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More extensive discussion is given on the previously derived relation, R =—16z2/f&
== 5.7+0.9, ~vhere R is the asymptotic limit of the ratio R{q2) = o(e + e hadrons)/
0(e++ e p++ p ) and fz is the y-p coupling constant. It contains (1) a detailed derivation
of the relation, (2) a rough estimate of possible corrections due to the extrapolation and

higher vector-meson resonances, (3) the plausibility of the conjecture of I"reund and Nandi,

(4) some other ways of estimating R, anc. {5) the compatibility of the relation and a few other
similar relations. The ratio R(q~), whose increase at q = 9-25 GeV has recently been ob-
served in the CEA and SLAC (SPEAR) e'-e colliding-beam experiments, is expected not to
increase much at higher energies.

I. INTRODUCTION

In 1966, Bjorken' predicted that the ratio R(q')
of the total cross section for e'+e -y*-hadrons
to that for e'+e-- y*-

I
'+ p.

- approaches a con-
stant as q', the mass squared of the virtual photon
y*, increases. Undoubtedly, the constant 8, if it
exists, is one of the most fundamental quantities
in particle physics. It is given in the pa. rton mod-
el2 or in currently fashionable asymptotically free
field theories' by4

R =g Q, '+-'gQ, ',

where Q, and Q, are the charges of spin--,'- and -0
constituents of the electromagnetic current of had-
rons, if there a,re such desirable (yet unseen) ob-
jects in nature. Since the surprisingly large total
cross section for hadron production [e.g. ,
R(25 GeV') =6+1.5] was observed in the e'-e col-
liding-beam experiments at the Cambridge Elec-
tron Accelerator (CEA), ' many attempts' have
been made to understand what is happening in had-
ron production by e'-e colliding beams. More
recently, the preliminary data reported from the
Stanford Linear Accelerator Center (SPEAR)' have
shown that R(q') continues to rise as (q')'" in-
creases from 3 GeV to 4.8 GeV, which is consis-
tent with the CEA data. Thus it is now widely ac-
cepted that the predicted scaling of the total cross
section for e'+ e - y~- hadrons, i.e. , R(q') = con-
stant for large q', if it exists, has not yet been
reached at q' less than 25 GeV'. What is the as-
ymptotic value of R, if any? Where will the scal-
ing set in, if anywhere? Is there such scaling at
all? These are most challenging questions at the
present stage of e'-e colliding-beam physics.
This paper is entirely devoted to the first question.

Obviously, the question could be answered im-

mediately according to Eq. (1.1) if a particular
model for hadron constituents were chosen a priori.
The original Gell-Mann-Zweig model with a trip-
let of fractionally charged quarks, for example,
predicts R = (;)'+2(-,'-)' —',-. However, this would

not give a final answer to the question since many
different but equally attractive models such as the
three-tr'. .piet fractionally charged quark n1odel

(FF =-2) "the three-quartet fraction' 'Iy charged
quark model (R = 3-,'-), the original Han-Nambu mod-
el with three triplets of integrally charged quarks
(R =4), the modified Han-N'. mbu model with three
quartets of integrally charged quarks (R =6), etc. ,

are proposed with different values of R, ' The1e-
fore, a definite prediction of R cannot be made
without furthex' experimental 1nformat1on ox' theo""
retical criterion. The PCAC (partially conserved
axial-vector current) anomalous constant S ls well
known to sel ve as such a cl 'iterlon The low-6':. 0

gy theorem by Be].l, Jackiw, and Adlex" relates
S to the v'= 2y decay amplitude. The present data
for the ~' decay width (I",0.,~=7.8+0.9 eV) (Ref.
11) show that S is very close to -„'-, (S„,„
=-0.50*0.03),"which seems to exclude the original
Gell-Mann-Zweig qua. rk model (S — -', ). However,
it is also known that R is independent of S." In
fact, there exists more than one model with the
same S but with different P&. It should be noticed
here that the vr'-2y decay width teaches us even
more: The classic application of vector-meson
dominance by Gell-Mann, Sharp, a.nd Wagner" is
still consistent with the data, independent of the
PCAC ano'x1aly. It is very instructive to ask the
following question on the hypothetical situation:
How could we determine S if no information on the
w' lifetime were a,vailable? We would probably
estimate S by comparing two independent results,
one by Bell and Jackiw and by Adler" and the other
by Gell-Mann, Shaxp, and Wagner. '4 Then, the re-
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suit would be

S=16w'(f„g~ „/f ~f ) =0.61+0.09, (1.2)

where gz „f z, and f a,re the p-e-w, y-p, and
y-& coupling constants. " This exercise illumi-
nates the way in which the present author, in pre-
vious papers„" has derived the approximate rela-
tion between 2( and j p given by

A =16w'/f p' =5.7 +0.9 (1.3)

from the "enforced marriage" of the PCDC (par-
tially conserved dilation current) anomaly" and
vector-meson dominance. In See. II we shall pre-
sent a more detailed derivation of this relation in
order to exhibl'(, all the assumptions and approxi-
mations involved. Possible corrections to the re-
lation will be estimated in Sec, III. In Sec. IV, a
physical interpretation and an underlying principle
of the relation will be discussed, especially in
connection with the conjecture, recently made by
Freund and Nanda, ' that the strengths ot all anter-
actions are inversely proportional to the number
of funcIamental fermions. In See. V we consider
various other ways of predicting Sil and the mutual
:elationship between the relation (1.3) and some
other Slmllar relataons.

II. K)ERIVATIQN GI'' THE RELATION

A„.(q„q.,):= Jd«d«, "-'*

(,( ) .(o) '(y))lo&,

(2.1)

II„,(q) —i dxe"'" &0lT(Jq(x)j„(0))l0)', (2.2)

Wilson, " in 1969, demonstrated how the PCAC
anomalous constant S, which appears in the Adler-
Bell-Sackiw low-energy theorem for the m' decay
amplitude, is completely determined by the short-
distance behavior of the operator product of cur-
rents. Following him, Cr ewther2o and, indepen-
dent:ly, Chanowitz and Kllis21 have determined the
coefficient of the PCDC anomalous term" existing
in the trace identity for the product of the "im-
pl oved st1ess-ene'l'gy teilsol' Bp~ (Ref. 22) alld
tvao electromagnetic currents J„of hadrons. We
fi.rst review their results briefly. I et us start
with the definitions of b.„,(q„q,, ), II„,(q), A(q'),
and II(q'}:

Assuming that the scale dimension of the electro-
magnetic current is canonical, ""Chanowitz and
Ellis" have derived the anomalous PCDC (or
trace) Ward identity

Jt = llm R(q') and +(q') = 12w Imil(q"') . (2.7)
g ~ CO

From Eq. (2.5) Crewther" a.nd Chanowitz and
Ellis" have derived the PCDC low-energy theo-
rem

6(0) = -8/Gw', {2.8)

which corresponds to the Bell-Jaekiw-Adler low-
energy theorem for the r'-2y decay derived from
the anomalous PIC Ward identity. "

It is now clear that an independent estimate of
b. (0) leads to the desired prediction of R. Let us
suppose, for a moment, that there is only one vec-
tor meson, p (of mass m~), dominating the isovec-
tor part of the electromagnetic current of hadrons.
The function 6 „,(q, q) has a, double pole at q' = m~"

gal
pe "e's (q q) —= ——

f ' -q'+m '
P P

x & p(e„q& l
e„'{0)

I p(e„q)&

for q' =—m~', (2.9)

where e„ is the polarization vector of photons or
p mesons and f ~ is the familiar y-p coupling con-
stant defined by

(o l~„(0) I p(e, q)& = (m, '/f, )', . (2.10)

Since p is an eigenstate of the Hamiltonian of had-
rons 0=J d'x 800(x),

& p(e„q) I
ti. ~(0) I p(~., q)& =2q. q~e,"~:

(2 11)

Collecting Eqs. (2.3), (2.9), and (2.11), w«ind

m 2 2

a (q') = -2q' —,Il (q') ——,.
Bq2 6m'

The strict definition of R is given by the %iison
expansion"

T (J,(x)J„(0)& = {It/12w ')( g „Li —6 „6,)(x' —ie )-'

+'' for x==6

&„.(q, q)= (g„,o'- q„q.)&(q'), -

11„,(q) = -(a„.q' —q„q.)11(q') .

(2.3)

(2.4)

(2.12)

Extrapolating this result from q' = m~' to q' = 0
yields
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6(0) = (2—/f q
)+(isoscalar term) . (2.13)

III. CORRECTIONS TO THE RELATION

Although little is known on higher vector-meson
resonances at present, it seems worthwhile to
discuss how the relation (1.3) will be affected by
them. There are at least three independent exper-
iments" reported for the evidence of another iso-
vector vector meson p' whose mass is about 1600
MeV. The y-p' coupling constant is estimated to
be f q

z/4zz =17+5, so that the ratio f q /f q
is

much smaller than unity:

(3.1)

A naive estimate of the p' contribution seems to
add a correction of about ten percent to the rela-
tion:

R —= 16zzz(f
q

'+ fq '). (3.2)

The problem of adding p', however, is not that
simple because of possible interference between

p and p'. We must also take account of the extra-
ordinarily long distance for the extrapolation of
b, (q') from q' = mq

' to q' =0, which may totally

If the electromagnetic current of hadrons is a pure
SU(3) octet, "the isoscalar contribution is —', times
the isovector (p) contribution. Therefore,

(2.14)

Combining Egs. (2.8) and (2.14), we finally obtain
the desired relation (1.3).

It is important to notice that we have never ap-
plied vector-meson dominance directly to II„„(q).
If one were to do this, one would reach the contra-
dictory result Fil = 0 unless one adopts some new
concepts such as an infinite series of vector-me-
son resonances proposed by Bramon, Etim, and
Greco" or the "new duality" proposed by Sakurai. "
If the scale dimension of 6& is less than four, "
b, (q') is expected to vanish in the limit q'-~ ac-
cording to Weinberg's theorem in perturbation the-
ory.""The decrease of ~(q') for large q' is
consistent not only with the presence of the anoma-
lous term -(R/6zz') in the identity (2.5),"but with
the phenomenological estimate (2.12) from vector-
meson dominance. What we can learn from this
lesson is that we may apply vector-meson domi-
nance to "soft" operator products such as
T(Zq(xg„(0)e&(y)) consistently with scaling of
"hard" operator products such as T(J„(x)J,(0)).

suppress the contribution of such high mass states
as p'. In our rather phenomenological approach
of vector-meson dominance to scaling, it is diffi-
cult to evaluate these effects unambiguously. We
consider the following three extreme cases:

(1) The strongest suppression of higher vector
meson resonances. Owing to the long distance for
the extrapolation, the contribution of p', for ex-
ample, would be much more suppressed than it is
already by a factor of f q /f q

~ . In this case, the
relation (1.3) would not be much changed.

(2) No interference and no suPPression. The p'
contribution mould simply add to A:

R =16zz'(f
q

'+ f q
') =6.4+1.1. (3.3)

R =—16zz'(fq '+ fq ')'

10.8+2.4 for f f q
) 0

2.2 + 1.3 for f q fqi( 0. (3.4)

In the extremity (3), the effect of p' is most
strongly enhanced, changing the value of A by as
much as sixty percent. In any case, the correc-
tions due to the extrapolation and to the higher-
mass states can be substantial. The necessity of
such corrections is also illustrated in solving the
following puzzle pointed out by Orfanidis and Bit-
tenberg. " If the isovector part of A(q'), as a
function of q', is exactly given by the p-dominance
form (2.12) for arbitrary values of q', Eq. (2.5)
can be taken as a differential equation of the form

(3.5)

This equation has the following solution:

(3.6)

By using the relation R~'~ =12zz'/f q' and the defini-
tion of R(s) in (2.7), they have obtained the result

R~z) (s) = (12zzz/f z)

x[mq'5(s —mq') + e(s —mq')j . (3.7)

The finite width of p, I'p, changes this result to a
more realistic one:

(3) The maximal interference and no suppression.
The interference term between p and p' would con-
tribute to b, „,(q, q) as much as the diagonal (p-p
and p'-p') terms. In this case,

M 12zz' 1 mp I p 1 mp I p ] $ mp' 1, s, -mp'



HIDEZUMI TERAZA%A

where s, is the threshold value of s for isovector
hadronic states (s, =4m„'). In the expression
(3.8), they have found that the scaling R~'l(q')
-R —= 12m'/f p' sets in as soon as q' passes the
peak of p [see the dashed curve (1}in Fig. 1].
Such behavior of R ' (q') contradicts with the ex-
perimental data, '" which show that, after passing
through the p peak, R(q') reaches a minimum at
q' =1.0-1.4 GeV' and then starts increasing to-
wards the "Frascati plateau, " where R(q') = l-3
for q'=2-9 GeV'. This puzzle can be solved, at
least qualitatively, by either one of the following
possibilities: (a) A(q') may differ substantially
from the p-dominance form given in Eq. (2.12)
when q' goes out of the p-peak region (i.e. , for
!q' —mp'!&mpi' ). In other words, if the extrapo-
lation function E(q'} is defined by

2 m' 2

with E(m ') = 1 (3.9)

the approximation Ei 'l (q') -=1may not be good unless
q' = mp'. In this case, the relation (1.3}must be
replaced by

R —= 1 6m E(0)/f p (3.10)

(b) The interference of p and p' may be almost
maximal a,nd the relative sign of f p

and f is neg-
ative, In this case,

(), 1 m' 1 mp
'

(3.11)
The result for R")(s) is

m 2 1 2 m

p P P P P

(3.12)

For the finite widths of p and p', we can simply
replace

(
5(s —rn') )
0(s —m ) 1 .

by

1 mI" 1 mI"
s (s —ss')' I' r' s (s, —ss')' I' 1' ~

(3.13)

plain all the observed features of R(q'} for
0 & q' & 9 GeV' Lsee the dashed curve (2) in Fig. 1].
However, this formula still needs some modifica-
tion since it cannot explain the observed increase
of R(q') starting around at q' =9 GeV'. In this
picture of the maximal interference without any
suppression of higher-mass states, R can be mod-
ified further by unknown vector-meson resonances
which are heavier than p'. Suppose that there ex-
ists a series of vector mesons V„(n =0, 1, 2, . . . ,
and the masses m„) which couple to a photon with
the coupling constant f„; a mathematical model
for b, (s) has the form

in E(l. (3.12). The expression (3.12) with (3.13)
shows that Ri') (s) has a minimum between q' = mp'
and q =mp lf

mfp p,

f ps mps mp

It also shows that R('~ (q') will stay at the constant
value given by (3.4) soon after q' passes mp '.
The condition (3.14) is surprisingly well satisfied
experimentally:

(3.14)

2

1+ P,p, =0.06+0.18 if f p f p
&0.

ps mps —rnp

(3.15)

It is rather amazing that Eq. (3.12) with (3.13),
without any arbitrary unknown parameter, can ex-

(3.16)

where the summation inside the parenthesis runs
over vector mesons in a set in which they interfere
maximally with each other and the summation out-
side runs over such independent sets. In this mod-
el, the relation (1.3) is repla. ced by

21=12 'Q(Qf ')„(3.17)

Because of the appearance of unknown parameters
f„and m„(and I„), one can fit the data arbitrarily.
In fact, one needs to assume only one unknown vec-
tor meson whose mass is larger than 4 QeV in or-
der to make this model consistent with all the ex-
perimental data. available for q' less than 25 QeV'.
This can be demonstrated by the following example
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FIG. 1. Typical solutions of the differential equation (2.5) with the "strong" vector-meson dominance applied to
6(q2). The dashed curves (1) and (2) are given by Eqs. (3.8) and (3.12) with (3.13), respectively. The solid curve given
by Eq. (3.18) is a naive mathematical example which fits all the available data, but which should not be taken seriously.
The data are taken from Refs. 5, 7, and 33. The shaded area represents the range of R predicted by the relation (1.3).

(see the solid curve in Fig. 1): Because of the similarity of the relations (1.2) and
(1.3), it may be that the error in (1.3) can be cor-
rected by

(3.18) SUMD
(3.20)

with m ~
-=5 GeV, F» = 3 GeV, f„'=—f p', and

fpfp (0.
In the model of maximal interference and no

suppression, case (3) or (b), we thus have less
confidence in the original relation (1.3). If this is
the case, however, how can we understand many
successful applications of p-, a-, and P-meson
dominance such as the one shown in Eq. (1.2)? It
is hard to imagine that all the agreements between
the results of vector-meson dominance and the ex-
perimental data were just accidental. In the fol-
lowing sections, we shall simply assume that
neither the extrapolation correction nor the high-
er-mass correction is important. In concluding
this section, it should be pointed out that there is
another (though not compelling) way to estimate a
systematic error possibly involved in the relation
(1.3). The magnitude of the error in the relation
(1.2) can be found most practically by comparing
the predicted value of S with the experimental val-
ue:

IV. CONJECTURE OF FREUND AND NANDj.

(4.1)

based on vector-meson dominance (1.2), SU(6)~
symmetry, and the "elusive" Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin (KSRF) relation. "
They have suggested that the typical strong cou-
pling constant fz„„which equals f~ in vector-
meson dominance, is thus inversely proportional
to the number of quarks, N, as is shown in Eg.
(4.1). Their principle is further illuminated in the
relation (1.3) or, equivalently,

16m 167I

R (Q)N' (4.2)

Is there any simple principle underlying the re-
lation (1.3)? Freund and Nandi" have recently ob-
tained the relation between the PCAC anomalous
constant S and the y-p coupling constant,

S„p 0.50+ 0.03
(3.1S) where (Q') is the average value of the quark

charge squared. Freund and Nandi have further
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conjectured that the strengths of all interactions
including electromagnetic and gravitational ones
are inversely proportional to the number of fun-
damental fermions. The plausibility of their con-
jecture has been demonstrated in a field-theoreti-
cal model (or in the N ' expansion) where dia-
grams with a chain of fermion loops are assumed
to be dominant. In such a model, " if a vector
field t/ couples to a conserved current J„,a re-
normalized coupling constant f is related to its
unrenormalized one f, by

2= fo
1+f 2

11 «& (m 2) ~

where II~~~(q'), which is unrenormalized, is de-
fined for J~„"~ in the same way as II(q'} for the
electromagnetic current J„ in Eqs. (2.2) and (2.4).
If f,'II~ ~(m~')»1, this relation approximately
yields"

(4.3}

(4.4)

Since II (m~') is proportional to the nufnber of
independent fermions, Eq. (4.4) certainly supports
their conjecture. It should be emphasized here
that the relations (4.2) and (4.4) have remarkable
similarity. In fact, the former becomes identical
to the latter if

(4.5)

There are many other models whose results satisfy
the Freund-Nandi principle. The best example is
massless quantum electrodynamics in two dimen-
sions"" in which the dimensionless coupling con-
stant e renormalized at q' =0 is given exactly by

ther" and, independently, Chanowitz and Ellis"
have predicted the coupling constant g, yy defined
by yy 28 gzyyEppF"' to be

g, „=R/12m2f, ,

where f, is defined by (0~8q(0) ~e) =m, 'f, . The
erne coupling constant was predicted earlier by
Crewther" and Ellis" to be

(5.1)

g„,= m, '/f, . (5 2)

These coupling constants are related to the decay
widths of e:

2 2 3yy=~& ggyy mq

—= (a'/144m ')(m, /f, )' m, R' (5.3)

„+„-+I' „o„o

The first experimental study of the reaction
y+y- ~'+m has recently been carried out by
Orito, Ferrer, Paoluzi, and Santonico" in the re-
gion of e(700) through the two-photon process
e'+e-e'+e +7t'+7t ." Based on the two observed
events, they have concluded that

r, ~~=(9.6," ) keV. (5.6)

From (5.5) and (5.6), they have finally estimated
R to be42

= (3g„„'/32wm, )(1 —4m, '/m, 2)'~2

=—(3/32m)(m, /f, )'m, (1 —4m„'/m, ')'" . (5.4)

Therefore,

R = (3m/o. )(3r, ,„/2r, )"'(1—4m„'/m, ')'".
(5.5)

2e
N

(4.6) R = 5.8',", for rn, = 660 MeV and I', = 640 MeV.

Similar N ' dependence of renormalized coupling
constants can also be found in the analysis of vari-
ous field-theoretical models in less than four di-
mensions. " Although all the N ' dependence of
these coupling constants is subject to the validity
of the N ' expansion (or approximation) except for
that in two-dimensional massless quantum electro-
dynamics (where no approximation is necessary),
the conjecture of Freund and Nandi seems to be
very plausible, at least for hadron dynamics.

(5.7)

There is still another way of estimating R. Sar-
ka, r" and many others" have estimated the product
of the coupling constants g, yy

and g,„„from finite-
energy sum rules for the amplitude of forward pi-
on Compton scattering. Although they have ob-
tained different results depending on how they sat-
urate the sum rules, all of their predictions lie in
the range of

1 4-g. yya" —2 o- (5.8)

V. WHAT ISR?

Is there any way to estimate R without using vec-
tor-meson dominance? Based on the PCAC anom-
aly and e-meson dominance for the normal part of
the trace of the stress-energy tensor 6}&, Crew-

Qn the other hand, collecting Eqs. (5.1), (5.2), and
(5.4) leads to

R = (9m/8)(g, ~ ~g„„)(m,/I', )(1 —4m, '/m, ')'" .

(5 9)

Combining (5.8) and (5.9), we obtain
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f,'=—mp'/2 fp',
and the Suura- Young relation"

y '=m 2/6w'

(5.11)

(5.12)

The combination of Eqs. (1.3) and (4.1) leads to"

R =—6M2S

=3M2-=4x1.06 for S = —,', (5.13)

while that of Eqs. (1.3), (5.11), and (5.12) leads to

R =4. (5.14)

Strangely, the particular value of R is chosen

R =6.5+1.2 for m, =700 MeV and I', =600 MeV.

(5.10)

It is remarkable that ail of these estimates, (1.3),
(5.7), and (5.10), agree with each other within
their errors. Therefore, insofar as the PCDC
anomaly on which these estimates are based ex-
ists, the limit R is expected to lie between 4 and
8. If this is the case, the expected value for R is
in strong contradiction with all the predictions in
the known fractionally charged quark models
(where R =-', , 2, or 3';).

Let us next discuss the compatibility of the rela-
tion (1.3) and some other relations, all of which
have been derived more or less from combinations
of vector-meson dominance and the algebra of
currents. Such relations are the Freund-Nandi
relation (4.1),"the KSRF relation"

preferably by these combinations in spite of the
fact that no particular quark model has been as-
sumed in deriving these relations. It should also
be noticed that, when Etl. (5.13) and Crewther's
relation'

4$ =KR (5.15)

are combined, the constant K would be completely
fixed:

K —= —,
' / 2 =——,

' x 0.94 . (5.16)
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This can be tested by determining K with Bjorken's
sum rule" for polarized deep-inelastic electro-
production.

In conclusion, from a simple observation that
the relation (1.3) is already in good agreement with

the CEA and SPEAR data at the highest energies
available at present (see Fig. 1), we expect that
the ratio R(q') will not increase much at higher
energies and that the predicted scaling in the total
cross section for e'+e -hadrons will be seen in
future SLAC and DESY colliding-beam experi-
ments.
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