, (s) . (4.2c)

Then for ma & c ~ -wa and b ~ 0 we can always
choose a weight function p, (s), nonzero only in the
set of n (finite) intervals fx;, y; }, such that the
function w(s) satisfies the required analyticity,
continuity, and positivity properties and obeys the
asymptotic-freedom prediction (1.2). However,
with this choice of w(s) the spectral function p(s)
oscillates about the value wa with amplitude c and
period o. /v [in the variable E =(s —M')'"] for

In addition to providing a counter example to the
improvement of theorems I and II, functions of the
type (4.2) demonstrate that the restrictions im-
posed on the behavior of the annihilation cross
section at finite s are very weak. To be more con-
crete consider the SU(3)S SU(3)' color triplet mod-
el in which a =2 and b = —', . Suppose that in (4.1) we

T,(s)= ' = a+ —,s ~ —~s, ~

dao(s) b 1
ds ln(-s/s, ) —s '

(4. la)

6
p, (s)=a+ —.. . , s~ ~s, ~.ln(sl s, )
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choose s, = 2 QeV', s, = 6 QeV', and s, = 10 QeV'.
Then with c =2w, o. = w/5 GeV, and M' = 10 GeV'
the absorptive part of w, (s) + w, (s) is positive and
we do not even need w, (s) (unless of course we
want to fit some data). In the spacelike region
w, (s) is exponentially decreasing and at s = -6 GeV',
T, (s)-=dw, (s)/ds is already less than 10/o of T,(s).
But between 10 and 35 GeV', p(s) reaches a maxi-
mum which is nearly twice as high as p, (s). Clear-
ly, by choosing more complicated functions of the
type (4.2a) and adjusting p, (s) in (4.2b) we can ac-
commodate an enormous range of behaviors for
p(s) while still maintaining the spacelike behavior
(1.2).

The situation with respect to the nonleading as-
ymptotic behavior of p(s) is still worse. Even if
oscillations in the leading term of the type just
described are ruled out on physical grounds, very
little can be said about the nonleading terms. The
proof of theorem III requires very strong assump-
tions and even when these assumptions are true,
the theorem is not very restrictive.

To conclude we suggest that the cross section

for electron-positron annihilation into hadrons
may not after all provide a good testing ground for
the asymptotic-freedom prediction (1.2). As Adler
has pointed out, if the measured cross section re-
mains constant then eventually all reasonable as-
ymptotically free models will be ruled out. On
the other hand, if p(s) begins to settle down to a
behavior of the type (1.2) then this will help to se-
lect among the theories which have been proposed.
But the annihilation cross section has at its dis-
posal a vast range of possibilities which would
neither support nor contradict the asymptotic-
freedom prediction for the spacelike region.
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