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Wilson's lattice gauge model is presented as a canonical Hamiltonian theory. The structure of the
model is reduced to the interactions of an infinite collection of coupled rigid rotators. The
gauge-invariant configuration space consists of a collection of strings with quarks at their ends. The
strings are lines of non-Abelian electric flux. In the strong-coupling limit the dynamics is best described
in terms of these strings. Quark confinement is a result of the inability to break a string without
producing a pair.

I. INTRODUCTION

The quark model has systematized a very large
amount of information concerning the hadron spec-
trum. However, free isolated quarks do not ap-
pear to exist. In order to confine quarks into bar-
yons and me sons, one is then led to suppose that
the field-theoretic coupling between quarks be-
comes strong at large distances. This explanation
is, however, somewhat perplexing because the
forces between quarks at small distances appear
to be weak. Such behavior can in principle be
found in renormalizable field theories in which
effective coupling constants can change from one
size scale to the next. Clearly, in order to under-
stand the successes of the quarkless quark model
we need a theory in which weak short-distance
forces give rise to strong long-range forces. The
only theory in which this behavior appears possi-
ble is one containing non-Abelian (Yang-Mills}
gauge fields ~

It is instructive to recall why this behavior does
not occur in conventional formulations of Abelian
vector-gluon theories (electrodynamics, for ex-
ample). Consider a static free charge of magni-
tude e inserted into the vacuum of quantum elec-
trodynamics. As is well known, the electrodynam-
ic vacuum is an ordinary dielectric, ' so the free
charge creates a polarization charge of opposite
sign. The polarization charge is distributed in
the vicinity of the free charge. Therefore, the
total charge contained within a sphere of radius
r is eZ(r), where Z(r) is a fraction less than l
which decreases as r increases. The factor Z(r)
causes the intensity of electromagnetic interac-
tions to be dependent on the distance scales in-
volved. ' In fact, if we are only interested in long-
wavelength phenomena in electrodynamics, we

can ignore all the short-distance fluctuations of
the theory and replace the bare electric charge e
by the screened or renormalized charge. More
precisely, long-wavelength phenomena are insen-
sitive to a cutoff at length A. if the bare charge is
replaced by eZ(A). Since Z(A} decreases as A in-
creases, this theory has just the reverse behavior
of what we want.

In theories with Yang-Mills fields the interac-
tion between a pair of static charges is also gov-
erned. by an effective coupling constant gZ(r} As.
in electrodynamics, a cutoff version of Yang-
Mills theory must replace g bygZ(A). This time
it is found, however, that Z(A) can be an increas-
ing function of A, . The implication is that the ef-
fective couplings between the low-momentum
modes of the theory may become very strong al-
though the shorter-distance behavior may not in-
volve strong coupling.

In this paper we shall be interested in the large-
distance properties of a non-Abelian theory as-
suming that the effective coupling g(A) is sufficient-
ly large to use Wilson's strong-coupling methods. 4

An ultraviolet cutoff is introduced into the theory
through a spatial lattice. This construction de-
stroys most of. the space -time symmetries of rel-
ativistic field theories. For this reason the the-
ory discussed here is not a realistic Yang-Mills
theory. However, following Wilson, 4 we are main-
ly interested in determining the special effects of
exact gauge invariance in strongly coupled gauge
theories. As a result of this study, we find that
quarks can be confined in locally gauge-invariant
theories. The confining mechanism is the appear-
ance of one-dimensional electric flux tubes which
must link separated quarks. ' The appropriate de-
scription of the strongly coupled limit consists of
a theory of interacting, propagating strings.
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This paper is organized into eight sections. In
Sec. II we describe the field theory of fermions
on a spatial lattice. The theory has global but not
local non-Abelian symmetry. In Sec. III we deve-
lop the principle of local gauge invariance. In
the weak-coupling limit the theory reduces to a
standard theory when the spatial cutoff is taken
to zero. In Sec. IV we develop the canonical for-
malism for an SU(2) gauge theory. The fundamen-
tal gauge-field degree of freedom which links ad-
jacent lattice points is mathematically equivalent
to a rigid rotator. The theory of rigid rotators is
a helpful guide in discussing the gauge theory. In
Sec. V the physical space of states of the strong-
coupling theory is constructed. 3nd is described in
terms of stringlike excitations of a gauge-invari-
ant vacuum. The strings are the non-Abelian ana-
logs of electric flux lines. In Sec. VI we include
the dynamics of the gauge field into the lattice
model and obtain a Hamiltonian for a discrete
theory of fermions and gauge fields. In the weak-
coupling continuum limit the usual Yang-Mills the-
ory with fermions is retrieved. ' In Sec. VII we
consider the dynamics of the stringlike excitations
and calculate the energy in various configurations.
In particular, we show that the energy of a well-
separated quark pair increases linearly with the
distance between them. ' Then we develop a per-
turbation theory around the strong-coupling limit.
It expresses the solution of the theory as a series
expansion in inverse powers of the coupling con-
stant. Physically, the higher-order effects cause
quantum fluctuations in the string configurations.
If these fluctuations grow too large, they could
invalidate the quark binding mechanism. In the
final section we discuss and summarize several
of our conclusions.

Il. FERMION FIELDS ON A LATTICE

We begin by formulating the Dirac equation on
a spatial cubic lattice. An arbitrary point on the
lattice is denoted by a triplet of integers r
=(r„,r„r,). The unit lattice vectors are denoted.

Bg„, 6s„Bs„rn „, 6s „and m, pointing along the

x, y, z, —x, —y, and —z axes, respectively (Fig.
1). By definition m „= ni„, etc. We use-the con-
vention that summations over the lattice vectors
include the six directions. The spaces between
neighboring lattice points Pinks) are denoted by
a position and a lattice vector (r, m, ). The same
interval can be denoted (r+ m;, -in;). It will
prove convenient to label lattice sites as odd or
even by the following prescription: A site x is
called even (odd) if (- I)"~+"&+"~—= (-1)' is even
(odd). On each lattice site we define a two-com-
ponent spinor P(r). A discrete Hamiltonian can
easily be constructed such that it yields the con-

A
N

FIG. 1. Definition of unit lattice vectors.

ventional Dirac theory in the continuum limit. It
reads

(2.1)

where a is the lattice spacing. If we postulate the
canonical anticommutation relations

(y„(r), qt8(r')] =5 85„„., etc. , (2.2)

This equation may be rewritten

(2.3a)

ig(r) = —Q . [g(r+ n) —((r -n)]2a „ i

+ m, (-1)"g(r) . (2.3b)

Consider the continuity properties of the solu-
tions to this equation as a- 0. The finite-energy
solutions (( finite) require that

g(r+n) —y(r n)-a- (2.4)

as a-0. However, g(r) —((r+ m) is not con-
strained by the discrete Dirac equation. Thus„
in order to define fields with finite derivatives,
we must introduce two separate fields for even
and odd lattice sites. In the continuum limit we
represent these two fields as upper and lower
components of a four-component Dirac spinor,
the upper (lower) components being the fields on
the even (odd) lattice points. The discrete Dirac
equation may then be approximated,

the equation of motion of the spinor field becomes

i)(r) = [q(r),a]



HAMILTONIAN FORMULATION OF WILSON'S LATTICE. . .

i)„,„=—i O' ~ Vg„„,+ m, (
(2.5)

U, &,(r, m) = exp[i 2 T B(r, m)] . (3.2)

j)(r) =e''' ~'g(r) =-Vq(r) . (2.6)

The Hamiltonian Eq. (2.1) is clearly invariant un-
der such transformations. Since the global trans-
formation rotates the fermion field identically
over all points of space, this global invariance of
the theory still permits color to be compared at
separated points. This freedom will be lost when
local gauge invariance is built into the theory. '

III. PRINCIPLE OF LOCAL GAUGE INVARIANCE

= —j g ~ +1I)e' lower e' upper 04 lower r

which one can identify as the conventional contin-
uum Dirac equation.

For physical applications g will have both "color"'
and. ordinary SU(3) indices. The role of color is
to provide a locally conserved quantum number
whose vanishing in the finite-energy physical spec-
trum of the theory implies the absence of triality.
The quark-confining mechanism then becomes one
of color confinement. To carry this scheme out,
the color degrees of freedom [not the ordinary
SU(3)] will be coupled. to colored Yang-Mills
fields. For illustrative purposes we will ignore
ordinary SU(3) and replace the color group by an
SU(2) group.

The transformation of the fermion field under
global gauge transformations reads

The subscript 2 on U denotes the fundamental rep-
resentation of the SU(2) color group. We make
the convention B(r,m) = —B(r + m, -m). We note
that the Fermi field is associated with the lattice
points themselves, but the gauge fields are as-
sociated with /inks between points. This is so be-
cause the gauge field transports color information
between lattice points. The two indices of the ma-
trix

U '(r, m) = V(r ) U (r, m) V ' (r + m) . (3.3)

Since in general V(r) and V(r+ m) are different,
our gauge-invariant equations will require invari-
ance under right multiplication and. left multiplica-
tion separately. The matrices U(r, m) can now be
used to convert gauge-noninvariant products of
spatially separated fields to gauge-invariant pro-
ducts. For example, an operator such as,

|i'(r) q(r+m)

transforms under gauge transformations to

U, )2(r, m)', .

are identified with the two ends of the link m. The
upper (lower) index is associated with the begin-
ning (end) of the link as depicted in Fig. 2. The
gauge transformation acts on U(r, m) according to,

g(r) =e''' t"' 'g(r)=-V(r) g(r), (3.1)

A local gauge transformation on the fermion
field is written

(z(r) V '(r) V(r+ m) g(r+m) .

However, the operator

q z(r ) U(r, m) g(r + m) (3.4)

where &u(r) can now depend. on the position r In.
general the full gauge group consists of transfor-
mations which depend upon time as well as posi-
tion. The canonical formalism is significantly
more difficult when the full time-dependent gauge
transformations are considered. We will there-
fore only discuss the invariance for spatially de-
pendent gauge functions. This will then allow us
to set the time component of the vector potential
to zero when the gauge field enters the theory.
There is, in fact, no loss of generality in this
procedure. '

The Hamiltonian in Eq. (2.1) is not locally gauge-
invariant since it involves the product of fermion
fields at separated points. To compensate this
lack of local invariance, we introduce a gauge
field. This is done as follows. 4 Qn each link
(r, m) we place a gauge field B(r, m) and a unitary
transformation,

H=a ' Q ])r(r)
™

U(r, m) g(r+m)
rim

+ m, g(-1)"y'(r) q(r) . (3.5)

l,et us now consider the continuum limit (a-0)
of this Hamiltonian. To do this we write

I

(r,n) r+n

FIG. 2. The gauge field U is defined on the links. The
two indices of U refer to the ends of the links.

is gauge-invariant. The gauge transformations
V(r) and. V(r+ m) acting on the ends of the link [in-
dices of U(r, m)] undo the gauge transformations
of the fermion fields. We can now apply this pro-
cedure to the Hamiltonian to render it gauge-in-
variant:



398 JOHN KOGUT AND LEONARD SUSSKIND

0 ~ m ~
~

&s g pit(&) &i ~ ~ B(r, m) /2(1 8 i-~ ~ B(r, m)/2) qi(&+ ~)ia

+ a' g g't(r) ™y'(r + m)+ m,a' g( —1)"g' (r)t/r'(r), (3.6)

+ m, a'Q (—1)"g't(y) y'(~),

In the continuum limit the quantity

(3.7)

0 ~ mq't(r) —, g'(r+ m)ia

becomes the kinetic-energy term

0'(~) r; &; 0'(~) .

Then the full Hamiltonian becomes

8;(r)g'(x) iy;8; g'(r) —g'(x) y,
' —g'(r)

+ m, q'(r) g'(r)

This is the usual Yang-Mills gauge theory with
fermions if we identify

(3.8)

B;(r)=agA. ;(r),
where A;(r) is the vector potential and. g is the
coupling constant. At this stage the gauge field
does not enter the dynamics as a bona fide degree
of freedom. This limitation will be remedied in
Sec. VI.

IV. THE RIGID ROTATOR

In this section we shall consider the nature of
the gauge-field degree of freedom on a single link.
In ordinary scalar-particle field theory, the field
degree of freedom at a point is an anharmonic
oscillator. The derivative terms in the Hamilto-
nian couple adjacent oscillators. In Yang-Mills
theory the local degree of freedom U(r, nz) is an
element of a group. In our example the group is
G(3). Since this is a non-Abelian compact group,
the topology of the configuration space at a link
is closed and nontrivial. This leads to complex-

where g'(r) =a '/'P(x). ln order to take the con-
tinuum limit smoothly, it is essential to assume
that the opera. tor 1 —exp[- i —,7. ~ B(r, m)] tends to
zero as the lattice spacing goes to zero. That is,
a small lattice spacing is only compatible with
dynamics in which the magnitude of the operator
B(r, m) is small, -a. Then the exponential in Eil.
(3.6) can be expanded and the Hamiltonian becomes

H =J '/(2 I ) = —,
' I~' = 2 I 0' . (4.1)

Since the moment of inertia tensor is diagonal,
the Hamiltonian is invariant under individual body
and space rotations as required by gauge invari-
ance. In fact, if f=U, J is the generator of body
rotations, the Hamiltonian may be rewritten

II = 8'/(2I) . (4.2)

ities in the canonical formalism. Fortunately, the
configuration space of a well-known mechanical
system, the rigid rotator, is identical to these
degrees of freedom.

We shall first review the kinematics of the quan-
tum rigid rotator. A configuration of the rigid ro-
tator is specified by a rotation from the space-
fixed to a set of body-fixed axes." The rotation
may be represented in the form

U, = exp(i T, 0),
where T,„(u = 1, 2, 3) are representation matrices
of the generators of the rotation group for angular
momentum j. In the spinor representation the ele-
ments of the matrix exp(i f,/, 0) are Cayley-
Klein parameters. We introduce a notation for
matrices in which lower (upper) components refer
to space (body) axes. For example, if V; are com-
ponents of a vector in the space-fixed. frame, then

(U, )';V; = V' are the corresponding body compo-
nents.

The relationship between body and space axes
for the rigid rotator is the same as the relation
between the indices on the two ends of a link in
the Yang-Mills theory. The action of a rotation of
space axes on U is given by left multiplication by
the appropriate rotation matrix, V, say. Similar-
ly, a rotation of the body axes relative to the body
is given by right multiplication. The requirement
of local gauge invariance in Yang-Mills theory
translates into invariance under separate space
and body rotations. This invariance requires that
the rotator be spherical, since only the spherical
rotator has invariance under rotations of the body
axes.

The angular velocity vector of the rigid rotator
is defined as the time derivative of 0,

Gd= 0 ~

dt
The angular momentum J (generator of space ro-
tations) of the rotator is given by Iid, where I is
the moment of inertia of the rigid body. The Ham-
iltonian reads
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(4.3a)

The fundamental canonical commutation rela-
tions are most easily given in terms of J, J, and

U. The commutator of J with U follows from the
fact that J generates spatial (lower indices) ro-
tations,

P;, (U, )'.]= (T,;)..(U, )'.

as claimed. In particular, U, generates states of
definite energy j(j + 1)/(2I).

To use spin-2 representation matrices as ladder
operators, we note that the representations T, can
can be constructed from T]/2 For example, in
the case j =1.,

or (U, ) 8
= trU, /, 'o U, /, o" . (4.8)

[J;,U;]= T,; U, (no sum on j), (4.3b)

where j labels the representation of the rotation
group. Similarly, the commutator of the genera-
tor of body rotations with U reads

In summary, we can make the following set of
correspondences between the Yang-Mills theory
and the rigid rotator:

Simultaneous body and space rotation

[J', U, ]=U, T, ' (no sum on j) . (4.4) - global color rotation,

In the Yang-Mills theory a global color rotation
is given by rotating the degrees of freedom over
all space equally, i.e., V(r, m) is independent of
r and m. Thus, each link transforms according
to U —VUV '. Therefore, the rigid rotator analog
is a simultaneous and equal rotation of body and
space axes. This transformation is generated by
the difference of the body and space angular mo-
m enta. "

In the quantum theory of the spherical rotator,
the eigenvectors are classified as simultaneous
eigenvectors of the operators J', J„J', and 8, .
They transform as multiplets under body and
space rotations. Since J' = 8' as operators, we
label states with quantum numbers J', J„and

The energy of a state is

E = j(j+1)/(2I) (4.5)

and its multiplicity is (2j+1)'. The space of states
may be constructed from the singlet ground state
~ 0) by using the matrix elements of U in the spin-
2 representation as ladder operators. Alternative-
ly one may apply exp(i T, ~ 0) to the ground state.
Consider first the quantities

body ind. ex final end of link,

space index-beginning end of link,

Q-B,
dB

&u =- J/I-
dt

The body- (space-) fixed angular momenta corre-
spond. to the generators of gauge transformations
which rotate one end of a link and do not affect the
other end. . We denote these operators in the Yang-
Mills theory Q and Q„where the —(+) indicates
the beginning (end) of a link. The tots. l color Q
carried by a link is the difference Q, —Q

Since the operators 8 and, J are related by g
=(U, )"8JB for a, rigid. rotator, it follows by ana-
logy that

Q, =(U, ) 6(Q )8 (4.9)

separate body and space rotations

local gauge transformation,

(U,.)', ~ 0) = [exp(i T, ~ 0)]',
~ 0) .

Using Eqs. (4.1) and. (4.3b) and the fact that the
ground. state satisfies

J i 0) = g i 0) = 0,
we compute

(4.6) =[U(r, m) -1]Q
= [1 -U-'(r, m)]Q, .

V. GAUGE-INVARIANT SPACE OF STATES

A. Pure Yang-Mills field

(4.10)

II(U, )', i 0) = 2—I J'(U, )' Io&

2—I [J', (U, )', ] I o&

2I Z, (Z„(U,.)*,] io&

2I [J, (T ) (U)' ]10&

—r ',„(U,)'„[0)

,—,j(j.1)(U,)*,I0&
1

(4.7)

Evidently the space of states of the Yang-Mills
field is the product of an infinite number of rigid-
rotator spaces. However, not all of the states
are physically relevant. The physical states are
drawn from the space of gauge-invariant states.
Let us first consider the generator of gauge trans-
formations. An arbitrary gauge transformation
can be built from individual gauge transformations
at the points of the lattice. Therefore, it-suffices
to consider just a gauge transformation at the lat-
tice site i. Six links emanate from the point and

each is effected. by the gauge transformation



400 JOHN KOGUT AND LEONARD S USSKIND

I:G",~1= I:Q"„~1,

where G is the generator of gauge transformations
at position y. Thus, the generator must be equal
to the sum of the Q+ over the six links,

G(r) =PQ. (r, m) (5.1)

We have seen in Sec. IV that Q, is proportional to
8 (in analogy with the space-fixed angular momen-
tum). Accordingly, the generator G(r) maybe
written as

FIG. 3. Graphical representation for the gauge-invari-
ant operator trUf/2 (1)Uf/2 (2) Uf/2 {3)Uf/2 (4) .

G(r) = constx P k(r, m) . (5.2a)

The time derivative of the vector potential can be
identif ied with the component of the non -Abe lian
electric field at position z in the direction m. The
sum over electric fields emanating from a single
site is the lattice analog of V E at the lattice site r.
Because the electric field itself varies from
Q (r, m) to Q, (r, m) a.long a link, there is an ad-
ditional contribution to the lattice analog of & E
which is associated with the links. This addition-
al source is just Q, (r, m) —Q (r, m), or the charge
carried by the link. Thus the generator may be
rewritten

where 1, 2, 3, and 4 refer to the links shown in
Fig. 3, is gauge -invariant. However, if the con-
traction of indices did. not involve the same lattice
site, a similar object such as

~,g.(1)', ~,g.( )'~~,g. ( ), ,g, ( )'gl o)

would not be gauge-invariant.
A simple pictorial. representation of the con-

struction of gauge-invariant states can be given.
We begin with an oriented closed path of links I'.
For each link on I we associate an operator

G(r) =V E(r) —2 QQ(r, m). (5.2b)

The gauge invariance of the physical sector is de-
fined by G(r)Iy) =0. Identifying 2Q Q(r, m) as the
local color density pG, , this constraint becomes
the familiar cond. ition &.~E =p~.

The gauge-invariant space of states may be con-
structed by starting with the gauge-invariant state
IO)G, which is defined as the product over lattice
sites of the individual gauge-field ground states.
The full space of states is given by acting with
any product of components of the U, &,(r, m),

{0)

I'„,(r, m)', IO), ,
r, ~ 6ls)

(5.3)

where the product goes over all r and m belonging
to some set Isj. The set fs1 may include any link

any number of times. In general Eq. (5.3) de-
scribes a gauge-invariant state only if the color
indices at each point are contracted to form a
local singlet. indices associated with different
lattice sites may not be contracted since they do
not transform identically under local gauge trans-
formations. For example, the state,

v„,(r, )',mI 0)

is not gauge-invariant since it has uncontracted.
indices. The state

~„,(I)*,U„,(2)', ~, (3)', ~„.(4)';I o), FIG. 4. The operators {a) Ufi2(I') and (b) Uf/2(rf)Uf/2{12).
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FIG. 6. Product of boxes with an overlapping link.

FIG. 5. Replacing overlapping "spin"-2 flux lines by
lines of "spin" j.

U,&,(r, m). We construct the matrix trace,

U(I') = trU, &,(r, n) U, &,(r +n, m)

xU, &,(r+n+ m, l) ~ U, &,(r —s, —s),

where the factors occur in the order indicated by
the path I'. Obviously U(I') is gauge-invariant.
One can now apply any product of U(I' )'s to the
ground state ~0)o to produce the gauge-invariant
subspace. Individual links may be covered more
than once either by an individual I' as in Fig. 4(a)
or by two or more I"s as in Fig. 4(b). Thus an al-

ternative to the field description is provided by a
configuration space in which a set of closed flux
lines or strings are specified.

Another way to characterize the gauge-invariant
states is to consider products of the U, (r, m)
where j is not necessarily 2. Again all indices
must be contracted as before, but no link is
covered more than once. The pictorial represen-
tation associated with this construction involves
closed paths which can branch as in Fig. 5. Each
segment is labeled by a value of j and. the vertices
involve the proper Clebsch-Gordan coefficients.
We will construct an example of the equivalence
of the two procedures. Consider the paths shown
in Fig. 6. We associate with them the operator

trU, &,(l) U,&,(2) U, &,(3) U,~,(4) trU, &,(- 4) U,&,(5) U,&,(6) U, ~2(7) = trU, i, (I) U,~, (2) U,~, (3) U,~, (4)

x trU, ~2 '(4) U, g2(5) U, (2(6) U, (2(7) .

Using the identity

(U~(2)', (U~g, ')", = 26' 5, , + 4(trU 'ABUT )(78);~ (T ).. .

(5.4)

(5.5)

the operator in Eq. (5.4) can be written as

2 trU, ~,(l) U,~, (2) U, &,(3) U„~,(5) U,~, (6) U, ~, (7) + 4 [trU, &,(l) U,&,(2) U, &,(3) v„U,&2(5) U, &, ( )6U,~, (7) Ts] U, (4)

(5 6)

The equality of Eqs. (5.4) and (5.6) is illustrated
in Figs. 6 and. V.

The reader should realize through these exam-
ples that the fact that every index must be match-
ed at each site is the non-Abelian equivalent of the
continuity of electric flux lines in an Abelian the-
ory."

B. Yang-Mills theory with fermions

Let us next consider the gauge-invariant states
which can be formed when we include the fermion

field p. We can construct a gauge-invariant state
by considering the lowest eigenstate of the gauge-
invariant charge-conjugation-invariant operator

(5.7)g(-I)"e'(r) ((r)~0)F.

The state ~0)F is a product of fermion vacua over
all the lattice sites. The product state ~0)=(0)F~O)o

is gauge -invariant.
Now, in addition to the operators U(I') formed

from closed paths, we can form gauge-invariant
operators from paths with ends (Fig. 8). For ex-

lrs +2

I 7

FIG. 7. Replacing the flux in link 4 of Fig. 6 by j= 0
and j= 1 flux lines. FIG. 8. A qq state with its accompanying flux line.
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U(I', Z) = jt(~) ZU, &,(r, n) U, ~, (r+n, m)

xU, ~ (s —I, I) y(s), (5 6)

where Z is any 2&&2 spin matrix.
The physical significance of the lines between

occupied sites is interesting. They represent
lines of electric flux. To see this observe that
the operator Q, (x, m) is proportional to the elec-
tric field at site x and points in the direction m.
At all links where there is no U, &,(x, m), Q+(r, m)
gives zero. On the links through which a single
I', has passed, Q+'(r, m) gives j(j+I). In this
sense one can think of these lines as containing
electric flux of magnitude [j(j+I)]' 2.

Now that the fermions have been added to the
theory, the generator of gauge transformations
at point x must include the additional operator
@"(r) a v@(r), which generates color rotations of

The full gauge-invariance condition on the
space of states becomes

ample, consider a path I' beginning at r and end-
ing at site s. One can form the gauge-invariant
operators

where I is a constant. This expression is, of
course, analogous to the energy of an assembly
of uncoupled rotators.

Clearly, from the rotator analogy (J = I&a) we

may deduce the equation of motion

B = —z [B,H ] = Q /I . (6.2)

This equation states that the operator Q, (r, m) is
proportional to the electric flux emanating from
the lattice point x in the direction rn. This fact
was noted previously in Secs. IV and V.

In order that the pure Yang-Mills theory be non-
trivial we must introduce terms which couple dif-
ferent links. To do this we make use of the oper-
ators U(I'). There is a great deal of arbitrariness
in choosing the additional term(s). Following
Wilson4 we pick the simplest object which repro-
duces continuum Yang-Mills theory when a-0.
Accordingly, let us consider the continuum limit
of U(I'), where I is shown in Fig. 9. As a-0 we

require as in Sec. III that the field B tend. to zero
-a. Thus we write the expansion,

1~ 1 2 2 1~ 1~
Ujl2=—1+iagA 2v —2a g A g TA z T+ ~ .

QQ"„(r,m) —q'(r) 2~ y(r)
m

This is analogous to the condition

tt 'E =pa+p~,

=0. (5.9) (6.3)

We assume that in the limit a-0 the field A be-
comes sufficiently smooth so that

A(r, n) A(r+m-, n) =aVA„(r) m.
where p~ and. p~ are the color densities of the

gauge and Fermi fields. Now we can expand U,&,(1") in powers of a. After
some algebra we obtain

VI. THE GAUGE-FIELD HAMILTONIAN trU(l') = --,'a'g'F', (6 4)
We must add a pure gauge-field. term to the

Hamiltonian describing fermions in order to give
the field B some nontrivial dynamics. Since we
are requiring local gauge invariance, the Hamil-
tonian must be built from gauge-invariant oper-
ators. Thus the Hamiltonian may contain objects
like U(I'). However, since all components of the
U's commute with one another, such terms will
not be enough to produce nontrivial dynamics.

In addition to the U's, gauge-invariant operators
can be built from the Q, (r, m). In particular Q+'
(= Q ') is the analog of the total angular momentumJ' of the rigid rotator. Since J' commutes with
both space and body rotations of the rigid rotator,
Q+' commutes with left and right gauge transfor-
mations. Q+' is therefore gauge-invariant. Fur-
thermore, since Q+' does not commute with U, its
appearance in the Hamiltonian will generate non-
trivial dynamics. Accordingly, we include in the
Hamiltonian a term

where

(6.5)

This quantity in Eq. (6.4) is familiar from the con-
ventional continuum form of the Yang-Mills Ham-
iltonian.

Now we can collect together the various pieces
of the Hamiltonian defining the discrete theory:

g Q+'(r, m)/(2I ), (6 I) FIG. 9. The term U (box) in the gauge-field Hamilto-
nian.
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QII 2-, B'(r, m)+, trU, I,(r, n) U, &,(r +n, m) U,~,(r+n+ m, —n) U, &, (r+ m, -m)
ag

+a ' g gz(r) . U(r, n) g(r+n)+m, g(-1)"qt(r) p(r) . (6.6')

Q=IU, (r, n) —I]Q,
which becomes in the continuum limit

2 ~

Q'=(zagA T,)', —A, ,

Q'/a' = (A x E), .

(4.10')

(6.7)

This is the familiar expression for the color car-
ried by the gauge field in the continuum Yang-
Mills theory.

VII. ENERGY CONSIDERATIONS

AND PERTURBATION THEORY

The qualitative features of a solution to the Ham-
iltonian in Eq. (6.6) depend upon which term dom-
inates. For large g, the first term

IIO= — r, n
r, n

, gB'(r, n)
2g

dominates and the remaining terms may be treated
as perturbations. Since the fir st term does not couple
adjacent lattice sites, its eigenvectors are product
eigenvectors of the individual rigid rotators. The
gauge-invariant eigenvectors are simply the states
defined by products of U(I') and U(I', Z) applied to

The coefficients of the various terms are deter-
mined by requiring that II must have the usual con-
tinuum (a-0) limit.

Comparing the first term of Eq. (6.6) with the
energy of a rigid rotator and recalling the corre-
spondence B- e, we note the correspondence

I-a/g'.
It then follows from Eq. (6.1) that

Z-Q+(r, n) =aB(r+n, —n)/g'.

Finally, recall that the color carried by a link is

~0)=~0)a~0)z;. Evidently in this strong-coupling ap-
proximation there are no fluctuations in the string-
like flux-line states. The energy of a state is
most easily described in a representation utilizing
the U, (r, m) operators introduced earlier. A typi-
cal state is pictured in Fig. 5. The energy of that
state receives a contribution from each link equal
to I(i+ I)/(»).

This picture of the strongly coupled Yang-Mills
theory in terms of a collection of stringlike flux
lines is the central result of our analysis. It
should be compared with the phenomenological
use of stringlike degrees of freedom which has
been widely used in describing hadrons. '4

An important element of the Yang-Mill. s theory
is that the electric flux is quantized. Since elec-
tric flux (Q, ) satisfies the commutation relations
of the non-Abelian generators of gauge transfor-
mations, it cannot be indefinitely subdivided. This
means that a unit of electric flux of magnitude

Q, ' = z(2+1) cannot split. This is to be contrasted
with a conventional Abelian gauge theory in which
both charge and flux can be arbitrarily subdivided. "

Now consider some examples. The ground state
is the state )0) with no excited flux lines. The
next-lowest-energy gauge -invariant states involve
a single excited link with a fermion-antifermion
pair at its ends. All such states have energy
2(2+1)/(2I) in the strong-coupling limit in which

only the term in Eq. (V.l) is considered inII. In

the pure Yang-Mills theory the lowest-energy
gauge-invariant excitation involves four links as
in Fig. 9. It has energy 4x =, (-,'+1)/(2I).

The states involving fermions can have nontrivi-
al SU(3) quantum numbers and may be identified
as mesons. The Yang-Mills gauge-invariant ex-
citations are SU(3) singlets. Excited states of
these objects can be identified with states in
which more than the minimum number of links

"q
Wl

A

Vic

FIG. 10. Two excited states of a qq system.

) r%

FIG. 11. Two excited states of a gauge-invariant ex-
citation.



404 JOHN KOGUT AND LEONARD S USSKIND

q" Xq X

X X X X X X X X

FIG. 12. Minimum-energy configuration for a separated
qq system in the strong-coupling limit.

are involved. For example, in Fig. 10 we show
two possible qq states, and. in Fig. 11 we show
tmo possible Yang-Mills gauge-invariant excitations.
The open-ended qq flux lines are similar to the origi-
nal "dual string"'4 used phenomenologically to
describe ordinary mesons. The excitations along
trajectories are analogous to excited qq states
occupying more than one link. The Yang-Mills
gauge-invariant excitation also has a counterpart
in the dual model. It is closed SU(3)-singlet dual
Pomeron string. "

Let us consider the force law between midely
separated quarks in the strongly coupled. limit.
The potentia, l energy is defined as the lowest en-
ergy compatible with the presence of a quark at
site x and. an antiquark at site s. For simplicity
choose the sites x and s to lie in a given row as
depicted in Fig. 12. The minimum-energy gauge-
invariant state is obviously given by exciting the
shortest path of links connecting the qq pair. The
energy associated. with the configuration shown in
Fig. 12 is

(I/~) -'(-'+ I)/(»), (7.2)

mhere L is the separation distance betmeen the
quarks. Since the potential energy increases line-
arly with distance, the force between the quarks
is independent of their separation. Such a force
is clearly sufficient to confine quarks. As dis-
cussed in Refs. 5 and 7, this force law between
unscreened charges is identical to the classical
force laws in one-dimensional gauge theories. "
It is also clear that the energy of confinement is
stored on the line (flux tube) between the quarks
(Fig. 12).

The force law between j=-,' (color triplet) objects
contrasts sharply with the force law between hy-
pothetical j = 1 (color octet) static objects. Phys-
ically the reason is that the low-energy state of
a distance pair of j = 1 objects can be constructed
by screening the color of the static objects by the
color gauge field. To see this explicitly, define
the field Q„(x), which creates the j = 1 particle at
site x. The minimum-energy gauge-invariant
state compatible with a single such object is

Q„(r)tr U,q, (y, n) U„, (x + n, m)

x U„,(~+n+ m, -n) U,&,(r+ m, -m)~" ~O).

a4 E
1F

FIG. 13. Minimum-energy configuration for a separated
pair of color-1 objects.

This state clearly has finite energy. The state of
minimum energy of two such particles at large
distance is obtained by independently applying such
operators at distant sites (Fig. 13). The resultant
energy is independent of the distance between the
objects, so the force is entirely screened. The
resulting mell-separated objects are each color-
less.

In summary, the strong-coupling limit is charac-
terized by nonfluctuating flux-line configurations.
This means that the fluctuations of the vector po-
tentials A are as large as possible. This cor-
responds to the fact that the relative orientation
of the body- and space-fixed axes in the rigid ro-
tator's ground state is maximally uncertain.

Nom we shall consider perturbations around the
strong-coupling limit. The effects of the second
term in H,

V =gy(~, n)
r, n

4
, Q tr U,(,(t, n) U,(,(t+n, m)'ag'

&& U, ~, (x+n+ m, -n)U„, (&+m, -m)

+ H.c. (7.3)

correct the eigenstates of H, to O(g ') and correct
the energy of these states to O(g '). In fact the
term V plays three roles. The first is to diminish
the fluctuations of the magnetic field. " The sec-
ond is to create fluctuations of the string con-
figurations. And the third is to propagate exeita-
tions through the lattice.

The first role is very simple. This follows be-
cause in the continuum limi, t V becomes the square
of the magnetic field.

The second two roles can be studied in perturba-
tion theory. For example, consider the correc-
tions to the vacuum state of pure Yang-Mills theo-
ry. The first-order correction to a state 40 is

(7.4)
0 0

Therefore, the correction to the vacuum state is
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a,=,+tv ttv, (rc)0, r(r,+c, m)tt t, (r +u+m, a)tt-v, (r+ m, -m) +Ha.) (0),8I
3Qg

(7 5)

Thus, the corrected state consists of a super-
position of states in which a gauge-invariant ex-
citation occurs anywhere on the lattice. Clearly
higher-order perturbation theory will create many
gauge-invariant excitations as well as more com-
plicated excitations of a single box. Thus the
vacuum becomes a fluctuating sea of closed flux
loops. The first-order correction to the vacuum
energy is given by

-1
aa(vacuum)= 0 r —r 0),H

(7.5)

and an explicit calculation shows that

68 (vacuum)/vol. = -32/a'g' . (7 7)

M (qq) = V(l (r) U», (v', n)U», (x+n, m) ~ ~
1

0 0

&& U, ,(s l, 1 )$( )sI O—&

and is best analyzed graphically. First there are
terms in which the boxes of V do not overlap with
the original string connecting the qq pair. They
are shown in Fig. 14 and may be regarded as cor-
rections to the vacuum. Next there are correc-
tions in which one of the lines in V overlaps with
the original string. There are two possibilities
as indicated in Figs. 15(a) and 15(b). Namely, the
overlapping flux lines may be parallel or anti-
parallel. The two diagrams of Fig. 15 may be re-
written as in Fig. 16 in terms of j=0 and j=1 flux
lines. Clearly these corrections cause both the
position and structure of the string to fluctuate.

The change in energy of the qq configuration can
be computed by standard perturbation theory. Af-
ter subtracting off terms contributing to the vac-
uum energy, we find that the correction is a sum
over the original links of the flux line. The con-
tribution of each link is -const/g'. Therefore
the new potential energy is

Next let us consider the corrections to the ener-
gy and state of a separated qq pair in lowest-order
strong-coupling perturbation theory. The correc-
tion to the state is

I 2(2 + 1) const
a (2 I) g' (7.9)

q X Xq

It is important to note that the energy is still
proportional to the distance between the fermions.
The fermions are still confined.

When higher orders in the perturbation are con-
sidered, the energy continues to grow linearly with
the length of the string for large interquark sep-
aration. However, deviations occur for short
strings. To see why this is so, consider an inter-
mediate state in which two adjacent boxes are in-
volved as in Fig. 17. The contribution from such
diagrams will again be summed along the length
of the flux line and therefore lead to a linear force
law for large distances. However, when the orig-
inal flux line is less than two lattice sites long,
this term becomes inoperative.

We now turn to a perturbation theory description
of the propagation of gauge-invariant excitations
through the lattice. To illustrate the effects of V,
consider the propagation of the symmetric gauge-
invariant excitation. " Recall that any localized
box is an eigenvector of II0 with eigenvalue
4&& —.-(-,'+1)/(2I). So, in the strong-coupling limit
the momentum eigenstates (which are linear super-
positions with weighting factors e' " of localized
boxes at position x) exhibit no momentum depen-
dence in their energy spectrum. Now consider
the effects of V acting upon a localized gauge-in-
varaint excitation. The interesting terms occur
when one of the sides of the gauge-invariant ex-
citation coincide with a link in V. This gives rise
to the states shown in Fig. 18. Allowing V to act
twice, it may act on the original site of the gauge-
invariant excitation and annihilate it, leaving a
displaced gauge-invariant excitation. In this way

qX Xq

qX-

(b)

Xq

FIG. 14. A disconnected contribution to V acting on a
qq state.

FIG. 15. Connected contributions to V acting on a qq
state.
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,.q qX-—

(b)

FIG. 16. Heplacing the doubly excited link in Fig. 3.5 by an unexcited link or a j= 1 link.

the perturbation can cause the gauge-invariant
excitation to propagate through the lattice.

In order to study the propagation properties, we
introduce the following notation. We denote ~x, m)
as a gauge-invariant excitation at x with polariza-
tion m. To define this terminology consider the
threeboxstatesatr: ~~, x), ~r, y), and ~x, z).
The state ~r, x) is bounded by the links (r, m, ),
(r, m, ), (x+m„m, ), and (x+m„m, ) as depicted in

Fig. 19.
Now consider a momentum eigenstate

adjacent box, a box with one line in common or a
completely overlapping box with ~x, l). The non-
overlapping box contributes

0V —V01

H0

which we identify as the correction to the vacuum
energy per box to this order. Since only the dif-
ference of the excitation energy with the vacuum
is physically significant, we must subtract off this
vacuum energy. This leaves over

e will calculate the lowest-order nonvanishing
correction to the energy of the state

~ k, ~) and
thereby exhibit a nontrivial dispersion law for
these excitations. The first-order matrix element
of the pe rturbation vanishes identically,

(l', I IVI', I) =O.

To see this, note that if the box created by V(r, m)
has no line in common with (r', l'~ or ~r, l), then
(r', l'~ V(r, m)

~ r, l) is zero. If it has one or more
line in common with the states ~x, l) or ~x', l'),
then one has two possible situations. Either
V(t, m) has one line in common with ~r, l) or
~x', l'), in which case a rectangle having six links
is made (such a rectangle cannot project back onto
the final state) or if V(x, m) completely overlaps
with ~x, l) or ~r', l'), then each side of the box
is excited to a state of color j = 1 or 0, and does
not projectback onto the final state which is a gauge-
invariant excitation with j = —, sides.

The next order of perturbation theory is des-
cribed with the matrix elements

boxes having no lines
incommon with ~r l)

all boxes boxes with a line
ln coIll mon

So, subtracting out the vacuum energy gives us
-13 times the energy of a vacuum box. The count-
ing factor 13 comes from the fact that there are
12 boxes with one line in common with a given box
and one box which completely overlaps with that
box. Another contribution to the matrix element
has an intermediate state with an adjacent box
(Figs. 6 and 7). Finally, there is the case in which
V creates a box completely overlapping ~r, l).
Call the magnitude of this contribution A. The
other matrix elements which can exist involve
~r, l) and ~x', l ') with a single line in common.
There are four possible contributions to this ma-
trix element which are illustrated in Fig. 18 and

l'VV~ l
0

%'e must compute the eigenvalues of this matrix.
The possible nonvanishing matrix elements are
as follows. If ~r, l) = ~x', l'), V may create a non-

(b)

FIG. 17. A higher-order correction to a separated
qq state.

(c)

FIG. 18. V applied to a gauge-invariant excitation.
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TABLE I. Matrix elements of V (Eo -H) V corresponding to the propagation of a box ac-
cording to the processes of Fig. 18. The values in the table should be multiplied by a factor
—B. Here k„are the three components of spatial momentum of the box. The components

k; satisfy the constraint -ma &k; &~a

jk, ».&

jk, m, &

jk, m„&

jk, m, &

2(cosk„+ cosk )

jk, m, &

y
~ ~ikz +, e-iky +~ik(Z-y)

2(coskz +cosk„)

jk, m„&

j +eikz +.~-i' p eik(zm)

] +~iky +~-ikx+ eik(y~)

2(cosk +cosk )

2I+A. + Bk,'
—I +& +—'Bk

(0, 1, —1) spin 2

(l, a, a)

&I +A 6B+s Bk,'-(1,a', a') spin 0

At rest the three eigenvectors are (0, 1, -1), which
is a, spin-2 object, (2, 1, -1), and (1, 1, 1), which
is a rotational singlet. In general it is not possible
to classify these states according to the rotation
group because the lattice has only cubic sym-
metry. However, if we consider a rotation by 90'
about the z axis, we see that the states (1, 1, 1)
and (2, —1, -1) are invariant. The state (0, -1, 1)
changes sign under this rotation and is therefore
classified as spin 2.

X

Ji

Y

have been discussed above. These terms con-
tribute a coefficient -B to the matrix element.

Now we can collect together the matrix elements
of V(E, II) 'V -in the states jk, t) and jk', l'). They
are tabulated in Table I. The energy eigenvalues
are given by 4x ~(~+1)/(2I) +A plus the eigen-
values of the 3~ 3 matrix of Table I. For small
momentum in the z direction the eigenvalues and
eigenvectors read

Let us now return to the problem of quark con-
finement when the fermion piece of the Hamiltonian
Eq. (6.6) is accounted for. The state with a single
fluctuating flux line connecting two quarks is no
longer an energy eigenstate, The fermion term
considered as a perturbation describes processes
in which a qq pair and its flux line is created. If
that flux line overlaps with a link of the original
flux line connecting the initial quarks, it may leave
that link in an unexcited state (Fig. 20). Thus
these processes allow the original string to break,
i.e., they screen the long-range interquark forces.
However, they do not allow free quarks to escape
since each segment in Fig. 20 must be colorless.
This situation is clearly very closely analogous to
the phenomenon of vacuum polarization and screen-
ing in one-dimensional quantum electrodynamics
which also confines quarks" and eliminates long-
range forces.

Nevertheless, quark confinement can fail in the
four-dimensional lattice theory if the very high-
order terms in the perturbation-series expansion
become important. If the terms in the Hamiltonian
which cause fluctuations in the flux line become
dominant, then electric flux will fail to be eol-
limated along a line between quarks. Then the
long-range force which would permanently bind
quarks may disappear.

VIII. CONCLUSIONS AND DISCUSSION

The main result of this paper is that strongly
coupled Yang-Mills theory on a lattice describes
inte racting propagating stringlike disturbances.
The strings are elementary quantized lines of
electric flux which can only end on charges.

q q
qX ~ ~ ~ Xq

Xq qX Xq

Xq

FIG. 19. Notation for the polarization of a gauge-in-
variant excitation.

FIG. 20. The possible breaking of a flux line by qf
production.
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FIG. 21. A typical baryon configuration in a SU(3)-
color theory.

For physical applications the gauge group should
be SU(3) (color) rather than SU(2) (color). The
main new feature of this generalization is that
three quark indices can be contracted at a point
with the antisymmetric coupling c„-„. This allows
baryons to be formed from three flux lines joined
at the center. It would be interesting to study
these objects (see Fig. 21.)

We have not discussed in this article a number
of difficult theoretical questions which remain
unsolved. The most important is to show that
renormalization effects really do lead to a strongly
coupled theory at large distances. This will pre-

sumably require a renormalization-group approach
to the theory in which it is first formulated on a
lattice with a small spacing and a small coupling
constant. The degrees of freedom may be "thinned
out" according to Wilson's method" until an ef-
fective description with large lattice spacing is
found. We hope such an analysis will justify our
use of strong-coupling methods. In addition, one
must hope that the effective description will de-
fine a theory which is not sensitive to the initial
lattice of small spacing (except through certain
coupling and wave-function renormalization con-
stants). Then covariance will be restored and the
theory will be (potentially) realistic. If this can
not be done, our approach will be invalid.
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