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Previously, we have made a study of the high-energy behavior of quantum electrodynamics
in the presence of neutral-meson theory with pseudoscalar-pseudoscalar coupling proceeding
loopwise. We have seen, by an elementary summation procedure, that the Adler-Baker-
Johnson eigenvalue condition for the fine-structure constant e remains stable (unaltered) in
the presence of the strong dynamics and that the photon self-energy part in the multi-fermion-
loop contribution is asymptotically finite at x = e independently of the strong-coupling value.
We have also learned that the strong dynamics damps out at high energies and no fII counter-
term was required. Conversely, in the present work, we study this dynamics at high ener-
gies when the Callan-Symanzik function occurring in Pure electrodynamics vanishes at n at
the outset (with an infinite-order zero) by adding the —O'A, og term to our dynamics. We
argue that the effective y5 and g couplings in this Abelian gauge theory may become very
small at high energies and that then they finally vanish even faster than the presently esti-
mated non-Abelian gauge-theory ones. As an application, the ratio B(Q2) of the cross sec-
tion associated with the reaction y*(Q ) anything to the corresponding one with the strong
couplings set equal to zero is studied when the momentum squared of the virtual photon Q2

B(Q ) is shown. to have a linear increase with Q (broken possibly by logarithmic terms)
at truly asymptotic energies, and, contrary to common belief, the leading contribution to it
comes from the strong interaction. Some of the statements made in this work are also in
pure electrodynamics. For example, the explicit asymptotic form of the photon spectral
function in finite quantum electrodynamics at the eigenvalue m is given here for the first
time. Finally, explicit high-energy estimates are obtained for elastic form factors in quan-
tum electrodynamics in isolation and in the present correlated dynamics, At very large mo-
menta for the external photon, the former are bounded by power-law behavior. Some
interesting aspects of this Abelian gauge theory are also mentioned.

INTRODUCTION

We continue with our investigation of the high-
energy behavior' of quantum electrodynamics in
the presence of neutral-meson. theory with pseudo-
scalar-pseudoscalar coupling. In Ref. 1 we have
learned, by an elementary summation procedure,
that the Adler-Baker-Johnson (ABJ) eigenvalue
condition"' (defined in the single-fermion-loop
contribution to the renormalized photon self-
energy part) for the renormalized fine-structure
constant' n, En'(x)~„-„==0, remains stable (un-
altered) in the presence of the strong dynamics.
The latter means that a possible zero of &"'(x)
does not "move" in the presence of the strong
interaction. This, as we have mentioned in Ref. 1,
leads to the beautiful idea that the value of & may
be possibly determined within pure electrody-
namics' in isolation from the rest of the world.
We have then extended our study formally to the
multi-fermion-loop contribution to the photon self-
energy part and inferred that the latter is asymp-
totically finite at x = & independently of tne strong-
coupling value. The point x = o' is the assumed
(infinite order) zero of the single-fermion-loop
electromagnetic-current-correlation functions in

mass-zero pure electrodynamics. We have also
learned that the strong dynamics damps out at high
energies and no P' counterterm is required. For
completeness and for the convenience of the reader
a very brief account of this work will be given in
Sec. II.

In the present work, conversely to the above, we
study this dynamics at high energies when the full
Callan-Symanzik function ' occurring in pure
electrodynamics vanishes at & at the outset with
an infinite-order zero' (see also Sec. II) by adding
the ——,'A.,P' term to our dynamics. (Needless to
say, a, loopwise summation procedure as in Ref. 1
is not meaningful in the usual perturbative theo-
retical sense for the present case. ) In the present
work we shall not discuss other possibilities than
this case just mentioned. We argue that the effec-
tive I, and P couplings may become very small
at very high energies and that then they finally
vanish even faster than the presently estimated
non-Abelian gauge theory ones. ' The method of
our study is that we rely on electrodynamics in
a nontrivial manner, i.e. , electrodynamics sum-
med to all orders in n. We then make an expan-
sion in powers of the y, and P4 couplings at high
energies. Such an expansion may indeed make sense
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if the corresponding effective couplings become small
at high energies as we shall argue. The reason
why electrodynamics is treated in a nontrivial
manner is because of the well-known fact that the
effective electromagnetic coupling may never
vanish no matter how high we go in energies. The
main reasons for this may be summarized as the
restriction due topositivity 0 &Z, &1 (where Z, is
the electromagnetic charge renormalization con-
stant squared), and the restriction due to the Ward
identity Z, =Z2 (where Z, 'and vZ, are the electro-
magnetic-vertex and charge-field renormalization
constants, respectively). Luckily, there is no
argument of this sort, for example, for the y,
coupling; no corresponding Ward identity exists
for this latter case, as has been discussed in
Ref. 1, and its damping property may be then
self-consistently explored. No estimation, how-
ever, is given in this work of the magnitude of
the renormalized y, and Q' couplings. As we shall
discuss in Sec. III, this is an exceedingly com-
plicated problem.

As an application of the work, we study the reac-
tion z*(Q'}-anything for Q'- ~. This virtual pho-
ton may be considered to be attached to some ex-
ternal charge distribution (external current) or
"ideally" as the single photon contributing to e e
annihilation with the former decaying into any-
thing. We shall emphasize that our result is pre-
sumably to be taken as a truly asymptotic one.
We work out the ratio &(Q') as Q'-~ of the cross
section associated with this reaction to the corre-
sponding one with the strong couplings set equal
to zero (and perhaps naively) as an asymptotic ex-
trapolation of the object of experimental interest
in this reaction. R(Q') is shown to increase linear-
ly with Q' (broken possibly by multiplicative loga-
rithmic powers). Contrary to common belief,
the leading contribution to R(Q'} comes from the
strong interaction. The asymptotic form of the
photon spectral function in finite quantum electro-
dynamics at the eigenvalue & is also explicitly
given here for the first time. Finally we obtain
explicit high-energy estimates for elastic form
factors in quantum electrodynamics in isolation
and in the present correlated dynamics. At very
large momenta for the external photon, the former
are bounded by a power-law behavior. We also
mention some interesting aspects of this Abelian
gauge theory.

In Sec. II we give a very brief account of the
work in Ref. 1, emphasizing, however, only some
of the key points. In Sec. III the high-energy be-
havior of the dynamics is discussed. The asymp-
totic form of the photon spectral functions are de-
rived in Sec. IV. Sections VA and VB deal with
the application of the work to virtual-photon decay

and the derivation of the high-energy estimates
for the form factors, respectively. A brief dis-
cussion on the work is given in Sec. VI with addi-
tional comments, and various aspects of this
Abelian gauge theory are pointed out.

II. VERY BRIEF DISCUSSION OF THE STABILITY

OF THE EIGENVALUE CONDITION

For completeness and for the convenience of the
reader a very brief account of the work in Ref. 1
mill be given here, emphasizing, homever, only
some of the key points involved in the work. Our
method of summation for the study of the stability
of the eigenvalue condition defined within the
single-fermion-loop contribution II," to the photon
self-energy part is the following. We first sum
up all the virtual-photon-line corrections to II,"~

while holding the virtual-pion "variables" fixed.
We then carry out the virtual-pion-line integra-
tions as well. This amounts to making an expan-
sion in powers of the y, coupling (g') and treating
& to all orders, and then summing up in the strong
interaction as well. The motivation for this is
two-fold. Firstly, this allows us to treat the ex-
plicit derivative with respect to g' appearing in the
Callan-Symanzik equation4 for lI,M in an elementary
fashion. Secondly, the damping of the effective
y, coupling is not ruled out —the corresponding
electromagnetic one, however, is. This method
of summation together with renormalization-group
techniques' yield' (the last term comes from the
strong corrections)

o'IIP'(Q') finite + n&"'(o') In(Q'/m')
Q2~ oo

0((m2/Q2)80( ) /2} (I)
where F"'(x) is the ABJ function. ' The self-con-
sistency for the finiteness of the self-mass of the
fermion in pure electrodynamics (which we as-
sume) requires' that po(o')&0. In the notation of
Ref. 2, for example, p, (&) is given by' p, (o') =2&(o),
where' &(o.) =3(&/2w)+-, (o'./2v)'+ . (with the self-
consistency range for the latter' 0& &(o') & 2). From
(1) we immediately see that the ABJ condition
for 0' remains unaltered, and at the eigenvalue

&H,"~ is asymptotically finite. If we naively
expand the second term in (1) in powers of Po(&),
we generate not only a, single power of ln(Q'/m')
which "modifies" the ABJ function, but we also
generate arbitrary powers of the former. So one
should be very careful when making contact with
perturbation theory results. As mentioned in Ref.
1 this sort of question originated our investigation.
The dimensional parameter m in (1) denotes the
renormalize'd mass of the fermion. It is important
to note that &II,"' contains one over-all closed
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fermion loop. Accordingly, it does not contain
pion and photon self-energy parts and it does not
contain pion-pion and photon-photon scattering
graphs as well. To proceed to the multi-fermion-
loop contribution to the photon self-energy part
and discuss its asymptotic finiteness we have
made the two very basic assumptions made by
Adler' in pure electrodynamics:

(i} The theory may be correctly summed up by
the loopwise summation manner.

(ii) The 2n-point electromagnetic-current-cor-
relation functions (in the single-fermion-loop
contribution) for m =0 and F"'(x) vanish simul-
taneously at x = & in pure electrodynamics.

The basic ingredients (facts} that have been shown'

to be present in going from the single- to the
multi-fermion-loop contribution to the photon self-
energy part were' the following:

(a) A ~0-mo scattering graph (including the one
with four external pion lines) in the single-fer- .

mion-loop contribution is finite when summed to
all orders in & and vanishes very rapidly in the
asymptotic region.

(b) The m'-y scattering system also damps out
quite fast at high energies.

(c) The strong corrections to y-y scattering
graphs damp out rapidly at high energies, and at
o-' their pureLy electromagnetic contribution to the
just-mentioned graphs in turn vanishes' rapidly
asymptotically.
These are some key points in the study. We have
mainly given a very brief summary of this work
and discussed some basic steps involved in our
study. For details as well as for other results we
refer the reader to Ref. 1.

Finally, we wish to point out that from (i) and
(ii) above it follows formally by an elementary
induction proof, for example, that the inf inite-
order zero' of En'(o') at n implies the same prop-
erty for the full Callan-Symanzik function in pure
electrodynamics (see Ref. 1). We also remind the
reader that the vanishing of the ABJ function is
necessary for the internal consistency for a com-
p].etely finite quantum electrodynamics. '

where the symbols have their usual meaning. Let
D(Q2) be the renormalized photon propagator with
D(Q') =d, (Q')/Q'. The object o'd, (Q'), for example,
satisfies a Callan-Symanzik equation" for Q'-~
of the form

(2)

where rn —the scale parameter —is chosen to be
the mass of the fermion, and the coefficients of
the derivatives with respect to the couplings define
the various Callan-Symanzik functions of the theo-
ry. X,(n') is the corresponding one in pure electro-
dynamics [this is denoted by p(o') in Ref. 2; we
have chosen our earlier notation in Ref. 1 for con-
sistency]. We may also scale Q'- qQ' and define
the parameter I(:=—lng. The relevant effective cou-
plings in the theory then formally satisfy the well-
known form of renormalization-group equations'"':

d n(z)~(~) = [X,(&(~)}+X,(&(~),g'(~), X(~)}],

——g'(z) = X,(n(g), g'(w), A. (z)},

—A(w) =X,(o.'(g), g'(z), A(w)},

where o.'(z), g'(&), and &(K) denote the effective
electromagnetic, y, (squared}, andthe P' cou-
plings, xespectively. The formal boundary condi-
tions to the above equations are

(o) =, g'(0) =g', a d X(0) = X,

respectively, with the latter parameters denoting
renormalized quantities. Each of the above ef-
fective couplings satisfies an identical equation as
in (2), i.e. (in long hand),

o.(~)
8 j 9 ~ 8 9

+zo'(Xo+Xg)
S

+Xg
S 2+X2 SX g (~)

X(~)

(7)

III. HIGH-ENERGY BEHAVIOR

We wish to study the high-energy behavior of
our dynamics with & as the infinite-order zero
(see also Sec. II) of the Callan-Symanzik function
[i.e. , coefficient of (8/Bo!) in the Callan-Symanzik
equations ' ] in pure electrodynamics. The inter-
action Lagrangian density under consideration is
chosen to be

Zl = +gy, 4'P e,+4'y 4A" ——,'-A. P',

As mentioned in the Introduction, our method of
study will be to make an expansion in these equa-
tions in powers of the y, and P' couplings. For
simplicity, we study the equations for g'(&) and
&(w) by omitting first the X, term in (7), then taking
its action into consideration in a self-consistent
manner, and in Eq. (7) setting X, z-0 for o'(~)
also. In this case the equations for g'(tc) and A(z)
"decouple" from the one for o'(I&) and the expan-
sion coefficients of X, , in powers of g' and ~ for
the former effective couplings become~sirnPLy
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parametrized by n." We shall argue that the ef-
fective couplings g'(w) and X(z) may become small
for g-~. To do this we expand the right-hand
sides of Eqs. (4) and (5) in powers of g'(z) and
X(~),"e.g. ,

dw
Z' (~) = 2P-(a)a'(~) + (8)

[note g, ~O(g')], where the parameter P,(a) has
been discussed in the previous section and is cer-
tainly very welcome here since it introduces a
negative contribution to (8}. Other corrections on
the right-hand side of (8) are of the order g'(&),
g'(/c)&'(K) (and so on), and are expected to vanish
faster than the g'(z) term retained in (8) if g'(&)
and &(w) do indeed vanish as z-~, as we shall
argue. Equation (8) may be readily integrated to
yield

g'(~) =g' exp[ ——.
'
p, (a)a].

Similarly, we expand the right-hand side of (5)
to obtain'

(9)

—A(z) =-q (a}g'(z)+q,A.'(z)+ (10)

and, at least in the perturbative calculation sense
in a, it is strictly positive [the requirement of the
knowledge of the property of the full 7io(a), i.e.,
to all orders in o-', may be somewhat relaxed for
the internal consistency of our solutions as we
shall discuss shortly]. Equation (10) then may be
integrated to give

A. (K) = A. exp[-P (a)Ko], (12)

with & -g'q, (a)/Po(a) & 0. Clearly, this latter solu-
tion goes beyond perturbation theory and is based
on electrodynamics in a nontrivial manner. This
in turn signals the important fact that when the
theory is summed to all orders in &, a typical
rP-m scattering graph (with four external pion
lines) of order, g' is already finite and the so-
called P' term does not have the usually expected
compensating role. ' Equation (12) also suggests

where q, is easily extracted to be q, =9/8m' and
is independent of &. The positive sign of g, is
directly related to the negative sign of the Q' cou-
pling chosen in our Lagrangian. " Other correc-
tions on the right-hand side of (10) are of the order
g (K)~ (K), g (K)&(K), . . . . From Eq. (10) we learn
that &(z) cannot vanish slower than g'(z). Similar-
ly, we see that it cannot vanish like g'(z) (as is
usually expected) since dg'(K)/d/co-g'(w) [and not
~g~(z) (Ref. 12)]. In perturbation theory, po(a)
may be computed, and has the form

n, (a) = 4, [1+O(a)],
1

that the X coupling be treated as a g' effect.
In precise terms, this suggests scaling the cou-
plings g'- $g' and &- P& and treating $ as an
expansion parameter, and finally setting $ =1."
Before we proceed we would like to make some
important remarks. Although the solutions (9) and
(12) vanish rapidly as K-~, it is not clear how

high in & one has to go so that these are the leading
ones for & large. Clearly, this will depend on how
large p, (a) is. We cannot also give an estimate
of the allowed magnitude for the renormalized
coupling g', for example. This presumably re-
quires detailed knowledge of the other expansion
coefficients in (8) (as functions of a) and is a prob-
lem which goes beyond perturbation theory. We
shall make no attempt, however, to discuss these
points as they are actually beyond our reach. Ac-
cordingly, we do not necessarily mean that these
renormalized couplings may be allowed to be ar-
bitrarily large. On the other hand, if, for ex-
ample, g' is very small, say of the order &, then
this problem is almost understood since one may
treat the above-mentioned coefficients by their
lowest nontrivial expressions in o-', and the main
ones [qo(a) and po(a)] we already know. Now we
come back to Eq. (7) for g'(tc) and &(/c) and take
the g, (&/&a) term into account. We note that g, is
of the order g. Accordingly, our solutions are in-
deed correct to the leading order in (. We make
an expansion in powers of $ in Eq. (7) for g'(g)
and &(z) and readily infer (in a standard manner')
self-consistently that these effective couplings
have the following most general forms":

g'(~) -O(exp(-2P, K)&&powers of K)

and

A. (/&) -O(exp( —P, lc) &&powers of w)

for ~-~. The powers of & multiplying the already
damping factor exp( ——,'p, &) come from the g, (s/sa)
term when expanding in powers of (. Similarly,
we make an expansion for a(z), a(a) = a
+g'f, (a)+, and substitute the latter in Eq. (7)
to obtain the following at the eigenvalue &:"

a(K)-finite+0(exp( 2P, I')xpower-s of K)

Similarly, by making an expansion in powers of $,
it is easily seen' that any basic Green's function,
when the external momenta (nonexceptional and
spacelike) are taken to infinity simultaneously, is
of the form

G(K) „Go(K)[CD+0(exp(=~poNa)&&powers of e)]'

&& exp[ r, (a)&][p—owers of (&/9 a)]

«xp[r, (a)~],
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where G (I&) denotes the corresponding Green's
function in pure electrodynamics (if there is one)
and y, (~) denotes the purely electromagnetic con-
tribution (if there is one) of the sum of the anoma-
lous dimensions of the fields making up Go(z).
The constant Cp is either finite or zero. N inside
the bracket is a positive integer and is a "mea-
sure" of the minimum number of pion lines con-
tributing to G(z) for $'0. Equation (13) is a com-
pact notation. The powers of (~/'&) come from
the X, (B/8&) term and it is understood that the
identity (9/8&)' contributes to them. For the re-
normalized photon propagator, for example,
z, =— 0, and the object d, (~) [from (13)] is given by

d, (~), ,„finite

+O(exp f-g P„K]xpowers of K) (14)

and a similar expression results for the corre-
sponding object for the renormalized pion. propa-
gator. For a n'P-m' scattering graph with four ex-
ternal lines, yp 0 Gp 1 Cp 0 N 4 i

~0(K) z 0(exp[ P K]xpowers of K).

For gauge-dependent objects, we can always find
a suitable gauge' so that all the expansion coeffi-
cients of &0(&) are identically equal to zero (see
the first paper in Ref. 1 for the explicit gauges).
In this case the powers of (~/'&) will not con-
tribute since all the expansion coefficients of yo(&)
may be consistently chosen to be identically equal
to zero by appropriate choice of a gauge. The
asymptotic finiteness of the theory may be directly
discussed from (13) (see also Ref. 1).

Although we do obtain very interesting damping
for the y, and Q' couplings at high energies, we
shall make no attempt to discuss convergence
problems and shall not dwell further on the powers
of logs multiplying the already damping factor
exp(-2P, z). Here it should be noted that our defi-
nition of the summation procedure by expanding
in $ and taking tc-" (term by term) is not in gen-
eral equivalent to a reversed way of summation,
e.g. , through the replacement &(&)- &(~) every-
where first, since Xp does not in general van. ish
at n(~). (This reminds us of the well-known situa-
tion of the inequivalence (vis-a vis) of the loop--
wise' summation procedure and the so-called
vacuum-polarization- insertion-mise summation
procedure in pure electrodynamics with the cor-
rection [see Eq. (30) in Ref. 2] k(Q') to ~d, (Q') —no
replacing a(a') —&(~) (in here)). Summarizing
then, our method of study is based directly on the
Callan-Symanzik equations together by making an
expansion in powers of $ with K-~ (and not other-
wise). This has been applied to the effective cou-

plings as mell as to the Green's functions. Need-
less to say, our solutions are true only for &40—
the latter as the infinite-order zero of g, (~).

For applications, we shall omit, from now on,
the powers of K multiplying the already damping
object exp(- —,'Poz) in Eq. (14) for the renormalized
photon. propagator with no striving for rigor.

IV. PHOTON SPECTRAL FUNCTION

In this section we derive the asymptotic form of
the photon spectral function. We first consider
pure electrodynamics. The Callan-Symanzik
equation for nd, (Q'), for all Q', is given by (see,
e.g. , Ref. 2) in our notation (see Sec. II)

8 8
~ X.( ) —, [~d(Q')]-'=[I 6(~)K„,(Q'),

F„.(Q') = .(s/s .)~(Q'),1

d, '(Q') = I+ n[II(Q') -II(0)],

—m, =1+6(~),m d
m p de

and 25(n) = Po(n). The parameter m, denotes the
unrenormalized mass of the fermion. The total
differentiation in the last expression in (17) with
respect to m is taken with the unrenormalized
fine-structure constant np and the ultraviolet cut-
off introduced in the unrenormalized theory fixed. '
All the quantities in Eq. (16) denote renormalized
objects. The cutoff independence of I'yy s ls easily
established. "" For Q'-", the right-hand side
of (16) vanishes like m/Q from Weinberg s the-
orem. ' More precisely, Fyy~ is an even function
of m (as may be checked in perturbation theory)
and hence it vanishes like m'/Q' for Q'-~. Ac-
cordingly, at the eigenvalue n, the leading con-
tribution to nd, (Q') is given by'"

«.(Q') =v(~), Q'-"
where'

q(n) =n —(5/9w)n'+

(18)

[The relation (18) is true with n, the renormalized
fine-structure constant as the zero (of infinite
order) of yo(u). ] To find the next-to-the-leading,
energy-dependent corrections to the right-hand
side of (18) (at n) we have jo consider the behavior
of the inhomogeneous part in (16) for Q'-".'7 To
do this, we consider in turn the Callan-Symanzik
equation for F

y y $& which is easily derived to be

(16)

where (His the unrenormalized photon self-energy
part)
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= [1+6(~)]r„„, (19)

essentially obtained from the vacuum expectation
value of the correlation of two electromagnetic
currents. The electromagnetic charge (squared)
renormalization constant Z, is formally given by

where

9
ryyss=m. . rl

Pl o
(20)

]. dP, o

Z3 o
(25)

The cutoff independence of I'z»s is easily
seen. '" Weinberg's theorem" states that
rzr~~(Q') vanishes like m'/Q'. The solution to
the homogeneous part of (19) (at o. ) is

r», (q') - C(m'/Q') "' (21)

and hence" C=—0 [note t)(a)~ o.] since I
& &~ is

even in m (as may be checked in perturbation the-
ory with gauge invariance invoked). Finally we
write the Callan-Bymanzik equation for razz~ [to
study the particular solution of (19)], which is
given by

m +o.g, (o.) ——2[1+6(n)] f'„„(q')-0,

(22)

where the right-hand side vanishes like (m'/Q'}'
in perturbation theory. " From Eqs. (16)-(22)
we obtain, at n, "the solution

«(Q') e(~ }+o'e (o')(m'/Q')" "'""' (23)
Q~ co

[Note the factor of 2 multiplying I +5(c.) on the
left-hand side of (22)]. The very rapid energy-
dependent correction in (23) for Q'-~ is certainly
very interesting. " We would like to emphasize
rather strongly that an expression like (23) is pre-
sumably to be taken as a Auly a&pmP««& one.
Accordingly, a completely different behavior at
"relatively lower" energies is not ruled out. This
may happen, for example, if smaller energy-de-
pendent corrections add up to a different expres-
sion than the leading one at lower energies. With
this we emphasize that the expressions to be ob-
tained below then are, presumably, also to be
taken as truly asymptotic ones.

We now turn to the photon spectral function.
The object d, (Q'} may be given (by invoking com-
pleteness etc. ) in terms of a spectral decomposi-
tion,

d(q) 1 Q
dp P (P)

(p'+ Q') (24)

(where the factor 1 corresponds to the photon pole
for Q'-0), with Q'&0 (spacelike), and we have
absorbed any discontinuous function that may ap-
pear in p~') (p'). The spectral function p~')(p2) is

When o) is the (infinite-order) zero of y, (n),
I/Z, is finite. ' Accordingly, Eq. (25) formally
implies the boundary conditions p

' (~) =O=p o (0).
On dimensional grounds, d, is a function of the
ratio Q'/m' and p

' is a. function p /m'. We are
interested in the limit Q'-~; we cannot, however,
take the limit rn'-0 instead inside the integral
(24) in p~')(p, ) without the knowledge of the be-
havior of the latter for p,'-0 (with m fixed), i.e.,
at the lower limit of the integration. To bypass
this point, we apply the differential operator
S/am' to (24), use the boundary conditions just
mentioned for p~')(p, ') and integrate by parts twice
to obtain in an elementary fashion

X X ( ) X

(26)

The additional power of x in the numerator im-
proves the behavior of the integrand at the lower
limit of the integration without changing its high-
energy behavior. From dimensional reasons, we
see from Eqs. (23) and (26) that p '~ (Q') has the
for Dl

(p~ Do

(27)

Upon substituting (23) and (27) back into (26) we
readily obtain

~ csc(--,'P, )).)C,(o. ) = -q, (n) . (26)

The coefficient q, (o,') is easily computed in pertur-
bation theory (cf. Ref. 20) to be

To our knowledge, the asymptotic form of the
photon spectral function in finite quantum electro-
dynamics at the eigenvalue n has been explicitly
given here in Eqs. (27)-(29) for the first time.
Positivity requires that C, (o.)&0. It is easily veri-
fied, by taking into consideration that csc(xn) has
a singularity (among other ones) at x=0, that
this positivity condition is indeed satisfied at least
to the lowest-order expansion of C,(ot} in n. It is
interesting to point out that C,(n) starts at n'
rather than at o. and is easily computed from (28)
to have the form C,(n) =(3u'/)) )[I+0(n)], where
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we have formally used the value of p, (n)
= (3o./v)+ ~ ~ ~ in Ref. 7. This coincides with the
coefficient of m2/g' as p,'-~ coming from the so-
called photon self-energy proper" diagrams in the
classic work of Kallen and Sabry' on the evalua-
tion of the spectral function to fourth order in the
charge e. What we also learn from the fact that
Co(o. ) ~ n is that the coefficient of o.'(m'/p, ') in

p
'

(p,') is identically equal to zero for p,'-~.
When we go back to the work of Ref. 20 we see
that this is indeed the case [see, for example,
Eq. (6) in this reference). From this one formal-
ly understands why the so-called improper dia-
grams" (to the order n') do not contribute to
p

o (p~) as p2-~. Very roughly speaking, they
must yield to an expression of the form (m'/p, ')'
or smaller as p2- ~ in the summed-up finite
theory, and hence are nonleading. Finally, that
from the second-order expression (29) we were
able to reproduce the fourth-order expression
for C,(n) directly without further work is certainly
interesting. csc(-—,'P,n) has also a singularity at
—,P, = 1. The value of —,'P, may be a.llowed, however,
formally to be extended above this value. It is
important to realize that the form in (27) does not
imply that the integral expression for I/Z, in (25)
develops a singularity at the lower limit p, -0,
since the spectral function may have a completely
different behavior there for m'4 0 in contrast to
the situation with p,'+0 and ng -0. The substitution
of (27) into the expression (26) is justified because
of the additional improvement obtained in the low-
energy region (x-0), in (24), by partial integra-
tion. In standard perturbation theory, p~'1(p, ')
goes like a constant plus terms which increase
with powers of In(p, ) plus terms wlHch vanish like
m'/p, ' up to powers of logs." In the summed finite
theory, at the eigenvalue n, we obtain a leading
(convergence) factor m'/p, ' to p~" (p.') and an ad-
ditional factor (m'/p. ') o ' from summing up ex-
pressions with arbitrary powers of the logarithm
of p, .

In the correlated dynamics, the leading (energy-
dependent) contribution to d, (Q'), as Q'-~, a.s
we have seen in Sec. III comes from the g' cou-
pling [Eq. (14)]. It is important to notice the dif-
ference in d, (Q') between the situation in pure
electrodyna, mics [Eq. (23)] and in the correlated
dynamics [Eq. (14)]. The reason for this is that
the just-mentioned energy-dependent leading term
in pure electrodynamics comes from the inhomo-
geneous part of the Callan-Symanzik equation at
n In the corr.elated dynamics [Eq. (14)], the
leading energy-dependent part comes from the
homogeneous part. It may be verified (as done
above) that the inhomogeneous part for this latter
case vanishes with an additional 1/Q' factor to

the homogeneous (energy-dependent) solution.
Thus we clearly distinguish between the above two
cases. A similar analysis as above yields, for-
mally for the correlated dynamics22 (up to logs),

with C~g'." As emphasized above, the expres-
sions (27) and (30) are presumably to be taken as
truly asymptotic ones. At lower energies a com-
pletely different behavior is not ruled out. The
difference in the behavior of (27) and (30) in our
study has been discussed above. The damping of
p

' (Q') and p(Q') a.t truly asymptotic Q' for a
finite theory is, of course, expected and is not
su rp r 181ng.

V. APPLICATIONS

A. y* decay

In this subsection we discuss the decay of a
virtual photon y*(Q')- anything for Q'- ~. As
mentioned in the Introduction, this vurtual photon
may be considered to be attached to some exter-
nal charge distribution or it may be "ideally"
considered as a single photon contributing to e e
annihilation, with the former decaying in turn in-
to anything, As is well known, ' the cross section
for this latter process is given by v(e'e
-anything)-p(Q )/Q'. From Eq. (27), we see that
finite electrodynamics (at o.') predicts a very
rapid decrease at truly asymPtotic Q'. For "rela-
tively lower" energies this seems to indicate that
improved techniques are to be devised in place of
the ones used here or one must simply rely on
the lowest-order perturbation-theory result to ob-
tain the experimental result for the object of inter-
est which goes like 1/Q'. Similarly, the expres-
sion (30) in the correlated dynamics predicts a.iso
a very rapid decrease as Q'-~; however, at a
slower rate than (27). Of course these r esults
are not necessarily in contradiction with experi-
ment as they are extrapolated to the truly as-
ymptotic region. At relatively lower energies
a completely different behavior for these quan-
tities is not ruled out. Experimentally, at en-
ergies of a few orders of the mass of a hadron
p(Q2), with strong interaction, seems to increase
linearly with Q'. Similarly, when strong inter-
actions are not involved (for example e'e- p, p. ), the corresponding p~" (Q') is flat at the
above-mentioned energies. Accordingly, the ob-
ject of interest R(Q') = p (Q')/p~'1(Q') seems to
have a linear increase in Q'.~' Therefore the best
we can do is to also consider this object in this
work as it is extrapolated to the truly asymptotic
region in Q'. We may avoid referring to the di-
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mensional scale parameters in the just-mentioned
expression by choosing arbitrarily some point
q", with Q"&Q'-~, to obtain from (27) and
(30)

R(q')" '" '- R(q")

where R(Q') =p(Q')/p(') (Q'). How fundamental our
result (31) is (or the related expressions are) we
do not know; the linear increase in Q', however,
is intriguing. We shall, however, not speculate
further on this. [If in p(')(Q') we restrict the de-
cay of y * to a fermion-antifermion pair then the
equality in (31) changes to an inequality (see Sec.
V B}Ro 2(Q') ~ Q'/Q "]. We have also to bear in
mind that a single-photon contribution in the
above-mentioned object is taken into account.

(31)

Q'p(Q')- p &OIj„In)&nIj„IO), (32)

or symbolically as

p(q')= g p.(q').
(n)

The elastic form factors" are most conveniently
defined from a specific term in (33) with In) cor-
responding to a fermion-antifermion state
through '

e&u(P)IE,y„+E,e), Q /2~ Iv(P')),
where E,(Q') and E,(Q') define the so-called Dirac
form factors normalized as E,(0) = 1, E2(0) = p,

(the anomalous magnetic moment of the fermion)
in units of e and e/2m, respectively. Iu(P)) and
Iv(p')) denote fermion and antifermion states,
respectively, with Q =P +P', and j„as defined in
(32) is the electromagnetic current. In terms of
the experimentally more interesting electric and
magnetic form fa.ctors,

2

G.(q') =E,(q')+ ~.E(q'),
(34)

G (Q') =E,(q')+E.(q'),
the fermion-antifermion contribution to p(Q') in
(33) is given by" (n =e'/4a)

I 2

x IG„(q')I'+ Q. IG (Q')I' (35)

B. High-energy estimates for form factors

Our high-energy estimates for the elastic form
factors also come from the photon spectral func-
tions. The latter may be written in terms of a,

unitarity sum,

IG (Q2)I (0((yea/Q2)l&+ 8o(+)/2)/ } Q2 gg (36)

in pure finite electrodynamics and

I G (q ) I

( 0((~2/q2) 80( a)/4) q2 (37)

in the correlated dynamics. [The scale param-
eters may be taken to be different in the expres-
sions (36) and (3'I).] As mentioned before, it is
not clear how high in energy one has to go in the
estimates in (36) and (37) and they presumably are
to be taken as truly asymptotic expressions as
done earlier. It may be possible, for example,
that at lower energies the expression correspond-
ing to (27) varies slower than the one correspond-
ing to (30) [and hence (36) varies slower than
(37)]. It is very interesting that finite electro-
dynamics makes an explicit prediction of the form
in (36). Whether expressions of the sort in (36)
will be useful in settling such questions as 'Does
nature pick n or the unrenormalized u, as the
zero of the ABJ eigenvalue condition'P" in the
sense of Refs. 2 and 3 we do not know. This might
be an interesting point to consider further but we
shall not dwell upon it here. Elastic form fac-
tors" may be defined independently of which pro-
cess they participate in and a similar study to the
above may be carried out with the external photon
replaced by a pion, for example.

VI. DISCUSSION

We have first quickly reviewed some of the key
points involved in our earlier study of the stability
of the eigenvalue condition for u. We have then
studied the high-energy behavior of our corre-
lated dynamics including the Q4 term with o. as
the (infinite-order) zero of )(,(n) (see also Sec.
II). We have argued that the effective y, and P'
couplings in this Abelian gauge theory may
become small at very high energies and
finally vanish, interestingly even faster than
the presently estimated non-Abelian gauge theory
ones. A general basic Green's function has been
also studied at high energies. Our method of
summation has been clearly stated. No attempt,
however, has been made to study convergence
problems and make estimates for the allowed
magnitude of the renormalized couplings g' and

Positivity requires, for example, that p(Q ) ~p, (Q')."
Because of the 1/Q' factor multiplying IGz(Q )I in
(35) one may assume that the G„ term will dominate"
over the other one as Q' -~ in (35). Equation (35)
together with Eqs. (27} and (30) then give the inter-
esting estimates'



X —problems which are certainly beyond what may
be tackled by our presently available techniques.
Truly asymptotic statements have been made for
y* decay and for the well-known object R(Q'),
which we have seen to lIlcl ease linearly in Q (up
to logs). Truly high-energy estimates have also
been made for the magnetic form factors both in
pure (finite) electrodynamics a.nd in the correlated
dynamics. The explicit asymptotic form of the
photon spectral function has been also obtained.

Finally, we wish to make an interesting re-
mark concerning our study of this correlated dy-
namics. Very roughly and perhaps naively,
electrodynamics seems as if it reduces" the
space-time dimension of the pion-fermion "sec-
tor" of the theory from 4 to 4-e [the latter in the
language of Wilson" —see in particular Eq. (4.14)
in Ref. 32], with e —P, (o.'). Here, of course, we

do not have to (and we cannot, since n is fixed)
take the limit e —0, since s (which is not an arti-
fice) emerges naturally from the physics as quan-
tum radiative corrections and is a measure of
how fast the p~ lnteractlon, for example, damps
out at high energies. " Seemingly, electrody-
namics acts as if to "reduce" the pion-fermion
"sector" of the theory to a superrenormalizable
one.

More complicated applications of this work,
such as to deep-inelastic scattering, are under
study.
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