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Prescriptions for constructing covariant propagators from the Singh-Hagen Lagrangian are presented.

Propagators are derived explicitly for spin J ( 5 (J an integer) according to this prescription. They agree with

the propagators proposed by Harnad and Snoke in connection with the 0(4) propagator. They do not depend

on arbitrary parameters contained in the free Lagrangian. Some comments on daughter fields associated with

contact-interaction Qelds are given.

I. INTRODUCTION

Recently Singh and Hagen' proposed the most
general quadratic second-order Lagrangian of an
arbitrary-spin field as a further extension of the
Chang Lagrangians for spin J &4.' By the intro-
duction of a Lagrange multiplier into the Lagran-
gian, all the nonderivative constraints in the sub-
sidiary conditions' imposed on a tensor (or ten-
sor-spinor) field are automatically derived. The
nonderivative constraint equations are assumed
to hold in advance so that only the differential
equations of motion follow from the Euler-La-
grange equations. This procedure is accomplished
by introducing auxiliary fields into the Lagran-
gian. 4

For simplicity, we restrict ourselves to massive
spin- J (J an integer) fields. Moreover, we make
the usual choice by selecting the representation
D(J/2, J /2) of the proper orthochronous Lorentz
group, for which case the field is a symmetric
and traceless tensor of rank J. Under the sub-
group O(3) of spatial rotations, the representation
D(J/2, J/2) is reducible. Therefore, all lower-
spin states are contained in this representation.
In the free-field limit, these redundant components
are eliminated by imposing the Lorentz condition
on the field.

The nonderivative constraints are expressed by
the form'

y(~) d(~)y(~)

where d is an orthogonal covariant projection
operator. This projection operator is uniquely
determined from the symmetry and tracelessness

properties of the nonderivative constraints and is
called the O(4) projection operator belonging to the
irreducible representation D(J/2, J/2) of O(4).'
When a nonconserved current couples the field,
then the Lorentz condition is no longer imposed
on the field. Thus lower-spin components appear.
We can regard these lower-spin states as daughter
fields. This is done by using the projection op-
erators which decompose Eq. (1) into a spin-K
field which corresponds to the field transforming
according to the representation D(K) of O(3).'
This observation strongly suggests that the propa-
gator derived from the Singh-Hagen Lagrangian
should be the propagator proposed by Harnad' and
Snoke' in connection with the covariant O(4) propa-
gator 10 ~ 11

Quantization of the free field is given by Cha, ng'
and Singh and Hagen' using the action principle";
canonical commutation rules are derived, the
equations of motion are brought to the first-order
form (thereby facilitating the introduction of mini-
mal electromagnetic coupling), and the positive
definiteness of the energy is proved.

A general prescription for constructing propa-
gators from the Singh-Hagen Lagrangian is pre-
sented based on the Schwinger formulation" of
the Green's function. Following this prescription,
we construct propagators explicitly for J ~ 5."
The results are found to be in agreement with
those proposed by Harnad and Snoke. Although
arbitrary parameters are contained in the free
Lagrangian, the propagators do not depend on
these parameters.

Prescriptions for constructing covariant propa-
gators from the Lagrangian are presented in Sec.
II. Propagators are constructed explicitly for
J & 5 in Sec. III. The final section is devoted to
discussion.
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II. PRESCRIPTIONS FOR CONSTRUCTING THE COVARIANT PROPAGATOR

The most general quadratic second-order Lagrangian proposed by Singh and Hagen is

Z Ly(~)(82 m2)y(&) + ~ J(s p(~))2

(~-2& g2 -g«&yyg2 «-2~ y —'g&~& g ~~-2& 2 d~J~ &~~i gg «-2)

)(eytI ))+-g+( )y( — - )(ggy( - ))]
I

y@(~)(f(&) d(&))y(&) + g @(~-v)(j(&-& d(~-v))y(&-e)
2

(2)

where c' &, a( &, b( &, c, , and d, (q =2, . . . , Z) are real parameters and m denotes the mass of a spin-
J' particle. Here P and P '

(q =2, . . . , J) are real fields, Q( '
(q =2, . . . , J') is an auxiliary field, and

4 ~ and C '
(q =2, . . . , 8) are Lagrange multipliers. " Moreover, I ~ and d ~ (P =0, 1, 2, . . . ,

J' —2, J)
are defined by

~ ~ ~ ~' ' ' I p'f' j.' ' ' f'p (3)

P 2]
d& i

pl &t p v y
' vp r ~ C 0 yp2 v|vm p r 2192r Z-vmr-lv2r) ... , ~p ivir-

with

', '=(-)"(&— )~ ~/(&l)',

where d( & is called the O(4) projection operator. "o

A. Euler-Lagrange equations

The Euler-Lagrange equations follow from Eq. (2). For later convenience, one contracts these equations
with ~"&'' '~»-~. The results are found to be

(S2 m2)y(1, &) gT(4;o, &) c(J) T(zo, x)
3

y«. ~) —(S2 a«»&~«-3 ~) + g(~) T «'» & ) ~mc«&T (~'2 ~ ~) +d «) T«'2. ~& (6, 2)

y(&w &) —(s2 a(~) 2)~(~-3 ~) +p(~) T(~ o.~) +mc(~) T(~ 3.~) d(&) T(&'& ~)

Z«~c«~~a~~-~+I ~& d«)~«-~+2 ~) -&«~~«&I(g2 g«»&~«-~ »+y«&T«q»

+mc, T, " +d, T, " j forq=4, . . . ,J,
where (t(~ ' & is a symmetric and traceless tensor of rank J'-&(.;

y(&-e. &) sv, ...sv &, ~~(~-~)
0 X-q+I' ' ' 0 g-q ~P y' ' ' 0 g-q

(6, q)

We derive Eqs. (6, q) in detail in the Appendix. Also, T( " & (i =1, 2, 3) are defined in the Appendix [Eqs.
(Al), (A2), and (A3)j. By setting A. =q in Eqs. (6, q) Euler-Lagrange equations are obtained.
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B. Determination of coefficients in the Lagrangian

Since the coefficients (c~ &, &~ &, b~~, c,~, and d, ~ ) are independent of A. , we can easily determine them
by setting A =J in Eqs. (6, q). Then, Egs. (6, q) reduce to

(s2 2)~( J, J& Jg(E&s2~( z 1& (z&g(J& g (1)s4~(J-2, 1&

y(~~& —(82 g~~&~2)w~ ~ 2 ~ ~& + g(~&F~&&s2w(~ 2 ~& +~c(~&A~&s2w(~ ~ ~ ~& +d(J&x(J& s(~&s4w(~-4 &&

~( J-2, J) (82 g( J)~2)~( J-s, J') +y(J)s(J ) g2~(J-3, J) +~)~( J)g(J)g2~(J-4m J) +d(J)~( J) + (J)g4~( J-5, J)

(8, 0)

(8, 2)

c«&c«&yyg~« ~+~ ~-& d«&nL« ~+' ~-& =c«&c«&r (82 g& &pp 2)a« ~~&+-f&&»f~~&628 « »~&-

~~c«&~«&s2~&~ &-&~&+d&~&w(~&s(~& s&a(&-~-~ ~&]
q J q, J q J q, JJ q+1, J'

for @=4, . . . , J.
(8, q)

Equations (8, q) are exactly the Singh-Hagen expressions, in which the coefficients are determined so as
to eliminate the auxiliary fields Q~~ '& (q =2, . . . , J'). The results are found to be

(~) Z(J- 1)2
2J-1

«& q(2Z —q+1)(J' —q+2)
2(2J —2q+3}(J-q+1)

~(g& (J-q)'
q 2J 2~+3

and

(~& (q —l)(Z-q)'(J -q 2+)(2J-q+2)
2(J —q+1)(2J- 2q+1}(2J-2q+3)

d(, & =0 for ~=2, . . . , J .

It is worth noticing that these results are invariant under the transformation

-&n, P~ '& for q=l, . . . , J, n, WO

so that different choices of the n, 's will yield equivalent Lagrangians. Suitable choices of the n, 's are
easily seen to yield the Lagrangians obtained by Chang for 4=2, 3, and 4.

C. The covariant propagator

Since a quantization of free fields was performed by Chang' and Singh and Hagen, ' fields are assumed to
be quantized from now on. Following the Schwinger formulation of the Green's function, "we derive the

propagator in this subsection. One adds the free Lagrangian density 2, to an interaction term Z» of the
form

g j(&&y(~)

where j~ & is an external c-number source obeying no constraints. Then, Eq. (6, 0) is slightly modified as

(s2 ~2)y( Jy && JZl (z;0, x& pc(1& IP( j~o, x& j(I, x&

where j ( ' ~ is defined by

(6', 0)

j( .~) -gjli. ..gljyd(J) j( ) i ~ ~ J (11)g+ ~
~ ~ ~ ~i' ' 'W J '~x' ' '1' J'

After a lengthy calculation, the auxiliary fields P
~ " are eliminated from Eqs. (6', 0), (6, 2), (6, 3),

and (6, q) and the following equation of motion is obtained by using Ec(s. (9) and (A13):
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1' ' '
I J &1' ' ~ PJ 2 ~C yyi92 ~ ~ ~

1 J-l, 1,~ .«» 1 2(J-1) ~ .(j's)
m4 J(2J I) J ~ PxPs P 's''sz m 2J 1

1 J-2, 2(J'-1), ~, .(~s) 1 2(j-2) ~ .(~ s)
s J(2J 1) J'(2J 1) ~c pzps )ts P 4 QJ 6 2J 1

~c P~ P sP sp~ ~ ~ ~ pJ'

1
— (j-2)(j-3),, 2(j-2)
J(J—1)(2J—1)(2J-3) J(j-1)(2J-1) J(2J-1) ~c~~i~s~)l s&4~&s' ''vz

1 2(j-2)(s)'-3) s 2(J'-2), ~ .(~,)
m' J(2J- l)(2J-3) J(2J —1) ~c )' i)'s )'s )'~ »' ' ')'&

1 4(J-2)(J- 3) ~,(~,)
ms (2J-1)(2J 3) &i &s &s &4 &s' ''wz

1 (J—3)(J-4), 4(j—2)(J-3), 2(J —2)
m" J (J —1)(2J-1)(2J—3) J (J- l)(2J-1)(2J- 3) J(j 1)(2J—1—)

X ~(~5)
C +p g p 2 +p 3p 4

1 2(j- 3)(j-4), 4(J —2)(J—3), ~ .(~,)
m" J(2J—l)(2J —3) J(2J-l)(2J—3) ~c~~i~s &s &c & ~so 's' vz

1 4(j-3)(j-4) ~ (,)" (2J-1)(2J—3) ~i ~s ~s ~4 Ps ~6' ' PJ+ (12)

In general, Eq. (12) can be rewritten in the form

(Ss ms)y(&) O( &)& (&)

Schwinger's expression for the Green's function" is given by

(,) ()(o~y„,. . .„,(x)~0)
~ ~ S& v& ~ ~ ~ v ( ~y) ~ (J)v ~ ~ ~ vga

&i ' ixj q(J) 0

It follows from the form of the right-hand side of Eq. (14) that G( ) can be written in the form

(14)

(15)

where

d'P exp[i(x —y) P]6„(x-y,m') =lim, ,4
(27T) P +~ —sc

Operating on both sides of Eq. (14) with a Klein-Gordon operator and using Eq. (13) along with
(8„'-m')b+(x —y, m') = ()(')(x —y ), we find the prescription for determining 0

e(~) p(J)

Once o- is obtained explicitly, the covariant propagator is easily derived as the Fourier transform of
Eq. (15). Thus

III. THE EXPLICIT FORM OF PROPAGATORS FOR J~~5

Information on propagators for J~ 5 is provided in Eq. (12). From Eqs. (12) and (13), 8 ~ is obtained":
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O(&) d(~) g (s(sd(~)))

' J(J-1)(2J 1)(2J-3) J'(J-1)(2J-1)™+ J(2j-1)
1 2(J-2)(J —3), 2(J'-2), ~ sssd(~)

2 j(2j- 1)(2j-3) j(2J —1)

4(j- 2)(j- 3) (~)

1 (J- 3)(J-4), 4(J - 2)(J -3), , 2(j- 2)
m'0 J(J-1)(2J'-1)(2J'—3) j(J'-1)(2J-1)(2j-3) J(J-1)(2J'-1)

x pc(gga(sssssd")))
1 2(j—3)(J-4) 4(J —2)(J-3), ~ d( )

)n'0 J(2j-1)(2J—3) J(2J —1)(2j-3)
Qc(sssas(assssd('))) .m" (2j-1)(2J —3)

with

fJ 2l

~c gp ~ 8', g'p~ ~ ~

r-
J

i=2' 1

(g) (-)"(2J- 2&)!&!2'"
(2J)!(J-2')! (22)

8pB
+pv=gpv— (23)

It follows from Eqs. (17), (18), and (20) that the
propagators for J & 5 are

Pl~ o o i p v~ ~ ~ vt.J'

A tedious but straightforward calculation shows
that 0 results in the following elegant form"
for each J (J ~ 5):
"(~) (~): ( J) (~)O„.. .„,, (s)=(d O d )„.. .„.„.. .

„

(20)

Here O(~)(&) is the usual O(3) projection operators
obtained by Fierz2O and Fronsdal. " The O(~)(9)
is expressed by:(~)

V ~ ~ V

which are exactly as expected, i.e., the propa-
gators proposed by Harnad and Snoke. These
propagators reduce to the conventional propagator
on the mass shell (P' = -m2) and to the O(4) propa-
gator atP„=O. Note that Eq. (24) is independent of
n, 's which are arbitrary parameters in 20. There-
fore the propagators for J &4 are those derived
from Chang's Lagrangian.

IV. DISCUSSION

Following our prescriptions, we have constructed
propagators for 4& 5 from the Singh-Hagen La-
grangian. The propagators are found to be in
agreement with those proposed by Harnad and
Snoke. This fact strongly demonstrates that the
Harnad-Snoke propagator is derived from the
Singh-Hagen Lagrangian by using the Schwinger
formulation of the Green's function.

A general structure of the Harnad-Snoke propa-
gator is examined in the framework of the Van
Hove model. ' In particular, slopes of daughter
trajectories at P' =0 are given as a closed form.
The result depends on a model for the self-energy
parts, but it is unlikely that daughter trajectories
are parallel to the parent trajectory. "

The field P ) (P = 0, 1, . . . , J—2, J') is decomposed
into the following form by using orthogonal pro-
jection operators proposed by the authors:

[ ' '6' '(2P)d' '] ) ] . . ) J,v, . ~ v~ (24)
P + fPl —SE

t. & 2]
y(P) P C (P, I.;P-2|;-j)

=0 y =0
(25)
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Here C ' '" ' ' is defined as

C, (P, L;P-2L j)-q( P, L;P 2-L j)-y(P) (26)

where Q( 'L'P 'L ') is the projection operator
which projects out the spin-(P —2I -j) state cor-
responding to the representation D(P —2I, -j) of
O(3) from the representation D(P/2, P/2) of O(4)."
Equation (25) follows from the fact that

[P 2]
d(P) — q(P L;P 2L-i)-

=0 =0

Note that Q
' ' 2~ ' contains the orthogonal

spin-(P —2I, —j) projection operator which is ob-

y replacing g ~ in ~ ' with g ~ „=g

—8„8,/8'.
The field C "' belongs to the representation

D(J) of O(3) and describes a spin-J state. In the
free limit, j =0, only the field C "' survives.
Also, C " satisfies the Klein-Gordon equation
and all the subsidiary conditions. Therefore,
other fields correspond to "daughter" fields'4 de-
scribing lower spin-IC (IC=J-2I, -j; I.=O, j =1
and I, =1, . . . , tJ/2], j =0, 1) states,
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APPENDIX

First of all, we define the tensors T( " (i=1, . . . , 5) of rank J-A. as

T(( o ~) —sv] SP ) qd(+ o) Sni(S (ji(~ o)8in2 nJ q)1:0 $-q+1' ' ' jI J'-q 'p J,nl ' 'nJ q

y(J;q, ~) apl. . .gj!I y qd(J-q) gnl~( J-q-1) n2 ~ ~ ~ n J2: j' X-q+1' ' '~J-q nJ q

=8( i. ~ ~ St ).-,d«-~& Snien2((, ( -&-')n3 nz-o
q+1 ' ' ' jJ J-q ;nl nJ q

T(Ao. )) —SP SP x-qd(~ o) (8 (j)( ~ ) 8i i' ' nJ-a)
4 jI X-q+1' ' ' jIJ-q ' ' I'1' ' ' II J-q 1' ' ' J-q

and

T(~ o ~& =Si i ~ ~ ~ 8( X-, d( -o) (8 8 W( -&+') 8i82ni' ' 'n~-o)5: 9 X-q+1' ' ' PJ-q pl o jI,J q', nl ~ n J 81 82& 1

where Q( ) is a symmetric and traceless tensor of rank P. By using the formula

d (P) Sni. . .Sni(S . ..8 ~(P-i+ j) 8i' ' ' 8 n. +i ~ ~ ~ nP)
o o o ji +in o o o np i 8 8 w

(A2)

(A3)

(A4)

(A5)

min(i, [P/2]) min(r, i -r)
~( P)

) flax(0, i+7 -P)

(i(P;r, i) ~ (n n )82( 8~C j lj"2 027-1I"27 027+1 j i+7

&&(8
. ..() 8 . . .8 y(P-i j) 81 ~ ' ' 8jn2(+i ' ' ' nr+l

81 Bd 2l+1 nr+ i ',
I i+7 l+1 ~ ~

I P

where n( ) is given in Eq. (5) and

(,.„,.
) (P —L)!i!

2't! ()' —l)!

the tensors Ti '" ) are calculated in the forms

(A6)

Z (J q ~) -f(J)$2~(J-q ~) +.f(J) ~ g ~(J-ql~+1) f(J) g /(J-qo~+2)
1:j &-q+1' ''j J q

'q ' I ~-q+1'''j J q
'1:q ~C- j X + I )-q+2 ~J-q '2'q ~ I ~-+ j'X- + j ~ +3'' 'j"J-

(A6)

z «:q.~) ~( J-q-li ~+1) f ( J) ~ ~( J -q-l, ~+2)
q+1' ' ' I!LJ-q q A ~lj' ~-q+1' '

(Ll J-q 1'q jI ~-q+1~~ ~-q+2 ' ' j J-q q ~ I" ~ +lj ~ q+2 j" ~-q+3

(A9)

T( J:q.~) f (J) f(J) g4~( J-q-2. ~) g2~( J'-q-2, &+1)
3 M y q+1' ''jlJ-q J q ~J q+1 ~ ~gy q+1' ' 'jIJ q

~1'q. ~ C-" u k-q+1 ~jl ), -q+2' ' 'PJ'-q

(J) ~ g g
' ~( J q 2 ~+2) I( J) ~ g2~( J q 2y~+2)

~2;q, ~ ~C jI y-q+1 jl 'A-q+2~tJ y q+3 ~ pJ q ~2;q, ~ ~Cga X-q+1~ X-q+2 ~~ ~-q+3 "J q

(J) ~ g ~( J-q-2 ~+3)
+3;q, X~C+p g q+lpy + p g +3Wp g y4 ~ ' ~ pJ

+a".' e«-q-2 ~'4)
4;q C P X q+ljC y q+2 P X q+~j y q+4 ~y ~ +5

~ ~ !LiJ q

(A10)
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Z (J;q, x) y(J q+z-, x)
~'t'X-q+1' ' 'I"J-q ~ &-q+1' ' ' ~J-q '

and

T(g~q, k) y(z-q+q, x)
5qP &-q+1' ' ' PJ-q 0 X-q+1' ' ' IfJ q

where p( ' ) is given by E(l. (1) and

(J) ~ q I s (J) ~ ~ ( )—f' (-,}
"- -'" f (-,) f: -(,)

(A. -q)(J-A. )(2J-q -X) ( )
2(J-X)(J'-)j. —1)

(J-q)'(J q-1)' -' "' (J-q)'(J-q-1)' '

,(z) (X —q)(2 J'-
q —A. —1)+(J—q —1) (z) 2(J -A. —1)

(J-q)'(J- q —1)' (J-q)'(J- —1)' '

and

(All�

)

(A12)

&(J) 2
(Z- q)'(J- q —1)'

with restrictions q &X &Z for q =0, 2, 3, . . . , J-1,4. In understanding the results, it should be noted that
tensor indices are arranged in order of subindex size. Under this convention, an arrangement of tensor
indices like p& . . .

&
for p&q is forbidden except for the case q =p+1, in which we regard this tensor asPq' ''VP

a scalar. Thus tensors pq . . .
&

vanish for p &q.Pq' ''VP
Euler-Lagrange equations follow from the Singh-Hagen Lagrangian. Moreover, these equations are

contracted with a"' ' ' a" )'-q, then the results turn out to be Eqs. (6, q).
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