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Dynamics of symmetry breaking
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We show that the SU(n)-symmetry breaking is obtained from d,,kx, x „=Xx, Two derivations of
this equation are given: (a) using a bootstrap approach, and (b) minimizing an SU(n)-invariant
potential, leading to spontaneous breakdown of the symmetry. We discuss the implementation of the
second approach for the groups SU(3) and SU(4).

I. INTRODUCTION P"(X~Y) =0, (1.4)

One of the most puzzling problems in particle
physics is the introduction of an internal symmetry
group in order to immediately break that perfect
symmetry. The central Ouestion is whether the
violation of these symmetries mustbe obtained from
ad hoc postulates for every type of interaction and
every possible group or whether one can write a
basic equation (or equations) in the gxouP sPace so
that by choosing a particular group, defined on a
specific Hilbert space, we have already chosen
the symmetry breaking.

It is assumed that the Hamiltonian which de-
scribes the strong interactions of hadrons has the
form

X~X=AX . (1.2)

On the left-hand side of this equation, one has to
take the decomposition of the tensor product of
irreducible representation X(3X into a direct sum
of irreducible representations and to project out
the X representation (see Appendix). Equation
(1.2) with A. =O was derived' for the group SU(3)'
xSU(3) (+ are denoting the chirality). Moreover,
in a very elegant approach Michel and Radicati'
analyzed the relation between the solutions of this
equation and the geometry of the groups SU(3) and
SU(3)'xSU(3) .

The effects of weak and electromagnetic inter-
actions are represented by F in the Hamiltonian

H =HO+X+ p . (1.3)

Using the approach of Michel and Radicati' for the
group SU(3)'x SU(3) the following equation was
der ived'.

H =HO+X,

where H, is invariant under a group G and X trans-
forms as an irreducible representation of G. It
has been suggested by several authors that the
breaking of SU(3) symmetry of strong interaction
physics may be of a dynamical origin' ' and that
this leads to the specific equation'

II. SU(n) SYMMETRY BREAKING

A. A bootstrap approach

We assume a bootstrap type of equation

M =f(M), (2 1)

where M is a mass matrix, or any other physical
quantity of interest, transforming as the n' —1

multiplet of the group SU(n). The covariance of
Eq. (2.1) under the group SU(n) implies

f(uMu ') =uf(M)u ', (2.2)

where u is an SU(n) transformation. The most
general n x n Hermitian matrix can be described as

tl 1

M=XO 1++ X;X; (2.3)

where ~; are defined in the Appendix and ~Yo and
X; (i =1, . . . , n' —1) are real numbers. Substituting

where P projects out the X representation from
the direct product of X(3 Y.

Recently, ' it was shown that with the introduction
of an SU(4) symmetry for the known leptons
(e, v„v„, p), Eq. (1.4) predicts two massless neu-
trinos, a small ratio for m, /m„, and a Weinberg
angle sin'0 =4. We shall not discuss the effects
of the weak and electromagnetic interaction.

In this paper we suggest that for any group SU(n),
the simplest possible equation (1.2) in the group
space yields the phenomenologically assumed
breaking symmetry. In Sec. II we give two deriva-
tions of Eq. (1.2) for the group SU(n) for every
n ~ 3 (for n =2X~ X= Oin a trivial way): (a) using
a bootstrap approach, and (b) minimizing an SU(n)-
invariant potential, in which case we have a spon-
taneous breakdown of the symmetry. In Sec. III
we give two examples: the groups SU(3) and SU(4).
We end with an appendix summarizing the sym-
metrical and antisymmetrical algebras defined
on the n' —1 vector space.
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(2.3) into (2.2) we have n' equations

x, =f,(x„xj),
x, =f, (x„x,) .

Eliminating X, from these equations gives

X; —fg(X„X~, . . . , X~),

(2 4)

(2.5)

f, =A(a, P)Xg+B(a, P) d;, »X, X„,
where

fI 2

X;X;,

(2.6)

with i=1, . . . , Nand N=n' —1. f; must be a vector
in the n' —1 Euclidean space H" ' (see Appendix}.
The most general vector in R" ' is given by

so that (4;),=0, we get a, potential V(4) which is
(at least) invariant under the group H C: SU(n).
Thus, by starting with a Lagrangian Z,(P, . . . )
which is invariant under the group SU(n), we end
with a Lagrangian Z(4, . . . ) which is invariant only
under a subgroup H of SU(n). This results from
the spontaneous breakdown suggested above, re-
quiring redefinition of the scalar fields P; -4;.

The renormalizability requirement of the theory
implies that V(Q) has to be at most quartic (with
canonical dimension 4). If &f&; transforms as the
adjoint representation of SU(n), then the most gen-
eral potential V(Q) invariant under SU(n) in a re-
normalizable theory is

n2 1

p= g d. ..x, x,x,
(2.7)

Condition (2.9) gives

Blo 'g; + )(fp'gg + 3gdg q» 'gg 'g» = 0 .

(2.11)

(2.12)

and the coefficients d;,.„are defined in the Ap-
pendix. Equations (2.5) and (2.6) imply

d; ) ~ X; X) = AXq (2.8)

B. Spontaneous symmetry breaking

The spontaneous breakdown of a symmetry group
0 is displayed in the appearance of nonzero vac-
uum expectation values of a multiplet of scalar
fields p, . The vacuum expectation value of (Q;),
= q; is determined (to zeroth order) by the con-
dition

This is also the simplest possible equation in the
group space (a, polynomial equation of second
order) A. s mentioned in the Introduction, Eq. (2.8}
was derived by many authors for the group SU(3).

For g&0 Eq. (2.12) reduces to Eq. (2.8), the equa-
tion for symmetry breaking derived in the boot-
strap approach. Making the transformation (2.10)
we end with a potential

+4d ~»+X5~» 5; i n04PP»+» X(4')'+const.

(2.13)

Now we include a pseudoscalar multiplet P;
(i = 1, . . . , n' —1) transforming as the adjoint rep-
resentation of SU(n}. The SU(n)-invariant, re-
normalizable, and parity-conserving Lagrangian
Z, (P, P) of the pseudoscalar and scalar multiplets
is

BV ) =0 at P;=q; (2.9) go(P, Q) = 2B~P;B~Pt-—zMO PgP; —Gd;, »P(P, Q»

where V(P) corresponds to the classical potential
energy density function of the scalar field P. V(P)
is assumed to be invariant for the group under
consideration, SU(n). In general, the solutions

P; =q; might be invariant under some subgroup H
of SU(n). By defining new scalar fields

(2.10)

—4p(P;P;) —
2 v(P;Q;) —2svp;Bqp; —V(Q),

(2.14)

where M, ', G, p, , and v are parameters and V(Q)
is given in Eq. (2.11). Performing the transforma-
tion (2.10), we obtain a new Lagrangian (due to
the spontaneous breakdown) which in general is
not invariant under SU(n), and can be written

Z, (P, $)-Z(P, 4) = —28„P,B&P, —,'(M, '5, ,—+ 6Gd;, »q»+—vq;q,)P;P, —(Gd„»+ v5;»q, )P;P,4»

--,'q(P,.P,.)'--,'v(P, 4, )'--,'S 4,S 4, —V(4), (2.15)

where V(4) is given in Eq. (2.13). To summarize: The dynamics of symmetry breaking are Eqs. (2.8)
and (2.15).
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III. THE GROUPS SU(3) AND SU(4)

Now we discuss the implementation of Eq. (2.8) and the Lagrangian (2.15) for the groups SU(3) and SU(4).

A. The group SU(3)

Phenomenologically, the SU(3) symmetry is broken by (semi-) strong interactions preserving the U„
[the SU(2) group of isospin rotation and the U group of hypercharge] subgroup of SU(3). This can be des-
cribed by the Lagrangian'

Z=Z +2„
where 2, is invariant under SU(3) and 2, transforms as the eighth component of an SU(3) octet.

A possible solution of Eq. (2.8},

is given by

X, = 0 (i =1,2, . . . , 7), ~, = q, s0.
Substituting this solution into Eq. (2.15) we get

Z(P, C ) = ——', „P;B„P;——2(M, '5;&+ 6q,Gd„, + vq, '5„5&,)P;P& —(Gd;, „+ vq, 5;»5, ,)P, P»4» —4g(P&P;)

(3.1)

(3.2)

(3.3)

."(P-;C-,)' .'ep, -e„-e; .'(:m-,-5;+ Xn.'5;.5,.+ 6n~d. ;,)C;4, (gd;—,'+ Xn.5,'5;.)C;C,~. + -'~(C'C;)'

(3.4)

where Q, is a scalar octet (J = 0') and P, is a
pseudoscalar octet (J = 0 ).

It is interesting to point out that to first order
in q, the Lagrangian (3.4) has the same transfor-
mation properties as (3.1). Thus, neglecting the

g,
' terms, e.g. , assuming q, E«1 or v«1, one

has Gell-Mann —Okubo mass formulas for the
scalar and pseudoscalar octets.

B. The group SU(4)

following expressions:

1 1
ill =M 1+~~ E +~ E ),

2&a ''&6 "') '

2= 2 2 1
m. =M. ~+2~ E. -~s E,),

1 1
lll =M 1 —~ E ~E

(3.6}

The increasing interest in gauge theories of
leptons and hadrons together with the experimental
evidence of the existence of strangeness-conserv-
ing neutral currents and the nonexistence of
strangeness-changing neutral currents has re-
newed the interest in the SU(4) group as an ap-
proximate symmetry of hadrons. "" Moreover,
the recently discovered narrow resonances"
[r/i(3100) and g(3700)] are causing even a greater
interest in the group SU(4).

In this case, the scalar and the pseudoscalar
multiplets transform as a "15"multiplet (the
fifteenfold way). A possible solution of Eq. (2.1)
is (this solution is not unique)

3 2= 2
mg ~7f Pl+ Pl D ~ (3.7)

The SU(3) symmetry is violated'by the e, term,
while SU(4} is broken down to SU(3) by the e»
term. The parameters e, and E']5 are given in
terms of the pseudoscalar masses:

where e, —= 6q,G/I, ', e»—= 6q»G/I, ', and D and Fare
the isospin-doublet and isospin-singlet charmed
pseudoscalar particles. Under the group SU(3),
(DF) transforms as the triplet. For the 8th and
the 15th [and possibly the SU(4)-singlet] members
of this multiplet, one has to diagonalize a 2 x2
(or 3 x3) mass matrix in order to obtain the phys-
ical masses of these neutral particles. An im-
mediate sum rule which follows from Eq. (3.6) is

~, =0 (i=1, . . . , 7, 9, . . . , 14), X,=q„ X15

(3.5)

4 m~2-m„4 m~2

v3 -m'+m' WSm„' ' (3 8)

d;, » for the group SU(4) are given in Ref. 12. Sub-
stituting this solution into Lagrangian (2.15) we

get for the mass of the pseudoscalar particles the

2+ 2 — 2 2~3 ~+, —4m~ ~ 4m
3(m~'+ m„') 3 m~'

(3.9)
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For a value of m~= 2 GeV we get

(3.10)

(i) the Lie algebra

X Y=-,'-i(X1'- 1'X),

(ii) the symmetrical algebra

(AS)

suggesting that SU(3) is a better symmetry than
SU(4). X, Y=-,'Wn(XY+ YX) — tr(XY).

n
(A9)

APPENDIX: THE SYMMETRICAL AND ANTISYMMETRICAL
SU(n) ALGEBRAS ON THE n~, —1 VECTOR SPACE

The group SU(n) is the group of I&& n unitary
unimodular matrices

It is convenient to describe the vector 8"
space by the Gell-Mann matrices A.,
(i =1, 2, . . . , n'-1) satisfying

(A10)

U '= U~, detU=1. (Al)
Since X„ iA.„1,and i1 span the space of all com-
plex n&n matrices, it follows that

Every UE-SU(n) can be written in the form

(A2)

2-
A( X, = —6(( + (doI, +if(~I, )A~, (A11)

where X is an n&n Hermitian traceless matrix

X=X~, trX=O.

The set of all X form an (n' —1)-dimensional real
vector space A" '. The Euclidean scalar product
of two vectors X and Y is defined by

(X, Y) =(Y, X) =. —,'tr(XY), X, Yex"'-'.
The action of SU(n) on 8" ' is given by

X UXU (A6)

for every UHSU(n) and every XER" '. This
transformation leaves invariant the scalar product
defined in (A4). [A function f(x) of n vectors of
8" ' is invariant under SU(n) if for every
U~ SU(n) f(UX, U ', . . . , UX„U ') =-f(X„.-. . , X„).]
The scalar product (A4) is the only SU(n)-invariant
bilinear function of two vectors. For three vec-
tors X, Y, Z, there are two linearly independent
trilinear invariant s

[A(, A.;]= 2 if(, q Aq,

$A(, A., j = —6q, + 2d(~~ X~ .
n

(A12)

(A13)

X=X) A.], (A14)

where X, (i =1, . . . , n'-1) are real numbers and
transform according to the adjoint representation
of SU(n). The scalar product (A4) of two vectors
X, and Y, (i = 1, . . . , n'-1) is given by

(X, Y) =X( Y(, (A15)

and the antisymmetric and symmetric algebras
(A6) and (A9) are

(A16)

f„„and d„„.are respectively totally antisymmetric
and totally symmetric in i, j, and k.

Every n&n Hermitian matrix X(=-A" ' can be
described in the X, basis as

(X, Y;Xj = ,'Vn tr((X-Y+ YX)Z),

[X, Y, Z] = --,'i tr((XY —YX)z),

(A6) or
(A16' )

where (A6) [(A7)] is completely symmetric (anti-
symmetric) in the three vectors. Therefore,
there are only two linearly independent algebras
on A" X~s Y, = ~~ day, . X, Y, .

(A17)
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