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Crossing in 2 — 3 reactions is investigated, and it is shown that by using canonical variables we can

express crossing in a particularly simple form.

The most general five-particle amplitude involv-
ing spinless arbitrary-mass particles requires five
relativistically invariant variables plus a “sign”
invariant. That is, if the two incoming particles
are labeled 1’ and 2/, and the three outgoing par-
ticles 1, 2, and 3, then the reaction 1/+2/—=1+2
+3 is conventionally described by an amplitude
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where s;; = (p; +pj)27 tiy=(p; _pj)z’ and “sgn [ ]”
denotes the sign of the quantity in brackets. If par-
ity invariance is assumed, it is possible to elimi-
nate the dependence of F’?73 on the “sgn” variable.
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Assuming parity invariance and using center-of-
mass variables, one can write
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The expansion coefficient @2~ is the partial-
wave amplitude of the 1/+2/-1+2 +3 reaction,
with J’ the total angular momentum and M the spin
projection chosen along the direction of particle 3.
7 is the unit vector relating the direction of par-
ticle 1’ relative to the plane formed by particles
1, 2, and 3 in their c.m. frame; it is defined
through the polar angle 6 and azimuthal angle ¢:

:(8112:+M1:2-—lez)(slrzr+M32—Sm)+281:2:(tu3—Ml/2— M32)

Al/z(sl’z’:Ml'z,Mz’z))‘l (510505 8150 M%) ’

(53 Xﬁl) (53 Xﬁl’)
COSQ =75 = "7 o>
90 |p3 Xpll 'p3 Xpl'l ’

O<sgp<ar.

The notation 6,;(,,) means the angle between par-
ticles 7 and j in the frame where D, +D,=0. If the
parentheses (k1) are dropped, it is understood that
the angle is evaluated in the c.m. frame. In order
to define ¢ uniquely-—rather than just cosg--it is
necessary to specify the sign of the invariant
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The function
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is the usual triangle function.?

Now to implement crosssing from the
1/+2/~1+2+3 channel to the 1’+2’+3~1+2 chan-
nel in the most convenient manner, we choose an-
other variable in place of the s,; subenergy, name-
ly cos6,5,5), that is, the angle between particles 1
and 3 in the frame where particles 1 and 2 have
equal and opposite momenta—the so-called helicity
angle. This angle is readily expressed in terms of
relativistic invariants to be

€080,5(12) =

and the amplitude in this new variable becomes
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It is to be noted that the azimuthal angle ¢ enters in Eq. (6) only as an exponential (e’¢)~¥. In trying to find
simple crossing properties for the 2 —3 partial-wave amplitude, we find it convenient to write out e?¢—

rather than ¢-—as a relativistic invariant:
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This relativistically invariant expression for !¢
is obtained by writing all the cross products as in-
variants. For example,
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[p.]? is shorthand notation for p,p". The striking
thing about the relativistically invariant expres-
sion for e!?is that, under the interchange p, - —ps,
€'’ remains unchanged. The denominator is sym-
metric with respect to the incoming particles 1/,
2’ and outgoing particles 1,2. In the numerator
the same symmetry holds, for in the triangle func-
tion, s,7,+ and s, interchange their roles as total
energy and subenergy. Thus, if a partial-wave
analysis is made of the reaction 1/+2/+3—~1+2,
e'? will be unchanged and gives the azimuthal angle
between the planes formed by pz - p,» and pz - p,

in the 1/,2’ or 1,2 c.m. frame.

Further, the variables needed for this 3-2 am-
plitude are s, ~total energy, f,3 ~scattering angle
in the 1,2 c.m. frame and two subenergies, chosen
to be s,+,» and cosé,5(,7,7). Thus,
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But if the expression for cosf,: 4/, in Eq. (3) is

examined and compared with the form of the hel-

icity angle, Eq. (5), it is seen that under crossing,
because ¢,/ ;~s,r7 and s;3~1 3,
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r

and
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that is, the roles of scattering angle and helicity
angle are interchanged in the two channels. There-
fore,
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where F,, () means the 2~ 3 amplitude analyti-
cally continued in the variables s,:,, and s,, into
the physical domain of the 3 -2 reaction.?

If we examine the partial-wave amplitudes as-
sociated with these reactions, it is seen that J’,
the total angular momentum, is associated with
the scattering angle 6,7 5,7,7). Since the helicity
angle becomes the scattering angle in the crossed
channel, this suggests making an expansion in the
helicity angle also using Legendre functions; as
shown in Ref. 3, P, (helicity angle) is the trans-
form of the helicity angle to a variable J which
can be thought of as the spin of the 12 system. We
thus have partial-wave amplitudes G*~3(s’J’MsJ)
and @*7%(sJMs'J'), where (sJ) is the energy and
angular momentum of the 1,2 system while (s’J’)
is the energy and angular momentum of the 17,2’
system; M is the common spin projection. The
crossing relations of Eq. (10) look particularly
simple in these variables:

@ 2(sd, M, s'J') = (=1)7"7" @23 (s, M, sJ).
(11)

When coupled with time-reversal invariance, which
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FIG. 1. Simple production Feynman diagrams.

also relates 2 -3 and 3 -2 partial-wave ampli-
tudes, a general relationship involving the inter-
change of (sJ) and (s’J’) in 2 - 3 partial-wave am-
plitudes follows. It should be emphasized that the
crossing result, Eq. (11), holds for any of the
final particles; after one has decided which par-
ticle is to be crossed the choice of appropriate
variables is fixed. To illustrate how these vari-
ables may be used, we consider the simplest pro-
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duction Feynman diagrams, as seen in Fig. 1.

For simplicity, we assume that the mass of par-
ticles 1/, 2/, 1, and 2 is M, while the mass of
particle 3 is m. The arrows in Fig. 1 mean
“crossing,” while “="” means the time-reversed
diagram, the amplitude of which is the same as
the crossed diagram. The amplitude for the direct
channel diagrams of Fig. 1(a) and Fig. 1(b) is
given by
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where A, B, ..., F are functions of s’, s, and
masses given by

A= M?—3[4s's +A(s’, s,m?)] /2,
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The amplitude describing the reaction resulting
from crossing particle 3 is now obtained by letting
COSB,7 (1750 = =COSO,r5(;1r 5, COSOi5y)
—~—c080,3(15), ¢ —~¢, and analytically continuing
the functions A, B, ..., F to the region where
Vs =+s’+m. When this is done the amplitude
F¥32 () results, which, by time reversal, is

C :4sl’s AY2(st, M2 MPIN2(s, M2, M?) F{33(a, the same as the original amplitude in Eq.
(12). That is, all the functions A4, B, ..., F either
X [4s’s +A(s’, s,m?)] /2, (13) remain unchanged under crossing, or the energies
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E(s’, s)=3(s' = s +m?),
F(s',s) =§ls—,>\1/2(s’. s,m2 WY 2(s’ M2, M?),

and Vs’ = Vs +m. Notice that the functions 4, C,
and D have arguments symmetric in s’ and s, so
these arguments are not explicitly indicated.

s’ and s are interchanged. The minus signs of the
polar angles result in the opposite time-reversed
diagram of Fig. 1. Such a result is quite general,
namely, it is always possible to find pairs of
multiparticle Feynman diagrams with the property
that when one particle is crossed, the form of the
Feynman diagram in canonical variables is un-
changed. In a subsequent paper it will be shown
that such a feature holds for all multiparticle am-
plitudes, independent of a Feynman diagram set-
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ting, and leads one to consider multiparticle am-
plitudes as self-reciprocal functions.*

To conclude, we discuss whether our crossing
result is also compatible with exact three-body
unitarity (below the four-body threshold) in two
simple examples. In Ref. 3 it was shown that the
simplest three-body unitarity equations involve a
3 -~ 3 partial-wave amplitude which can be viewed
as an operator on a Hilbert space defined by

pesel =3 [ds, £ s)l*<, a=1,2.

The 2 -3 and 3 -2 partial-wave amplitudes are -
vectors in this Hilbert space obtained from the
unitarity equations; by changing variables, from
S, = (813, S13) = (815, €OSO,5(15y) ~ (s, J), the Hilbert
space becomes

Fewl = 32 [ os, sl 10, 5,0 [F <,
’ (14)

where d(s, s’) is the Jacobian of the transforma-
tion (5), in which the Dalitz boundary becomes a
rectangle. Since the 3 -3 partial-wave amplitude
completely determines the three-body unitarity
equations and since not much is known about such
partial-wave amplitudes we give two examples.
First consider the case when the 3 -3 partial-
wave amplitude is normal; then taking the differ-
ence of Eqs. (2.5¢) and (2.4f) of Ref. 3, we see
that G3~2*(s’,J', M, s,J) =@ %(s’,J’, M, s,J). Col-
lecting the equations expressing unitarity (when
the 3 -3 partial-wave amplitude is normal), cross-
ing [Eq. (11)], and time-reversal invariance then
gives
@K (st I M, s, J) =G 3(s!, J!, M, s,J) (unitarity),
(-1)7'@*2(s/, J', M, s, J)
(15)
=(-1)7@%3 (s, J,M, s’, J') (crossing),

@*2(s’, J’ , M, s, J)
=@*73(s’,J', M, s, J) (time reversal).

It can be seen that these equations imply that G*™3
and @*”2 are real and that (-1)'@*”%(s’,J’, M, s, J)
is symmetric under the interchange of variables
s,J—s’,J’. As an example of how these con-
straints work, set M =0 and consider a simple
resonance amplitude of the form
+JR
@ 3(s!, d s, )= 9, Gals’, I BBy (s),
aF=dp

(16)

where ®@,(s’,J’) is the 2 -2 partial-wave amplitude
for the reaction 1’+2’-3+R, and R is a reso-
nance of (mass+ 7 X width)=A, spindJg, and spin

projection a. ¢JE(J)=(P,, Y, o) and B)(s) is a
Breit-Wigner amplitude. The requirement of @*~3
real already forces the Breit-Wigner amplitudes
to be replaced by, for example, Gaussian ampli-
tudes. Ignoring the time-reversal constraint for
the moment, we see that crossing gives the func-
tional equation

>oax(s!, I (=1)% JF () Bx(s)
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o
which has the general solution
Gols, )= D Kag(=1)7ci® (NB(s), (18)
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where K, 5 is a symmetric matrix not depending on
any of the variables s’,J’ or s,J. Thus it is seen
that in a production amplitude resulting from the
resonant decay of outgoing particles 1 and 2,
crossing forces the incoming particles 1/ and 2/
to also resonate; the undetermined coefficients
Ky, appropriately squared, specify the probabil-
ity that the ath spin projection of the incoming
resonance will produce the Sth spin projection of
the outgoing resonance. The amplitude finally
reads

Q¥ (s, J, s, d)

BN By(5) T (-1 7 U K,
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and if time-reversal invariance is imposed, the
Breit-Wigner amplitudes must be replaced by
some appropriate real functions such as Gaus-
sians. Unfortunately, it seems difficult to trans-
late the meaning of S normal into a physical re-
striction; one restriction is that if S is normal
and the production amplitude is not zero (as is as-
sumed here) then there must be a three-body force
present.® Equation (19) states that if there is a
resonance in two outgoing particles, then the in-
coming particles must resonate with the same
mass, spin, and width. This resulf is by no means
unexpected and can be derived from other prin-
ciples. However, the example is meant to illus-
trate the general result that emerges from cross-
ing in canonical variables, namely that knowledge
of the subenergy dependence of a production am-
plitude enables one to determine the total energy
dependence of the crossed amplitude.
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As a second example consider the exactly soluble
model studied in Ref. 5. Here S, the 3 =3 partial-
wave amplitude, is given by

S=5%+ i v ®w],
iv7=1

where {v,} are a set of Nvectors in3C, X;; is a
matrix satisfying an equation given in Ref. 5, and
S% is the disconnected 3 — 3 partial-wave ampli-
tude, which is a unitary operator on ¥ in the sim-
ple model discussed in Ref. 5 and depends only on
the phase shift §,:(s’) for the 2 -2 reaction below
the three-body threshold. Finally w;=S%Ty,. Then
Ref. 5 shows that S satisfies three-body unitarity
and generates the production amplitudes @273 and
@°*7? and the inelasticity parameter . If time-
reversal invariance is added, then S is symmetric
which implies that v, =w;, so that these two re-
quirements become

i

w; =Sy, (unitarity),
w;=v¥ (time reversal),

which means that arg v, =8,.(s’), independent of i.
If we compare this with the crossing requirement,
Eq. (11) shows that these three requirements are

incompatible in this simple exactly soluble model.

This result is not surprising, since the simple
3 -3 partial-wave amplitude of Ref. 5 arises from
a single two-body force plus a superposition of
separable three-body forces. It is to be expected
that in any realistic situation, where all the par-
ticles can interact with one another, the 3 -3 par-
tial-wave amplitude is much more complicated
and allows crossing to be incorporated. Such a
possibility may occur in the Lee model (Ref. 6),
but this requires further study.

In conclusion we have shown that crossing in
2 - 3 partial-wave amplitudes takes on a particular-
ly simple form in the “correct” partial-wave vari-
ables and, when coupled with time reversal, puts
constraints on the form of allowed production am-
plitudes. By using group-theoretical arguments,
it will be shown in a subsequent paper that such
canonical variables exist for all multiparticle am-
plitudes.
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