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Space-time internal algebra describing the hadronic mass spectrum

Saul A. Basri*
Department of Physics, Technion —Israel Institute of Technology, Haifa, Israel

L. P. Horwitz~
Department of Physics, Tel-Aviv University, Ramat-Aviv, Israel

(Received 20 August 1974)

A Lie algebra containing both the Poincare and SU(6) algebras as subalgebras is abstracted from a
Clifford algebra generated by seven elements. In a state in which the internal-symmetry quantum
numbers are definite, the mass has a continuous spectrum peaked about certain values, and may be
discrete in a few special states. An exact formula for the average squared mass is obtained which
contains the Gell-Mann —Okubo expression in a natural way, and which also includes terms that
correctly split the mass within isospin multiplets.

I. INTRODUCTION

The classification of particles as multiplets as-
sociated with the basis vectors of irreducible rep-
resentations of an internal-symmetry algebra S
of operators over a Hilbert space is a well estab-
lished concept at present. The best known and
most successful of these algebras are the SU(3)
and SU(6) Lie algebras. Attempts to imbed S in a.r.

algebra A that includes space-time observables,
so as to yield a discrete mass spectrum for the
elements of a multiplet, have been thwarted by
"no go" theorems, such as one proved by
O' Raifeartaigh' that leads to no mass splitting if
A is a Lie algebra containing the Poincare algebra
P as a subalgebra.

In this paper we shall formulate a Lie algebra A
that contains P and SU(6) as subalgebras, but in
which the mass operator has a continuous spectrum
peaked at certain values, and may have discrete
values in a few special states. This is in accord-
ance with the observed mass spectrum, and is con-
sistent with the results of the "no go" theorems.

The motivation for the particular algebra used
here stems from the important role played by
Clifford algebras' in physics. The Pauli spin alge-
bra is abstracted from the Clifford algebra C, gen-
erated by two elements, the homogeneous Lorentz
algebra is abstracted from C„and the Dirac alge-
bra generated by the four y„matrices is identical
with C4. The Clifford algebra C, was investigated
by Basri and DeMeyer, ' and was shown to contain
P as a subalgebra. Since it is not possible to ab-
stract both P and SU(3) from C„it wa. s decided by
the authors to investigate C, for the following rea-
sons: (1) It is possible to abstract from C, both P
and SU(6) as subalgebras. (2) C, has a nontrivial
center consisting of the identity and another ele-
ment [see (2.2) and (2.4)]. The latter element of-

II. THE ALGEBRA

We shall abstract the Lie algebra A we require
from the commutation relations among the ele-
ments of the Clifford algebra C, generated by
e, (a =0, 1, . . . , 7), where e, is the identity and

2=ea ~aa 0~ ~a a

e, e, +e, e, =O for &&5 .

(2.1a)

(2.1b)

C, is split by the central projection operators
(these commute with all the elements of C, )

P~'~ =-,'(e, a e,e, e, ) . (2.2)

We shall choose the g„sothat e,e, e, is self-
adjoint in the finite-dimensional representation,
where

a ~aa a (2.3)

Consider the even-closed Lie subalgebra gen-

fers the possibility of interpretation as an operator
such as CPT, whose eigenvalues differentiate be-
tween particles and antiparticles (the center of C,
is trivial). (3) A Hilbert space may be constructed
over C„which contains the basis for octonion
Hilbert spaces. Some applications of such spaces
have recently been suggested by Qunaydin and
Gursey. '

The algebra A is formulated and discussed in
Sec. II. Then a maximal set of commuting oper-
ators is found in Sec. III, whose eigenvalues are
used to specify the states. As a first test, A is
used to derive an exact mass formula in Sec. IV,
which gives the correct splitting of masses within
SU(3) multiplets, both with respect to the hyper-
charge and isospin, and within each isospin muli-
plet.
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crated by the even elements

8 =(e, eb, e, eb e, e„,e, eb e, e, e& e, )
containing 63 generators. This Lie algebra is
isomorphic to that abstracted from C6 and is the
basic spinor module over the Cartan-Lie algebra
Ba. Moreover, the two Lie subalgebras h ' =P' h
are isomorphic to that generated by S. Since

Q, H, will be constant and may have different val-
ues in different representations.

We shall take the commutation relations (2.10)
as the definition of the Lie algebra A. In what
follows, we shall refer only to the operator-valued
quantities defined in this way, which realize this
algebra on unitary representations. In particular,
we require that

C, =center (e„e, e, )B 8 '
tB 8 ~, (2.4)

it is sufficient to consider the Lie algebra &
which is abstracted from g+ alone. In what fol-
lows, we shall suppress the superscripts (+), with
the understanding that we are working in the sub-
space characterized by P "~ .

The elements of A. ' are defined by

(E' )

H~ =II

Then the self-adjoint operators

E„=b(E,'» —E„),E„=E,„+E„
satisfy the commutation relations

(2.13)

(2.14)

+ =&.~= e.PO&~=&~:.

H, =P, —e-c/8,

(2.5a)

(2.5b)

PO

li
Pub = 2 (eo bubexeaea)

(2.6)

where the projection operators P, and P, (see Ref.
4) are defined as follows:

(+)
0 123 145 264

[E,",, E", ] =i(g„E"„+g, E"„—g„E",„—g„E,",],
(2.15a)

(Eab ~ Ecd ] b( gbcEad+ gad Ebc+gacEbd+gbdEac]

(2.15b)

(Eab ~ Ecd ] b(gbc ad gad Ebc gacE»d+ gbd Eac ]

(2.15c)

Taking
=P123

lg
Pyab= b(ec —&gabegeaeb)

=P 145 7

(2.7)

gl 1 g22 g33 g44

we find from (2.15a) that (z, 1 = 1, 2, 3, 4)

(2.16)

(2.17)
l

P2»a =- —.(ec —&2».e.ea«)

264

~

~

~

~f gaaA~gcc=+1 7

~abc
+1 if gaag~~gcc= -1,

gH. , E.', =O,
a =0

[H. , H, ]=o;

QP, =e„gH, =o;
a =0 a=0

+ f +
(Eab) Eba g gbb a& aHa Ha

Pa —gaa eaPOea
+

gaa Eaa

These definitions imply

(Eab ~ cd ] gbcEad gad Ecb

(E.», E.b] =g..gb»(H. Hb»—
[H, , E,b] =+E b,

(2.8)

(2.9)

(2.10a)

(2.10b)

(2.10c)

(2.10d)

(2.10e)

(2.11)

(2.12)

generate the homogeneous Lorentz algebra L.
Furthermore, if we choose

gss = g66

and write Ho=H87 then the momenta

(2.18)

[p„I,] = o,
(P. ~.~]=&g..Px .

(2.21)

(2.22)

The crucial property of E56 for this purpose is

[E"„,P'„]=bP„'. (2.23)

The relation (2.18) is necessary for both (2.23)
and

P„:P„'f(H, H )+—(P'„,E )f (H, H ), (2.19)

5++K67

along with J,q, generate the Poincare algebra P
[the curly bracket in (2.19) denotes an a,nticom-
mutator]. The elements H, and H, are the only
ones that commute with P,' and J, q, and E"56 is the
only other element of & that may be introduced in-
to the expression for P, so that the Poincare
relations below are satisfied:

In infinite-dimensional irreducible representations, [p'„p„']=o . (2.24)
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Note that P', also satisfy

(2.25)

Poincari

and together with J, q generate a Poincare alge-
bra. However, we shall see in Sec. IV that the
second term in (2.19) is essential to obtain correct
electromagnetic mass splitting. The operator
E"56 will also be seen in Sec. III to play a crucial
role in providing a nonvanishing lower bound to
the dispersion of the mass in representations
characterized by definite internal-symmetry quan-
tum numbers.

The general structure of the Lie algebra we
have generated can be summarized in Fig. 1. The
number 78 at the bottom vertex stands for the
isospin subalgebra generated by

I, —E78,

2f, =[a„f]=H, -H, .
(2.26) FIG. 1. Structure of the algebra A.

This choice for the isospin stems from the re
quirement that it commute with P'„.

Since the isospin algebra is a subalgebra of
SU(3), we place the SU(3) algebra, in the 678 tri-
angle by taking

~& =+67~ ~& = +68 ~ (2.27)

2U, =[U„U] =H, -H, =-,' Y-I, ,

2 V, = [V„V] =H, -H, = —,
' Y+ I, ,

where the hypercharge is given by

Y = —,(2H6 —H7 —H8) .

The fact that SU(3) is compact implies that

(2.28)

(2.29)

~66 g77 g88 (2.30)

e8 = ~~0 g88 = (2.31)

Then it follows from (2.16), (2.18), and (2.30) that

One has the option of taking g»=+1 or -1. To ob-
tain the largest compact subalgebra of A, we
choose the negative sign by defining

independent expressions of II„II„II„form a
"spin-SU(3)" algebra. The magnetic moment com-
ponents, being the product of electric charge with
the spin, lie in the region of the SU(6) triangle
outside the 123 and 678 triangles. Note, however,
that all the elements of the SU(6) algebra are gen-
erators of A, and not constructed from Kronecker
products of spin and SU(3) elements.

The spin triangle is included in the 1234 tri-
angle containing all the elements J,q of the homo-
geneous Lorentz algebra. The latter triangle is
in turn part of the 123456 upper left triangle of
five numbers on a side, containing all the gener-
ators of the Poincare algebra, except for H7 and
H, needed in (2.19).

Successively larger triangles, starting from the
bottom vertex, contain SU(2), SU(3), SU(4), SU(5),
SU(6), SU(6, 1), and SU(6, 2) algebras, with the
last algebra being the whole of A.. The intricate
coupling of the space-time and internal observ-
ables is succinctly described by Fig. 1.

III. PHYSICAL STATES

(2.32)

This means that the 123678 lowermost triangle
of five numbers on a side contains an SU(6) alge-
bra.

The spin subalgebra lies in the 123 triangle on
the upper left of the SU(6) triangle. The three
spin components, according to (2.17), are

A A A~l ~23 +23& ~2 3l & ~3 12 (2.33)

In addition to these elements, the spin triangle
also contains the three elements E~„(j,0=1, 2, 3).
These six elements, together with two linearly

145'=- HE45 E45]+4(H. -Hs)' (3 1)

is related to the energy P4. It may be used in-
stead of one of the invariants of SU(6, 1).

In view of Fig. 1, a complete set of quantum
numbers (QN) labeling the physical states may be
obtained from the 20 QN describing the SU(6)
states, the iwo additive QN H, +H„ the six in-
variants of the SU(6, 1) algebra, and the seven in-
variants of A. This gives a total of 35 QN.

Note that the elements E~„H~-H, form an SU(2)
subalgebra that commutes with the SU(6) algebra
The QN
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The 20 QN of SU(6) may be chosen as follows:
From the isospin SU(2) algebra we have I, and I',
from the SU(3) algebra we have Y and the two in-
variants of SU(3), and from the U(3) containing
the SU(3) we have the additive QN

B= —3(He+ H7 +H8), (3.2)

which commutes with all the elements of SU(3).
By means of (2.26), (2.28), and (3.1) we obtain

H =Y —B,
H7=-B —

~ Y+I3, H8=-B —~ Y-I~ .

(3.3)

(3.4)

In addition, we have six analogous QN from the
"spin U(3)," namely

Thus we can interpret B as the baryon number 2nd

H, as the strangeness.
So far, we, have the 6 QNI„I', Y, two invariants of SU(3), and B .

(3.5)

ues of H, labeling the states, the right-hand side
of (3.11) vanishes unless there are equal numbers
of raising and lowering operations. This implies
that the only X that leads to a nonvanishing right-
ha, nd side of (3.11) is E"„.Note that X cannot be
H, because ~,= 0 (choosing suitable wave packets
for the case of continuous spectra of H, ).

Making use of (3.9) and (2.23), we find

o{~ ) (3.12)

IV. MASS FORMULA

The best known mass formula for hadrons is the
Gell-Mann-Okubo formula'

For zero-rest-mass states, {m2) =0 and Em2 has
a zero lower bound. For the electron and proton
we expect ~56 to be exceptionally large, leading
ta a practically vanishing 4''. In general, 4m
t 0, and we do not have an exactly discrete isolated
mass spectrum.

Z„X',H„ two invariants of spin SU(3),
ypg = a —bY+c[I(I+ I) -—,

' 1"] . (4.1)

and H, +H, +H, . (3.6)

=(H, +H, +H, ) —3B . (3.'1)

The QN (H, +H, +H, ) is related to J, and in view of
the relation

(-1)"'= (-1)" (3.8)

the QN C might be related to the lepton number I,.
Although the spin listed in (3.6) can be used to

label particle states, the Poincare-invariant spin

These 12 QN plus the three invariants of SU(4) and
five inva, riants of SU(6) complete the 20 QN of
SU(6).

Instead of H, +H„onemay take the QN associ-
ated with U(6), i.e.,

C=H, +H, +H, +H, +H, +H,

This formula was derived on the assumption that
the mass operator contains an SU(3) irreducible
tensor that transforms like Y, and it is treated
as a first-order perturbation to the mass of an
SU(3) multiplet.

Similarly, by assuming that the term in the
mass responsible for the splitting within an iso-
spin multiplet is an irreducible tensor that trans-
forms like the squared electric charge Q

(Q =-,' Y+I,), one may derive a formula for this
splitting in agreement with observed facts. '
Various relations for electromagnetic mass split-
ting have been derived. The best known are the
Coleman-Glashow' relation

~(- ) —m(" o)+m(n) —m(p) =m(r ) —m(z+),

(4 2)

and the Rosen and Oakes relations"
S'=W W'/m' W'=-'-e"'"'J P (3.9)

cannot, since it does not commute with H, . The
same is true of the squared mass operator

.n(~-) —m(~") = 3[m(~') —m(~')],

m(~') -m(~') =m(Y') -m(Y'),

(4.3)

(4.4)

gyes =P P =g PKPg . (3.10} m(~-) -m(~') =m(Y-) -m(Y') (4.5)

Thus S' and m' have dispersion in states of defi-
nite H, . The extent of the dispersion of m' is
estimated below.

If A2C=—((X) —{4)')' ' for some A'E-A, then the
uncertainty relation between m' and X is

(4.6)

In this section a mass formula will be derived
directly from the expression for the mass

~'=A-l&"f '+9" 0" &",.j)f f.+9" E"J'f.')
(4.V)

~m'~~--,'((i[m', x]&( . (3.11)

The commutator on the right-hand side can be
written as a polynomial in terms of E,', and H, .
Since E,', act as ladder operators on the eigenval-

obtained fram
lead naturally
within isospin

%e begin by

(3.10) and (2.19). This formula will
to (4.1) as well as the mass splitting
multiplets.
analyzing the SU(3) irreducible ten-
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sor properties of the terms of P„given in (2.19).
According to (2.20) and (2.14),

-iPK =E, —E, +E+, -E, (4.8)

P', - T, (000) + T,(-='„0,0) + T;(—',, 0, 0) .

In the same way, we conclude that

Ess = I(E56 —E58)

(4.9)

E'„commutes with all the generators of SU(3) and
is thus a.n SU(3) singlet. Moreover, E'„com-
mutes with I„U,V, and satisfies the relations

[[E:., Il, 1, II, ] = 0,

[[E'„,V„],V, ] =0,

[E, , Y]=-—E,
Thus E„transforms (-) like the triplet T,(-—',, 0, 0),
where T„(Y,I, I, ) is an irreducible tensor of the
SU(3) multiplet n Sim. ilarly, E,, —T; (g, 0, 0).

Sumrnar izing,

~' '- '1+ 3+ 3+ 6+6 +8, (4.12a)

(P', (P', E"J)-1+3+3+6+6+8+10+10+15+15,

(4.12b)

(P'„,E,",)2-multiplets on right-hand side
of (4.12b)+27 . (4.12c)

All the terms T on the right-hand side of (4.12)
are isosinglets and satisfy

[T, Y]=aT.
For all terms, except 1, 8, and 2"t, ae0 and

SU(3) irreducible representations, "one obtains

(P'„E"g-(1+3+3)x(3+3)=1+3+3+6+6+8 .
(4.11)

Consequently,

- T,(--',-, 0, 0) + T; (—',, 0, 0) . (4.10) 0 =&ALII, ~[T, Y)iYII,&
= a(YII, iT~YII, &

Using the known Clebsch-Gordan expansion of implies (T) =0. Therefore,

( .")=((E'„„E;,))+((E'„,E„-J) - T,(000)+ T,(000),

&(P'. , (P'. , E",.))= &(E'.. (E..E.'d)-(E'. .. (E...E.d) (E... (E'..-E.8+(E... (E'.„E,'.))&
- T, (000)+ T,(000),

((P'„E",p& =2((E„„E„)(E,„E,g+(E'„„E,,)(E,„E,',)+(E+„„E„)(E„„E,g+(E'„„E,g(E„„EM)&
- T,(000)+ T, (000) + T„(000).

(4.13a.)

(4.13b)

(4.13c)

Clearly, T, (000) is just a. consta. nt. Moreover
(see Ref. 7, pp. 576—578),

T8(000) =a~ Y —b8[I(1+1)—~ Y —C2], (4.14a)

T»(000) = a»[I(I+1)+ a4 Y' —a4C, ], (4.14b)

isospin rnultiplets. Accordingly, we take

f, =1, f, = (aH, +bH, )' .

From (3.4) we have

(aH, +bH, ) =(a—+b)(B+-,' Y) —(a —b)I,

(4.15)

where C, is the eigenvalue of the Casimir operator
of SU(3). The functions f, and f, will be taken to
be the simplest functions possible, consistent with
known facts. Since meson isospin multiplets con-
tain both particles and antipa, rticles, f, and f,
must be even functions of &, and &,. Moreover,
no function of II, and II, can distinguish between K
and = mul. tiplets because of identical value of II,
and II, for these two multiplets. Thus 8,", is es-
sential for obtaining the correct splitting within

where

= (a+b)(B+ Y —ul, ), (4.16)

k=—(a —b)/(a+b) . (4.17)

Since the octet baryons in an isospin rnultiplet
have larger mass for more negative I„weexpect
k) 0.

The mass formula obtained from (4. 7) and (4.13) to
to (4.17) is

&m'& =-m, '+m, ',
mo' =ao —

boY+ co[I(I+1)-~ 1' ]

m, ' =(a, —b, 1'+c,[l(I+1)——,
' Y']) (B+-,' 1' —ll, )'+(a, —b, Y+ c,[I(I+1)——,

' Y']+d[I(I+1)+-,' Y'])
x (B+ ,' Y- kl, )', -

(4.18a)

(4.18b)

(4.18c)
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m, '(N) = u, —b, + —,
' c, ,

m, '(:-)= o, + b, + —,
' c, ,

m, '(Z) =a, +2c, ,

m, '(A) =a, ;

m, '(p) = o„(l—k/3)'+ b„(1—k/3)'
= 0.8803 —m, '(N),

m, '(n) = o„(1+k/3)'+ bs(1 + k/3)'
= 0.8828 —m, '(N),

m, '(=') = a. (1 —k)'+ b-. (1 —k)'

= 1.729 —m, '(:-),
m, '(:- ) = a „(1+ k)' + b „(1+ k)'

= 1.746 —mo'(:"),

m, '(Z') = ar(1 —k)'+ br (1 —k)'

= 1.415 —m, '(Z ),
m, 2(ZO) =a, +bz

= 1.422 —m, '(Z),

m, '(Z -) = a, (1+k)'+ b, (1+k)'
= 1.434 —m, '(Z ),

m, '(A) =a, +a,
= 1.245 —m, '(A),

(4.19}

(4.20)

where the constant (a+b) in (4.16) ha. s been ab-
sorbed in the coefficients. Aside from k, all the
coefficients in (4.18) are irreducible matrix ele-
ments that in principle can be calculated from the
properties of the algebra, and are expected to
have different values in different irreducible rep-
resentations of SU(3). The parameter k has
the same value in all representations. The ex-
pression for m, ' is entirely due to P', ' and is iden-
tical with the Gell-Mann —Okubo formula. The
term m, ' accounts for the mass splitting within
isospin multiplets. The coefficient d in (4.18c)
gives the contribution of the 27 multiplet [see
(4.141)].

That mo satisfies the Gelt-Mann-Okubo formula
follows directly from the fact that P,' commutes
saith the isospin comPonent I,. This can be seen
as follows: The structure of P,' within the frame-
work of a theory generated by the commutation
relations of a Clifford algebra necessarily has the
form (2.20) with two indices outside of the space-
time indices 1, 2, 3, 4. One of these indices is as-
sociated with the compact internal-symmetry
group. The requirement that P,' commute with
the isospin subgroup implies that this index must
be strange, and hence that P,"satisfies the Qell-
Mann-Okuho formula, [see (4.8), (4.9), and

(4.12a)] .
For the baryon octet,

where

as = (2)'(a, —b, + —,'c, ), b„=(~)'(a, —b, + 2c, +3d),

a. =2 '(a, +b, +1~c,), b =-2. '(a, +b, + —,'c, +3d),

a =a, +2c„b=a, +2c, +2d . (4.21)

The numbers on the right-hand side of (4.20) are
the values of m' in GeV'."

The only mass differences within the same iso-
spin multiplet are the following four:

D„=m'(n) —m-'(P) =,'—[a„+2b„(1+k'/9)jk
=2.43x10 ', (4.22a)

D =m'(:" )-m'(=') =4[a~+2b (1+k')]k

= 16.8S x10-', (4.22b)

D~=m'(Z ) —m'(Z )=4[a+2b(1+k')]k

=1.8.S5x10 ', (4.22c )

D', =- —,'[m'(Z -) +m'(Z')] —m'(Z')

= [gz+ b~(6 ~ k')]k' =2.12 x10 ' . (4.22d)

An analogous relation holds generally for any
baryon (B=1) isotriplet. In particular, for the de-
cuplet we have

—,
' [m'(I -)+m'(I")] —m'(I") = —,'k[m'(I -}—m'(I")].

(4.24)

For the mesons, B=O, and we get 0=0, instead of
a relation analogous to (4.23).

In the following we shall carry out a fit to the

The last is a second difference, whereas the others
are first differences. Of those, the relative small-
ness of D„may be attributed to the occurrence of
k/3 in m, '(N) instead of k in the other expressions
form, .

Since my «~p we conclude that the second
term in the expression (2.19) for P„must be much
smaller than the first. This implies that the first,
second, and third terms in expression (4.7) for
eg' must be successively smaller. Thus we expect
the second terms in (4.18c), (4.20), and (4.22) to
be considerably smaller than the first terms.

If we neglect the second terms in (4.22), as well
as the terms in b, and c, [see (4.21)], then we im-
mediately obtain D„+D-.=D~, which is the Cole-
man-Glashow formula (4.2). We shall see below
that although 6, and c, are not negligible compared
to a„their total contribution will be.

Another conclusion that can be drawn from (4.22),
after dropping the second terms, is the relation

—,'[m'(Z-) + m'(Z')] —m'(Z') = -,'k[m'(Z -) —m'(Z')] .
(4.23)
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actual baryon data to evaluate the universal con-
stant k, and to get an estimate of the coefficients
in (4.20). We have eight equations for 11 unknowns.
However, according to the comments made above
about the second terms in (4.20) and (4.22), we
shall drop b„,b-. , and bz and solve for the eight
quantities k, &„bp cp +] by cy and a, .

From (4.22) we obtain

0=0.447, 02=0.200;
10'a„=4.07, 10'a3, =9.42, 10'az ——10.5S,

10 +~ 22 8 10 b~ 17 9 10 c~ 6 10

(4.25)

(4.26)

Finally, from

m, '(A) = a, = 1.265 = m'(A) —m, '(A)

and (4.26) it follows that

m, '(A} = a, + a, = -0.020, a, = -0.0428 .

For the meson octet we have

m (7r )=m (q)=0,

m, '(n') = (a,'+ 2c,')k'+ (a,'+ 2c,' )k',
m, '(K') =a,(1 —k)'+b, (1 —k)4,

m, '(K ) = a (1xk+)' b+~(1 k+) ,
4

where [b,'=0 because m'(K )=m'(K )]

a~=a,'+-,c,', b~=a,'+ —,c,'+3d' .

(4.28b)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

Equations (4.30) can be solved for a,' and c,' [b,'=0
because m'(m') =m'(w )], and (4.33) for a» and b„.
It is interesting to note here the occurrence of the
zero values (4.30}in contrast to the nonzero values
of m, '(Z ) and m, '(A). This is due to the value of
B+-, Y in (4.18c).

Finally, for the baryon decuplet we have

m, '(a+') = az(1 —k)'+ b z(1 —k)',

m, '(A') = a~(1 —k/3)'+ b~(1 —k/3)',

m, (6 ) = a&(1 + k/3 }2+ b z(1 + k/3)~,

m, '(A ) = ay(1 + k) + b ~(1 + k)';
m, '(Y') =ar(l —k)'+b„(l—k)',
m, '(Y') =a„+br,
m, '(Y -) = a„(1+k)'+b„(1+k)';

(4.35)

(4.36)

103m (Z ) = 10.59, 10'[m, '(P)+m, '(n)] =8.31,
(4.27)

10'[m,'(:-')+ m, '(= )]= 26.0 .

Then by means of (4.27), (4.18a), and (4.19) we get

mo (N)=0.8774, mo ( )=1.725, mo (Z)=1.411,
(4.28a)

~p = 1 265 bp 0 422 cp = 0 0'732

m, '(=*0)= a» (1 —k)'+ b»(1 —k)~,

m, '(:-* ) =a~g(1+k)'+b *(+k)4;

m '(n-)=0.

(4.37)

(4.38)

Here again, the zero value in (4.38) is due to
B+» Y=O for 0 . If the second terms in (4.35)
are neglected, then the relation (4.3) follows at
once, without further approximations.

If bz, is not neglected, we obtain a relation be-
tween the mass differences

D, =- m'(A-) —m'(~"),
D, =- m'(~') —m'(A'),

D, -=m'(A ) -m'(A')
(4.39)

V. CONCLUDING REMARKS

In this paper we have constructed an algebra in
which the Poincare algebra is coupled nontrivially
to the internal-symmetry SU(6) and SU(3) algebras.
The algebra is characterized by continuous mass
spectra. However, we have obtained mass formu-
las for (m') that are consistent with the known
data, including splitting within isospin multiplets.
In each particle state, ~m' is generally not zero.
It may, however, be zero in some cases, such as
zero rest mass, and be very small in cases where
856 is very large (E,", is unbounded).

Although there are a large number of reduced
matrix elements which are chosen to fit the data,
these can in principle be evaluated when the rep-
resentations of the Lie algebra are worked out.
The present fit to experimental data with the uni-
versal parameter 0 provides a qualitative under-
standing of the structure of the mass spectrum.

The interesting results obtained here provide a
first test of the theory. There are many other
interesting problems to be worked out by the the-
ory. One is the possibility of including leptons in
the algebraic scheme. Another is the calculation
of decay rates and cross sections. Concerning
this, it should be noted that in the framework of
this algebra, the 8 operator is a functional of
tensor operators.

by solving two equations for &~ and b& and sub-
stituting the results into the third equation. In
this way we find

3k2D» = (1+» k)[3(1+k2)D2 —(1+k /9)D, ]

—(1+2k+ 13k'/9+ 10k'/27)(3D, —D, ) .
(4.40)

The form (a~x'+bzx4) for the b, multiplet may
exhibit a nonmonotonic variation with x, such as
that predicted by Eliezer and Singer, ' if the signs
of az and bz, are opposite to each other.
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