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A detailed analysis of the problems associated with the conserved U(1) axial-vector current in

quark-gluon models is presented. It is shown that such models involve a light isoscalar pseudoscalar
boson, with a mass less than ~,;m . The existence of this boson would produce a strong off-shell
variation in the q ~ 3m matrix element, thus invalidating the usual conclusions about the rate and

energy dependence of this decay. Following Kogut and Susskind, it is proposed that the light Goldstone
boson is actually a dipole, with positive- and negative-metric parts, which cancel in matrix elements of
gluon-gauge-invariant operators but not in operators such as the U(1) current. It is shown that the
masses of the observable pseudoscalar bosons and the g decay rate are then just as they would be in a
theory without the U(1) symmetry, and in fair agreement with experiment. The application of current

algebra to theories with charmed quarks is briefly discussed.

I. INTRODUCTION

It has become popular to suppose that the ele-
mentary strongly interacting particles include
only quarks and vector gluons, with no elementary
strong-interacting spin-zero fields. For one
thing, these seem to be the only satisfactory the-
ories with asymptotic freedom. ' Also, theories
of this general type are the natural "effective field
theories" which arise in unified gauge theories of
the weak, electromagnetic, and strong interac-
tions. ' One more attraction of this picture, which
particularly concerns us here, is the way that it
deals with the order-n weak corrections to the
symmetries of the strong interactions. ' Emission
and reabsorption of an intermediate vector boson
will produce such corrections solely in the form
of a change in the bare quark mass matrix. With
a suitable redefinition of the quark fields, this
mass shift conserves parity, strangeness, charm,
etc. , and provides just the "u, tadpole" which is
needed to account for hadron mass differences4
and to evade the Sutherland suppression' of g- Sm

decay.
The one great puzzle presented by all such the-

ories has to do with the status of the g particle.
Quark-gluon models always entail a U(1) axial-
vector current &~, whose conservation is broken
only by the 6' and X quark masses. In conse-
quence, the usual arguments of current algebra
require an isoscalar pseudoscalar Goldstone bo-
son with a mass of the same order of magnitude as
the pion mass. Indeed, we shall show in Sec. II
that under plausible assumptions the mass of this
light particle L, must be less than Wm„, ' so that
it cannot be identified with the observed g par-
ticle.

In addition, it has been remarked' that the am-
plitude for q -3n is proportional to the matrix ele-

+ S +$ ~0~ v&P+n ~n (1.2)

which is conserved, and furthermore has the same
commutators with quark mass terms as did A~z.

Thus, the triangle anomaly does not immediately
provide a way out of the U(1) problem. It has been
suggested that there are additional anomalies"
which cannot be seen in perturbation theory, but
this has not been demonstrated, and one wonders
whether in this case the theory would have any

predictive power at all.
A different approach to the U(1) problem, which

ment of the divergence of the U(l) axial-vector cur-
rent between states of equal four-momenta, and
therefore still vanishes, despite the u, tadpole. As
we shall see in Sec. III, this argument is not
strictly correct, because an internal I -particle
line would give the g decay amplitude a rapid vari-
ation off the pion mass shell. ' However, this re-
sult is cold comfort indeed, for the p decay rate
is saved only at the cost of a completely fictitious
new particle.

It is possible to avoid these problems if we sup-
pose that there is no conserved U(1) axial-vector
current. One approach is to introduce elementary
strongly interacting spin-zero fields, ' but then we
must give up the advantages of the pure quark-
gluon models. Another approach is to suppose
that the conservation of the axial-vector U(1) cur-
rent is violated by some sort of anomaly. There
are of course current-gluon-gluon triangle anom-
alies of the Adler-Bell-Jackiw type, "which modi-
fy the conservation law to read

(1.1)

where I'~n' is the gauge-covariant curl of the gluon

gauge field G", and g, is a bare strong coupling
parameter. But it is well known that we can de-
fine a new axial-vector current
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does not deny the U(l) invariance of the underlying
theory, is to suppose that the light Goldstone bo-
son I appears as a pole only in matrix elements
of the second non-gauge-invariant term in (1.2);
in this case, it could be hoped that the L, particle
is trapped like quarks and gluons, and could not be
produced in collisions of ordinary particles. "
However, this proposal runs into trouble if it is
interpreted to mean that the I -particle pole does
not appear in matrix elements of (1.2) between
ordinary hadron states. The U(1) axial charge of
ordinary hadrons would then have to vanish; this
apparently leads to difficulties in the saturation
of equal-time commutation relations, "and leads
to other problems discussed in Sec. IV. A related
difficulty is that if the I pole does not appea, r in
the matrix element (nv ~&~ ~q) then it cannot help us
to escape Sutherland's theorem. "

Instead, Kogut and Susskind" have recently sug-
gested that the Goldstone boson associated with
the U(1) current is actually a dipole, consisting
of a positive-metric and a negative-metric boson,
which couple equally to physical states a.nd gauge-
invariant operators, but unequally to gauge-non-
invariant operators. The singularities due to the
Goldstone dipole would cancel in any physical ma-
trix element, but not in matrix elements of gauge-
noninvariant operators such as the U(l) axial-
vector current (1.2).

It will be shown in Sec.V that the Goldstone-
dipole hypothesis does eliminate the problems as-
sociated with the g particle. Taking into account
first-order effects of the 6' and X quark masses,
it is found that the dipole remains at zero mass,
while the g is at the Gell-Mann-Qkubo value
= (4m~'/3)' '. Also, using the formalism developed
in Sec. III, it is found that the partial width for

is 65 eV. This is smaller than the ob-
served value of 204+ 22 eV, but it is definitely not
suppressed by the factor m, '/m „' expected from
the Sutherland theorem. ' Suggestions are offered
as to the source of the remaining discrepancy.

There does not now appear to be any serious ob-
jection to the hypothesis of a, U(3) U(3) symmetry,
broken spontaneously down to nonchiral U(3), and
also broken more weakly by quark masses. It is
therefore natural to try to see if this hypothesis
gives reasonable results when applied to the
U(4)CSU(4) symmetry of theories with a cha. rmed
quark. " As shown in Sec. V, if U(4) U(4) is
spontaneously broken to SU(4), then the SU(4)
mass formulas for pseudoscalar mesons are valid
if interpreted in terms of squared masses. In
particular, a charmed pseudoscalar triplet is ex-
pected at about 2.1 GeV, with the isotopic doublet
about 50 MeV below the singlet. On the other
hand, if U(4) SU(4) is spontaneously broken to

SU(3), then there must be both scalar and pseudo-
scalar charmed triplets, with singlet-doublet
mass square splittings which are approximately
equal and opposite.

This work leaves two major questions una. n-
swered:

(1) How does the underlying gluon-gauge invari-
ance enforce the equal coupling of the positive-
and negative-metric Goldstone bosons to gauge-
invariant operators?

(2) What are the conditions under which it is
valid to treat the various quark masses as small
perturbations?

II. THE MASS PROBLEM

In this section we shall show that under what
are usually regarded as reasonable assumptions,
the mass of the lightest isoscalar pseudoscalar
particle must be less than ~m, .

We assume that the only strongly interacting
particles are quarks and vector gluons. The
quarks are either the original (P, X, A, , . . . or per-
haps the colored triplet (P~, 6'g, 6'3, Xg, S(g, Ng,
etc. , including any number of charmed quarks;
the gluons are gauge fields governed by either an
Abelian U(1) gauge group or an SU(3) gauge group
acting only on color indices.

In such a theory we may construct a set of axial-
veetor currents

(2.1)
color

where A. , are a complete set of Hermitian matrices
commuting with all generators of the strong gauge
group. It will be understood that gauge-nonin-
variant terms are added where needed to currents
with TrX, ~ 0, so that all these currents are con-
served in the absence of quark masses. [How-
ever, the tilde in Eq. (1.2) will be dropped in what
follows. ]

In the limit of vanishing quark mass, the spon-
taneous breakdown of the symmetries associated
with these currents gives rise to a, set of pseudo-
scalar Goldstone bosons. The coupling of the nth
Goldstone boson n„ to the ath axial-vector current
is characterized by a coefficient E,„, defined by

(0~A,"(x)~lt„) = (2r) '~'(2E) ~'8'~'"p "E,„. (2.2)

If a perturbation 6k produces only a small cor-
rection to the symmetries represented by a par-
ticular pair of currents A.", and 4~~, then the
pseudoscalar particles associated with these cur-
rents pick up a mass-squared matrix BfP„, given
to first order in 5Z by

Q+.n+s 3R'n~

d xd y „„7A.", xA.„y 5.II', 0
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because only the mass-zero singularities survive
the four-dimensional integration. Standard cur-
rent-algebra arguments then give"

(01
10 (0 -i

i 0

(1 0

0 —1

0) ( 0)
(2.4)

d x d y A, x, 0, A~ y, 0, 5 0

(2.3 )

In this section we will apply this familiar formal-
ism to the currents that can be constructed from
just the 6' and 3t, quark fields. As usual, we de-
fine

(2.11)

At + (—2,)'~2A", , (2.12)

with

We see that there must be at least one isoscalar
pseudoscalar with a mass of the order of the pion
mass, unless all of the coefficients E~, are much
smaller tha, n E„.

It seems unlikely that all E ~, would be much
smaller than E„because that would mean that
the symmetry associated with A&~ suffers a much
weaker spontaneous breakdown than that associ-
ated with A". Further, to the extent that SU(3) is
a good symmetry, we can use it to put a lower
bound in the denominator in Eq. (2.11). We can
write the current A~ as the sum of a unitary octet
and singlet

and also introduce the isotopic singlet

10
01 (2.5)

100
1

2=-

00-2

100
010
001

If we assume that the perturbation 5Z is an iso-
scalar bilinear in the quark fields, then it must
take the form

5Z =~sqzsq+ '' ' (2.6)

with the additional terms commuting with A,', A,',
A,', and A~. Also, with isotopic spin not spontan-
eously broken, the Goldstone bosons associated
with these four currents cannot mix with each
other. As usual, we assume that there is only one

light isovector pseudoscalar triplet, n„m„n„ in

which case

E88 -E„, Eo~ —0 . (2.14)

1
ES2= ~E, (2.iS)

(2.13}

In the limit of vanishing quark masses there must
be a massless pseudoscalar unitary octet, with an
eighth member n, having the same coupling to A",

that the pion has to A", and zero coupling to A&:

Ejy E2 E33 E 190 MeV

Es =Es =Es =0.
(2.'7)

(2.8)

and Eq. (2.11) gives'

mz -3m (2.16)

However, we can leave open for the moment the
question of how many light isoscalar pseudoscalar
particles are present, distinguishing among them
with an index o'. Equation (2.3) then yields

F,'m, ' =4m s(gh. sg), , (2.9}

Q ESa ESa K'aa1=4eS((AS)) . a. (2.10)
oa'

The lowest eigenvalue of any positive Hermitian
matrix is always less than any expectation value
of the matrix, so the light isoscalar pseudoscalar
4 with /O'N88I' mass has

2
2 ~ Zaa&F salsa'~ aa'

I, g F 2

and therefore (2.9) and (2.10) give

There may of course be any number of unitary
singlet pseudoscalar particles which also contrib-
ute to the denominator in Eq. (2.11), but that would

make m~ even smaller.

III. U(3,) U(3) THEORIES

The result of the last section certainly casts
doubt on the viability of any quark-gluon theory.
Nevertheless, we will find it useful to go on pur-
suing this problem for a while, under somewhat
more restricted assumptions, if only as a prepa-
ration for our discussion of q decay.

We will now assume that there are just three
quarks 6', fL, X, or perhaps three colored triplets.
The axial-vector currents will be defined as in
Eq. (2.1) (including gluon terms where needed to
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make the currents conserved for zero quark
mass), with the matrices A, defined to have the
usual Gell-Mann form for i=1, 2, . . . , 8, with A. p de-
fined as (3)' '1. It will also be assumed that non-
chiral U(3) [i.e., SU(3) plus baryon conservation]
is not spontaneously broken, so that the Goldstone
bosons associated with the breakdown of the chiral
symmetries form SU(3) rnultiplets. Specifically,
we assume that there is just one Goldstone boson
m, for each of the nine axial-vector currerits A],".
Since SU(3) is not supposed to be spontaneously
broken, the coefficients E,~ in (2.2) are

2
ll 22&

E 44 55

2= 2Pl pp

2= 2 = 2Pl go SK eg K
With e3 neglected, we find the familiar results"

4
~ (uo)oeo=m» +pm~ (3.8)

(Recall that i,j, etc. run from 1 to 8, while a runs
from Oto 8)

We use the results here to determine the quan-
tities e, in terms of the masses of particles with
nonvanishing isospin, i.e.,

Z;; =Z„6;, (i,j =1, 2, . . . , 8),

+~0 =+pi =0 (3.1)
, (u,),e, = —~ (m»' -m„') .4

(3 9)

+m =+0~0

Finally, it is assumed that the perturbation 5Z
which breaks U(3) &&U(3) in the Lagrangian is of
the form

a bt'a (3.2)

where u, forms a set of scalar densities which,
together with a corresponding set of pseudoscalar
v, , have the same chiral transformation proper-
ties as gA. ,g and giA. ,y, tt, respectively. That is,
if we define a set of coefficients d„,by

(3.3)

Also, to the extent that u, provides the only cor-
rection to isospin conservation, we would have
the m degenerate with the no, and4

4 3 l/22( 0)0e3 (2) (m» m»o )tadpole

, (u, ),e, = (-')'t'5m' (3.10)

with

Actually, electromagnetism makes an approxi-
mately equal contribution to both the n and K mass
splittings, ' so this can be rewritten in terms of
the total mass splittings"

then 6m = m g+ —m ~0 —~„+ + ping „02= 2 2 2 2 (3.11)

[A,'(x, t), u, (y, t)] =2i g d.„v,(x, t)5'(x -y),
(3.4)

[A,'(x, t), v, (y, t)] = -2i g d„,u, (x, t)6'(x —y) .

We can also rederive the results of the last sec-
tion. The mass matrix for states of isospin zero
has elements given by (3.5)-(3.9) as

It'„= g(4m»' -m, '),
[The d„, are totally symmetric, and have the

usual Gell-Mann values when a, 6, and c run from
1 to 8, while d„, is defined as (—,)'t'6„.] The only

u, which conserve charge, strangeness, baryon
number, and parity are u„u„and up so we set
all ~, equal to zero except e„e„and c„ the u3

term is included as a possible nonelectromagnetic
correction to isospin conservation. Our assump-
tion that SU(3) is not spontaneously broken implies
that the only u, with a nonvanishing vacuum ex-
pectation value is up.

With these assumptions, the elements of the
pseudoscalar mass matrix are given by (2.3) as

(3 5)

2
(m»' —m„'),

2 2 2 1 2K „=,(m»+-, m, ),38

where

The eigenvalues of this matrix are

3 2 4

1 +22 ~g
2= 4, 1—m„' 1+ 2, +0(m„') .2z2

(3.13)

(3.14)

(3.15)

7f 0

po ~2 3 0 0 0

(3.6)

(3.7)

The heavier particle has a mass which approaches
the Gell-Mann —Okubo value for z»1, so this par-
ticle might be identified with the observed g. How-
ever, we see again that there is a light particle
with mass less than Wm„. As shown in the last
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section, this result becomes even stronger if
more quarks are added.

IV. q DECAY

We now calculate the rate of the decay q- n'n n'
in the U(3) xU(3) picture described in the last sec-
tion. The results we obtain will also serve as a
basis for practical calculations in the improved
picture of Sec. V.

It is rather complicated to calculate the rate for
g -3v by a direct use of current algebra, because
when we let two of the pion four-momenta vanish,
either the q or the other pion must be far off its
mass shell. (This complication does not arise,
for instance, in calculations of pion-pion scatter-
ing. ") It is very much easier to carry out the
calculation using a phenomenological Lagrangian"
expressed in terms of a set of pseudoscalar fields
transforming according to a minimal nonlinear
realization of U(3)SU(3). Such a Lagra, ngian is
guaranteed to give the same results as current
algebra for any amplitude predicted uniquely by
current algebra; furthermore, if the amplitude is
insensitive to nonminimal terms in the Lagrangian,
we can be sure that it is in fact determined by

current algebra.
It will be convenient to make use of a set of 0

Goldstone boson fields n', (a = 0, . . . , 8) defined as
an "exponential parameterization'"' of the cosets
of U(N) SU(N)/U(N). That is, if the quark fields
are subjected to a general chiral transformation

(4.1)

(with U a, unitary matrix containing terms pro-
portional to y, as well as to 1) then the pseudo-
scalar fields undergo the transformation

(4.2)

with Q' defined by

xexp[iA. ,p, (P)], (4.3)

where A. ; are again the usual eight Gell-Mann ma-
trices, ho=-( 3)'~'1, the F's are the coefficients de-
fined in the last section, and the p. , are a set of
functions of the P, which need not be calculated
here.

The covariant derivatives of the Goldstone boson
fields in this formalism are defined by"

exp -iy, ' ' + „exp iy, ' ' + — =iF„y,A;D& Q;+iFo . y,A oD&go+etc. ,
r m 0

(4.4)

D, fo=a~d'o (4.5)

(4.6)Dog, =&qg, +K terms,

where "K terms" indicates terms involving the K-
meson field, which will not concern us here be-
cause we deal with graphs having no internal or
external K-meson lines. Also expanding to third
order in the fields,

with "etc." denoting additional terms proportional
to A. ; or ~„with no y, factor. It is straightforward
to calculate that

f

which transform like gA. , ( and giyP, P. That is,
we want u, (P') and v, (Q') to be the same linear com-
bination of u, (@)and v,(Q) that y, Uty, X,U and

y Uty iy A, U are of X., and iyP, . To this end,
multiply Eq. (4.3) on the right by y, times its ad-
joint. This gives

Uexp 2iy, ' '+ ' ' y, Ut

=exp 2iy, ' '+ '' y, ,

and therefore, for any matrix I',
D„0 =a~4'+ 3F 2 [4'(4'a„4') —4"a„4]

+ O(g ') + K terms (4.7)
Tr y4U ~y4I' U exp 2i y, ' ' +

0

o
—— ~Do g, D"g, —~Dq—PoD go . (4.8)

Apart from terms involving the K-meson field,
this gives

e„4 a~4 3,-[(4, a, 4) 4, (s, y)']
r

+O(p ) —29~$oa" po —~a~poa po . (4.9)

We also need to construct functions u, and v,

In the absence of symmetry breaking, the minimal
Lagrangian is

= Tr I'exp 2iy, ' ' +

(4.10)

Thus, the functions which transform like gX,g and

g,yP, g are respectively

u, = —,
' Tr A. ,exp 2iy, ' ' + ' ', (4.11)~o4'o

0

v, = —,
' Tr [iyP, exp 2iy, ' ' + ' ~ t. (4.12);.

s
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Again dropping all terms involving the K-meson
fields, we now find

(4.13)

1 (8 )~' (w2o„~p)

The quark mass term (3.2) is

CIA 63@3+ E'8Q8 +6 PQP

(4.15)

(4.16)

(4.14)

With our present normalization of the u, , the vacu-
um expectation value of u, is given by (4.15) as

(4.1'7)

Using (3.8)-(3.10) and (4.13)-(4.17), we may write
the mass term as

%$2 Fp 7I' 0

+K terms. (4.18)

The reader may wish to be reminded here that

5m =m~+ —m~p —m~+ +n„p2= 2 2 2 2

From the quadratic terms in (4.18) we may read
off the same isoscalar mass matrix as given by
Eqs. (3.12)-(3.14). Once again, we see that there
are two 0 isoscalars, one of which may be iden-
tified with the observed q particle, with4, 11+

2

where

a = —cos~+ —sinn

6 =sinn+ cosQ
z

[1 ]y/ O
m

mg

(4.20)

(4.21)

and the other an unobserved light particle t., with
mass

4
mi'=3m„'(1+2z') '+O

mQ

We are now equipped to calculate the amplitude
for g - n'n m'. The relevant Feynman diagrams
are shown in Fig. 1. To calculate diagram (a),
we need the g-w interaction in (4.18),

where again

z=—F /F„
The fields corresponding to these two particles
are linear combinations of P, and Q, :

2„,= ——5m Q, q
0

and the a' interaction in (4.9)

(4.22)

q = —Q,coen+ P,sinn,

l. = P,sinn + g,cosa, The resulting matrix element (neglecting terms
of order m„'/m„') is

with 8agm2

m„
(4.24)

In particular, the linear combination appearing in
the first two terms of (4.18) can be written

where Ep is the energy of the final neutral pion in
the rest frame of the g. To calculate diagram (b),
we need only the q-n' interaction in (4.18),

o, + ( ")p, =atl+bL,
0

(4.19) (4,25)
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The resulting matrix element is

(~) 4a&m'
3&x„' (4.26)

Together, (a) and (b) give an amplitude with the
expected spectrum shape"

4aDm'+(t) + +(v) m
y 0 (4.27)

However, there is one more diagram, Fig. 1(c).
To calculate this diagram we need the qL, m and
I,v, terms in (4.18),

2m „'ab
(4.28)

~m'~
~4's . (4.29)

b' —3m

m. '

so the total matrix element is

(4.31)

01r 0

~+

L

FIG. 1. Diagrams for the decay g x+m' vro. The
crosses indicate a us tadpole vertex, while darkened
circles indicate a strong interaction.

The qLnn interaction is suppressed by a factor
m„', but this diagram is nevertheless of the same
order of magnitude as the others, because the I,
mass is of order m, . (This is why we drop the
corresponding graph with an internal q line. ) The
resulting matrix element is

(,) 4m „'5m'a6' 1
3WZ, ' m, '- m„'

But (4.21) shows that

(4.32)

The last term arising from diagram (c) is com-
parable to the other two, and completely changes
the spectrum shape, in disagreement with the ex-
perimentally verified par tially conserved axial-
vector current (PCAC) prediction that the matrix
element should vanish when E, =m„/2.

Why should PCAC fail here'P The reason is just
that the small mass of the I particle gives the T
matrix a rapid variation with the m four-momen-
tum, and thus invalidates the smoothness assump-
tions usually invoked in applications of PCAC. In-
deed, we note that if instead of putting the n' on its
mass shell, we set the n' four-momentum equal to
zero, then Eo and the pion mass must be set equal
to zero in (4.32), so the matrix element vanishes.
Qf course, the fact that the matrix element van-
ishes when the n' four-momentum vanishes is an
accident, depending on the particular definition of
the pion field being used here. The only point of
physical significance is that the I particle pro-
duces a major change in the decay amplitude.

By choosing I', close to E„we can make m~
close to m„, so that the rate for q decay can be
made as large as we like. The real prob-lem is
not so much with g decay as with the I.particle
itself.

V. THE DIPOLE GOLDSTONE BOSON

We have seen that all the problems associated
with the p particle really boil down to the problem
of the nonexistence of the light L, particle. What
then can be done about it'?

As discussed in the Introduction, we would like
to believe that the L, particle is a trapped particle,
which cannot be produced in collisions among or-
dinary hadrons. '2 However, this idea runs into
trouble if it means that the amplitudes i -f + I
vanish for any initial and final hadron state i,f,
because then (by the, same argument that accounts
for the Goldberger-Treiman relation) the axial-
vector coupling must vanish at zero Inomentum
transfer in matrix elements (f~A~ ~i) of the unitary
singlet axial-vector current. This may be possible
for some hadrons„such as baryonic states, for
which the unitary singlet axial-vector coupling is
an unknown pa.rameter. However, the U(3) U(3)
group structure will not allow the unitary singlet
axial-vector couplings to vanish when i and f con-
sist of Goldstone bosons such as g and v, any more
than the ordinary isovector axial-vector coupling
could vanish for multipion states. Indeed, we see
from Eq. (4.18) that the amplitude for g -2n +L, is
a definite nonzero quantity, proportional to m„'.

One possible solution" to this problem is that
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the Goldstone boson field $0 associated with the
unitary singlet axial-vector current is actua, lly the
sum of two pseudoscalar fields, an ordinary posi-
tive-metric field P, and a negative-metric field

In order to accomplish this, we make in Eq.
(4.18) the replacement

5(=iyoeg

the fields P, undergo changes

(5.3)

4'0- 4'+ +4'-

and in Eq. (4.9)
—2s24'os"0'0- -2s24.s"0+ +2s„g 8"p (5.3)

It is the change of sign of the p term in (5.2) that
gives this field a negative metric.

The probabilities for producing a Q, or a Q

particle in any reaction mill cancel, just as for the
longitudinal and timelike photons in the Gupta-
Bleuler formulation of quantum electrodynamics.
However, the P, do show up as poles in certain
operators, such as the unitary singlet axial-vector
current &20. In order to give p, + Q the correct
transformation properties for a U(l) Goldstone
boson field, me suppose that under the chiral trans-

formationn =9@',=SR' =3K'00,

+ - i+ ~ — 0

(5."I)

(5.8)

To find the particle masses, me do not diagonalize
the full matrix%'», rather, we must look for
poles in the propagator

S (q)= ———3g —+ ~
'9 '0

g
'g

Q' tg Q'

E„, alone. However, for the present this is only
wishf ul thinking.

Let us now see what the introduction of a dipole
Goldstone boson does to predictions of pseudo-
scala, r masses. We suppose that there are other
spontaneously broken chiral symmetries [such as
SU(3) SSU(3)] besides chiral U(1), so in the ab-
sence of any quark ma, ss perturbation there will
be a set of massless pseudosca. lar particles with
fields P,. as well as the dipole Goldstone bosons
with fields P, . When we turn on the quark mass
perturbation, the P, acquire a mass matrix SR2,~,
which is the same as me would have in the absence
of the chiral U(1) symmetry. In addition, there
will be a. 3 &&3 Q, mass matrix and a P.,—P, mass
mixing matrix. Since the symmetry-breaking
terms in the effective Lagrangian involve only

Q, + Q, these take the form

with constants E, such that

Z, +Z =E,~O. (5.5)

=q[q'+sg'q] ',
mhere g is the metric matrix

(5.9)

The unitary singlet axial-vector current will then
contain terms linear in the P fields

[~;],=2m, s2y, 2z so—y

= —(z, z)s2(y, +-y )+ —z,s2(y, y ).
(5.6)

g„~=0 for A. ~B .
It is stra, ightforward to calculate that

a,', (q) =(q2+IK2) ';, ,

&l. (q) = &2;(q)

(5.10)

(5.11)

The first term again involves only the combination
P, +P, and therefore has a, zero matrix element
between hadronic states, the 1/q' propagator of

canceling the 1/q' propagator of Q, . However,
the second term involves Q, —P, and therefore
has nonvanishing hadronic matrix elements, as
required if the chiral U(l) symmetry is to be
spontaneously broken.

Qf course, me would really like to show that the
underlying strong gauge invariance forces the can-
cellation of Q, poles in matrix elements of gauge-
invariant operators, mhile allowing the presence
of these poles in non-gauge-invariant operators
such as 40. This may perhaps be explained in
terms of the rapid growth of gluon propagators at
zero four-momentum, producing poles in matrix
elements of operators such as e~" ~G.,j'~&, but
not in matrix elements of operators formed from

a'„(q)=b, '
(q)

001 K'
q2 (q2)2

+ 22 QK (PR 20(q +%)

~,' (q) =~', (q)

(5.13)

/ 2%2 ~ 00 ~ '0 2 (q +3tI )

(5.14)

where SR' is the submatrix with elements %';,
We see that the dipole poles at q'=0 remain at zero
mass even after the perturbation is turned on. In
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addition, the propagator has poles at the eigen-
values m of the submatrix SR', with

(5.15)

where Q; is the normalized eigenvector of %' with
eigenvalue m'

Also, the theoretical calculation might be im-
proved, either by taking into account logarithmic
correction terms' in the estimate of e, from
5m2, or by including the leading edge of the
e (700 MeV) enhancement of v-v scattering, or
both.

gg ])Q ~ =m Q ~ . QgQg —12 2 (5.16)
VI. U(4) (IU(4) THEORIES

Q+= -Q = —
2 ~ It )OQ~m'; (5.17)

m „'=lI'„=—,'(4m„' —m „') (5.18)

in reasonably good agreement with experiment.
(Also, the fact that tt, = -u eliminates any con-
tribution from graphs in which a pseudoscalar
particle is created by a /++ Q field and destroyed
by a P; field. )

The g decay problem is also now easily dealt
with. Because of the cancellation of the Q, and

poles, there are now no diagrams of the form
1(c). Also, the q pole now appears solely in the

P, field, so the constant a in Eq. (4.19) is unity.
Thus, the matrix element for the decay q - w'm n'

in U(3) U(3) theories is now given by just the
first two terms in Eq. (4.32) with a=1:

45m' 2E,T(q-w'n v')=, 1—E„' m„
(5.19)

which is just the same answer as would be given
by an SU(3) II SU(3) theory with a u, tadpole
This result definitely does not suffer from the dif-
ficulty pointed out by Sutherland': The matrix
element does not vanish like m, ' for m, -0. On
the other hand, the rate predicted by (5.19) is

(5.20)

For several years the actual value has been
quoted24 as 630+140 eV, in which case the the-
oretical result would be considerably too small, al-
though nowhere near so small as expected if
Sutherland's theorem applied here. Recently, a
remeasurement of the Primakoff effect has led to
a new value for the g-2y width, "with a conse-
quent reduction in the value of the q- m'm n width
to 204+ 22 eV. It may not be utterly rash to hope
for further reductions in the observed width,
especially in view of the great difficulty in mea-
suring and interpreting the Primakoff effect.

We see that the masses of the Q; particles are un-
affected by any mixing between them and the Q, .
In particular, Eq. (3.12) shows that the q mass
should be given in U(3) ISU(3) theories by the quad-
ratic Gell-Mann-Okubo formula

We have not found any insuperable objection to
the hypothesis that chiral U(3)lgt U(3) is spontan-
eously broken down to nonchira, l SU(3) and baryon
conservation, with SU(3) broken only by a "small"
quark mass perturbation. It is therefore natural,
in theories with a fourth charmed quark, "to con-
sider the possibility that chiral U(4) SU(4) is a
good approximate symmetry of the Lagrangian,
broken in the Lagrangian only by small quark
masses.

This of course runs counter to the general ex-
pectation that charmed hadrons should be much
heavier than ordinary hadrons, but we do not
really understand what conditions on observable
masses are required for symmetry -breaking
terms in the Lagrangian to be considered small.
For instance, from the point of view of nuclear
physics, the pion mass might be considered to be
so much larger than nuclear energy level differ-
ences that it would be hopeless to derive soft-
pion theorems, and this opinion would be sup-
ported by the general failure of current-algebra
predictions for pion-nucleus scattering lengths.
Yet there is a large domain of high-energy ex-
periments in which the quark mass terms which
break SU(2)&&SU(2) can be considered very small.
It is therefore at least worth trying to see whether
there is any sense in which the charmed quark
mass is also small. "

In applying this hypothesis, we must first de-
cide what symmetry wouM be preserved by the
spontaneous symmetry breakdown in the absence
of quark masses. Tge two most attractive pos-
sibilities are nonchiral SU(3) or SU(4), plus baryon
conservation. Let us consider each of these in
turn. (Isospin breaking will be ignored in what
follows. )

(a) &&(3). If U(4) U(4) is spontaneously broken
down to SU(3), the Goldstone bosons will form
SU(3) multiplets: specifically, a pseudoscalar
8, 3, 3, and 1, and a scalar 3 and 3. Each of
these couples to the corresponding broken U(4)
IIU(4) current with its own E parameter, so there
will be no relations connecting the magnitudes of
the Goldstone boson masses in different multi-
plets. We can, however, find relations between
the mass ratios in different multiplets. Specifi-
cally, we find that



STEVEN %EINBE HCT

2
mK

2Plr
2

mD
2

m'+rn
2m

m +m
m" +m

(6.2)

where A. is a common constant, depending on the
common coupling E» of the 15 Goldstone bosons to
the associated axial-vector currents and the com-
mon vacuum expectation value Z of bilinear pro-
ducts of quark fields:

2 II I
mg m sl

2 IIm f m m
(6.8)

where D and I are respectively the isotopic doub-
let and singlet part of the 0 charmed triplet, d
a.nd f are the corresponding 0 particles, a, nd m,
m, m', and m" are the masses of the 6',
and 6" quarks. " From these formulas we may
obtain one relation free of quark mass ratios: This
relation is a bit complicated, but in the limit
m, «mK it becomes

2 2ma mg 22+ 2=
m j' mf

(6.4)

That is, the mass splitting is equal and opposite
in the scalar and pseudoscalar triplets.

(5) SU(4), If U(4)SU(4) is spontaneously broken
down to SU(4), with SU(4) broken only by small
quark mass perturbations, then the Goldstone bo-
sons will form SU(4) multiplets, specifically, a
pseudoscalar 15 and 1. If the singlet is interpreted
as a Goldstone dipole, then the mass relations for
the remaining 15 are the same as if the original
symmetry were SU(4) SSU(4) (plus baryon conser-
vation) rather than U(4) S U(4). These relations
can be summarized in the statement that the SU(4)
extensions of the Gell-Mann —Okubo formula are
obeyed by the squares of the pseudoscalar boson
masses. Of course, such mass relations can be
derived from broken SU(4) alone, "but this deriva-
tion does not reveal whether these relations are
obeyed by the masses themselves or their squares;
indeed, the naive quark model suggests that the
mass formulas should be satisfied by the masses
themselves, not their squares.

For the pseudoscalar particles with nonvanishing
isospin, strangeness, or charm, the methods of
Sec. II give

4 =4Z/E„' .
There are no O' Goldstone bosons here, but now
we get a single relation between these four
masses,

2 2= 2 2m j' mg) mK (6.9)

8 +(2m +m '+ Bm ") (6.10)

However, there are two physical particles which
provide candidates for this Goldstone boson: the
observed q'(958) and the expected "parachar-
monium" (P-Ch) at about 8 GeV." In general, the
fifteenth Goldstone boson might be any linear
combination of p

' and paracharmonium, and m»
would be somewhere in between the masses of g'
and paracharmonium. However, if parachar-
monium is pure 6"6'' and the q' is the orthogonal
quark-model state, then"

2pl, l5 q m'g ' + g 'mp-ch (6.11)

We can use this in conjunction with (6.5)-(6.8) and
(6.10) to obtain a formula for m~',

2 ~ 2
D ~ P-Cjl 6 Tj' g mK g mW

(6.12)

For a paracharmonium mass of 3 GeV, this gives
m~ = 2.15 GeV, and (6.9) then gives m~ = 2.20 GeV.

This relation may be of some practical impor-
tance, because if m~ is much larger than mK then
m» will be very close to rn~; for instance, if
m~=2 GeV then the D-I' mass splitting is 56 MeV.

Aside from the singlet Goldstone dipole, there
is also one GoMstone boson with zero isospin,
strangeness, and charm. The methods of Sec. III
g' 't

m„' =2A.m,

m»' =&(m+m '},
mD' =&(m +m "),
m~' =&(m'+m "},

(6.5)

(6.6)

(6.7)
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