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Chiral confinement: An exact solution of the massive Thirring model

Shau-Jin Chang, * S. D. Ellis, and B. W. Lee
Fermi National Accelerator Laboratory, Batavia, Illinois 60510$

(Received 12 March 1975)

We investigate thepossibility of fermion confinement in a manifestly chiral-invariant theory. In
particular we study the nonlinear o. model in one time and one space dimension, and demonstrate that
it is equivalent to the massive Thirring model plus a free massless scalar field. We find an exact,
time-independent, classical solution to the massive Thirring model. This solution is characterized by a
fermion confined in a self-generated potential. In the cr-model analog of this solution, the chiral phase
changes rapidly in the region of the confined fermion, and has two different constant limits on either
side of this region. We also consider the case in which the mass of the pseudoscalar meson is small
but finite, and find an approximate solution which displays both partial conservation of axial-vector
current and fermion confinement.

I. INTRODUCTION

In the quark confinement schemes recently pro-
posed and studied at MIT and SLAC, ' the origin
of the partial conservation of axial-vector current
(PCAC) and the unique role of pions as Goldstone
bosons are obscure. ' It seems in fact apparent
that these models are incompatible with the notion
of spontaneously broken chiral symmetry as the
foundation of current algebra and the related lore.

This paper reports on our initial results in
studying the possibility of fermion confinement in
a theory which is manifestly chiral-symmetric.
To simplify the mathematics involved in such a
complex physical problem, we chose to study first
a truncated o model' in one time, one space di-
mension. This model turns out to be equivalent
to the massive Thirring model. ' To our surprise,
an exact, static solution corresponding to a con-
fined fermion is obtainable by elementary means
in the classical version of this model. We give
here a brief description of these results.

The chiral-symmetric model we consider is a,

pseudoscalar, isoscalar meson 8 coupled gradient-
ly to a massive fermion g. The equations of mo-
tion of this model are

8's =0,
2

~+ 2— (xy"x)y„, x=o.

The nature of the classical static solution may
best be described in terms of the chiral model
variables 8 and t). The variable 8 approaches two
different constants as x-+ ~ and -~; the transi-
tion from one value to the other occurs rapidly in
a region of spatial extent of order 1/m. Thus,

d 1
dx 2f

is substantial only in this region. This in turn
creates a potential in which the fermion g be-
comes trapped, so that the wave function g also
has a range of order 1jm. The total energy of the
system is finite and less than m, while the energy
of the trapped fermion goes to zero as

We have also considered the case in which the
mass of the pseudoscalar meson is finite, so that
we have the PCAC relation

8"A, =fp 8, A, = 2gy,y,g+fs, 8.

„6-— „=0,

This model, with isospin, was studied by Norton
and Watson, Feynman, ' Gell-Mann and Levy, '
in connection with PCAC. In two dimensions, it
turns out to be equivalent to the massive Thirring
model (with the fermion field x) and a free mass-
less scalar field s:

While the model is no longer soluble exactly, and
is not equivalent to the massive Thirring model
plus a scalar field, we have established that the
nature of the fermion confinement is not altered
for small p, . In particular, we are able to give
an exact expression for the change in the total
energy valid to order p, .

The rest of this paper is organized as follows.
In Sec. II we discuss the connection between the
o model, pseudoscalar gradient coupling model,
and massive Thirring model. Section III gives
the exact classical static solution of the massive
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Thirring model, which is interpreted in terms of
the chiral models in Sec. IV. Section V discusses
the case of a small, but finite pseudoscalar mass.
In Sec. VI we give a list of problems and avenues
for future research. The appendixes deal with
issues outside the central theme of this paper.
Appendix A includes a discussion of the connection
between the o model and the massive Thirring
model in the quantum-mechanical limit, whereas
Appendix B gives a more precise description of
what we mean by the classical limit in a theory
with fermions plus a discussion of the extension
of the model to the several fermion sector. A
brief 1 evlew of the appllcatlon of varlatlonal tech-
niques to the present problem is given in Appendix
C.

&'. = 0(iP' m—e'"'i')0+ 2(8„8)' (5')

The Lagrangian (5) is invariant under the trans-
formation

from which follows the conservation of the axial-
vector current:

8 "A„=O, A„= —,'T()y,y„(j)—f8„8. (7)

Equation (7) is just the equation of motion for the
field 0. The fermion equation of motion is given
by

readily understood if we write the above Lagran-
gian in terms of the )|) field:

II. o MODEL AND ITS RELATION To THE MASSIVE
THIRRING MODEL

As a starting point we consider the Lagrangian
of the chirally symmetric o model,

——(o-"+)T' —f')'

In the following we shall consider only one time,
one space dimension. With this restriction, it
turns out that Eq. (5) is equivalent to the massive
Thirring model. ' To see this connection, we
introduce a new scalar field s(x) by

A'= 8'y.y" 0' f8 "e-

where the isospin dependence has been neglected
for simplicity, and unless otherwise specified,
we will confine our analysis to the classical theo-
ry. The Lagrangian is invariant under the chiral
transformation:

This "curl" representation of A." is always pos-
sible because the axial-vector current is con-
served. Since the curl of the axial-vector current
in this model is simply related to the divergence
of the conserved vector current T))'y" (j)', we have

6 0' cosA + & sino!,

m- -0 sino. +rr cosa,

g- exp(iny, /2)(j),

o. Constant .

(2)
i.e., the field s describes a free massless scalar
field. We may substitute Eq. (9) for 8„8 in Eq. (8)
and obtain, using the identity (y,y")(y,y&)
= -(y")(y, ),

It is useful to redefine the fields as a+in= pe' ~~

and (j)' =exp(iy, 6/2f))j), so that the Lagrangian is
now

('. ("( (( iv —=(—y yy-(&„&))("2f '

+-'*(&„o)'+ l(~) (&,&)' —
4

(p* y')'. -

iP' —m+ 4- 2(g'y„(j)')y" (j" + —,Y" (8„s)(j)'=0.

The last term (8~s)y" (j)' can be eliminated by the
transformation (j)' - X = exp[-is(x)/2f']g', and we
are left with the equation of motion of the massive
Thirring model:

The equation of motion for the field p(x) is (iK-m+~'xy"xy„)x =o, (12)

(l', = (P (i)(—m ——y,y" (s„6)) ( ' + -', (y, e)',

where m =gf. The nomenclature "nonlinear" is

(5)

In the limit H- ~, p' =f', and we obtain formally
the "nonlinear" 0 model'

The free scalar field s and the Thirring fermion
X are completely decoupled. That is, the chiral
model of Eq. (5) is equivalent to the Thirring
model and a free boson term. The equivalence
of the two theories in the quantized form is elabo-
rated in Appendix A.

Since we focus on confined states of a fermion
in the following, we choose s(x) = 0 and (j)' =X.
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III. EXACT CLASSICAL SOLUTION OF THE MASSIVE
THIRRING MODEL

—=E —m cos2$+X zi
dlt 2 2

dx
(14')

Vfe shall now present an exact, time independent
solution of Eq. (12) in the fermion number one
sector in the classical limit (See Appendix 8 for
a discussion of the classical limit), which is, to
our knowledge, the only known exact solution of
the massive Thirring model. The solution we will
present corresponds to a localized (confined)
fermion field.

The Lagrangian which corresponds to Eq. (12) is

&=x(zP'-m)x+
2 (xr„x),

with the Hamiltonian density

dn—= -mzi sin2$ .
dx

Eliminating the variable x, one finds

d 1 2 X 4 m.

dp 2 4 2
—-Ezi + —z) ——1) cos2$ =0,

(14")

from which it follows, for a localized solution
[z)(+~) =0], that

E+ —z) -m cos2$ =0.
2

Substituting Eq. (16) into Eq. (14') and integrating,
one finds

A.
&=X(zr'&'+m)X —

2
(Xr„X)'

Assuming the existence of a static solution, the
two component spinor X(x, t) will be written as
X(x)exp(-iEt), and with

x(~ )=o, xr'x=o

y(x) = tan '(~P tanhxx),

2 (m —E)/x 1
cosh'vx 1+P tanh'~x'

where

P = and zz =(m' E')'"-

(17a)

(17b)

( zy'r' S' +mr' &'X'X)X-=EX. (13)

[recall that S„(Xy"X)=0], the equation of motion
may be written as'

(note that E &m corresponds to a confined solu-
tion). The normalization condition appropriate
to the fermion number = 1 sector (we consider the
question of more fermions in Appendix 8)

The following explicit representation of the 2 ~2
y matrices will be used:

(73, sg =vs, and p =p p 02

With this choice of y's, it is consistent to describe
a bound state X, satisfying Xy'X =0, as a real
spinor, i.e.,

u
u, v real.

vf

In this representation we have

leads to the single eigenvalue

E = m cos —,P = tan' —, zz =m sin —.2' 4' 2' (18)

Note that, in order to restrict ourselves to only
the positive energy fermion states, we must re-
quire A, ~ m. This constraint is a standard result
in the usual Thirring model.

The various possible densities XX, Xy'X =X X,
and zXy'X (recall Xy'X =0) are

and

X X=u +v', 4m s in'(A, '/4)( 1 —tan'(A. '/4) tanh2 ex)
X' cosh' ax(1 + tan'(X'/4) tanh' ]ex)'xx = YP cos2

[m —X'(u'+ v') ju+ —' =Eu,
dx

——"+[-m -Z'(u'+v')]v=Ev.
dx

(14)

To simplify these coupled equations, we transform
u, v into z), P through

u=1) cosP,
v =1)sing .

Equations (14) then reduce to

4m sin'(x'/4)
X' cosh'zzx(1+ t n'a( /X4) tanh'xx)' '

(19a)

In order to confirm that this exact, classical
solution is consistent with our initial assumption
that it describes a "bound" state, we must ex-
hibit the expectation value of the classical Ham-

Bm sin'(X'/4) tan(X'/4) tanhxx
Xzy 5X = l 2s(bn= X' cosh'llx(l+ tan'(X'/4) tanh'ax)' '

(19c)
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iltonian,

(W= f «x(~) =~+— «h'x)'.
2

(20)

With the results given in Eq. (19) it is straight-
forward to evaluate (H) and find

(H) =, sinX'/2.2m 2 (21)

Hence for X'- 0, (H)- m (i.e. , a free, massive
fermion), but for finite values of X', (H) & m

as required for a bound state. The existence of
this exact, time independent classical solution is,
in itself, a new and interesting result deserving
further study within the context of the massive
Thirring model. ' However, in this paper we
prefer to return to the original v model and dis-
cuss the implications of this solution in that frame-
work.

also be expressed in terms of the initial fermion
fields, (t)=e '&5 '~P'=e '~5 ' X. Owing to the
simple relationship between 8 and P, these den-
sities are almost unchanged in going from one
fermion basis to the other and we shall not repeat
the formulas here. One needs to know only that
0 0=X X, 4(t =XX, »d 4r,4= —XW,X, with»e-
placed by 1/2f and m by gf.

We illustrate the behavior of the chiral phase
8/f and the various fermion densities in Fig. 1 for
the values 1/4f' = 3.0, 1.5, and 0.5 and m = 1.
Here! the abscissa x is measured in units of 1jm.
Note that the primary effect of varying 1/f' is to
change the "size" of the confinement region in
the spatial variable x. The quantities g g and (C)g

are very similar, with (tJr only slightly more
narrow.

In the o -model language the cia,ssieal energy for
this solution is given by

IV. CONFINEMENT SOLUTION IN THE 0 MODEL

de 1,~, 1—=-—(0') 0'=- —x x.
Cx 2f 2f

(22)

Integrating and choosing 8(x) to be antisymmetric
about x=0, we find (X = I/2f)

It is straightforward to translate the fermion
solution presented in the previous section into
the language of the "nonlinear" o model of Eq. (5).
Since our centered topic is the existence of min-
imum energy, localized states, we shall, as men-
tioned earlier, set the free scalar field, s(x), to
zero for all x. In this case ('(x) =X(x) and we can
solve for the chiral phase, 8(x), from Eq. (9).
This simplifies to give

3 1.=8gf sin --2-.
8

Also note that the fraction of the total energy
residing in the chiral field [i.e., the second term
in Eq. (24)] is

E e (H) —E tan(1/8f ') —1/Bf '
(H) (H) tan(1/8f')

which varies from 0 to 1 as 1/4f' varies from 0 to
m.

Returning briefly to the limit„H- , taken fol-
lowing Eq. (4), we see that, for (t) g ~gf', the
specific limit discussed in this paper is

+»g (26)
8= -4ftan '[tan(1/16f') tanhzx], (23)

where s is a free field. Since we ha, ve let s=0,
it follows that L9 is not an independent variable
a,nd is given in terms of the fermion variables.
The fact that the chiral model (5) describes an
interacting fermion field and a free boson field
persists in the quantized case, as discussed in
Appendix A.

Prom Eq. (23) we see that (8/f)(+~) =+1/4f'
and the full shift in the chiral phase, b, (8/f)
=1/2f' (due to a single fermion) is bounded from
above by 27( since 1/2f' =2X' ~ 2v (the require-
ment that E & 0).

The various fermion densities [Eq. (19)] can

where ~=gf sin(1/8f'). Note that 8=-4' as seen
from Eq. (17a). According to Eq. (9),

« that
I p f I «f. —

To summarize, the exact solution to the nonlin-
ear o model presented in this section describes
the classical, static confinement of a single
fermion within a region where the chiral phase
is varying. Said another way, the chiral phase
variation induced by the presence of the fermion
in turn produces an axial-vector potential in which
the fermion is bound ((H)& m). Furthermore, the
chiral phase change is guaranteed to be just such
as to ensure the local conservation of the axial-
vector current. In the next section we discuss the
effects of breaking this chiral symmetry.

V. BREAKING CHIRAL SYMMETRY

Since the observed situation in the physical
world does not correspond to exact ehiral sym-
metry, it is instructive to consider the results



SHAU- JIN CHANG, S. D. ELLIS, AND B. W. LE E
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FIG. 1. Typical behavior of o.-model confinement solution. Shown are all curves for 1/4f =3.0, ]..5, and 0.5 with
m =1. (a) Chiral phase 0/f ~ (b) g~g (c) pg (d) i gp5|II).

of breaking chiral symmetry in the present frame-
work. The most straightforward program for
accomplishing this 1s simply to include R chlrRl
breaking ("pion" mass) term in the "nonlinear"
cr model given in (5),

z = P (if —m — r,y "a„e)ii'+ -',(a.s)'—
5

function is only slightly modified in the confine-
ment region. We can still solve for this wave
function, and compute the energy of the confine-
ment state approximately.

The fermion field equation obtained from (27) is
not affected by the pion mass term, Rnd remains
RS

1 2 38 (27)
~

~

1
iP —m ——y,y"B„e $'=0.5 (29')

Conservation of the axial-vector current is now

replaced by the PCAC condition,

(28)

Using the representation of the y matrices intro-
duced in Sec. III, we find for

with

A, = —,|Ii'y,y,g' —fs, 8 (29)

cosQ
q, 4 real

sing
(30)

as before. In the presence of the mass term, we
are not able to separate out a free scalar field by
a simple transformation. This indicates that the
present theory is no longer equivalent to a mas-
sive Thirring model with a factorizable pion field,
and is probably not exactly soluble. However,
in the limit of small p,

' (i.e., p,
' «a'), which is

the physically interesting limit, the fermion wave

that

dQ 1 d6—=E —m cos2$ ———,
dx 2f dx'

—= -mg sin2$,
dx

and

(31)

(32)
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(33)

Equations (31) and (32) are essentially the same
as Eqs. (14') and (14"), and Eq. (33) implies that
I9 always damps to zero exponentially outside the
conf inc ment region.

By treating the right-hand side of Eq. (33) as a
source, we can solve for 6I using the Green's
function,

e(x)= f dx'G(x —x') —,(q(x')'),
2f dx' (34)

with

G(x- x') = e-
2p.

(35)

—+ p,
' G(x- x') =5(x —x').

dx' (38)

= ——q(x)'+ —tu' dx'G(x —x')q(x')'.
2f 2f

(37)

Differentiating 6I with respect to x, and integrating
by parts, we have

d8 1, d'
dx' G(x —x') )7(x')'

dx 2f, dx'

(34). For (u «K, we have

d
S(~) = — dx' —G(x- x') 7)(x')'

2f dx

1 r - Ix-x&dx'e(x —x')e P '
—

lq(x )2

dx'e(x- x')q(x')'

E=—m cos, + — sin (43a)

= 8(x) ) „,e " I ", (42)

where we have approximated e "~" " I by e "~",
and 8(x)~ „,is the chiral phase obtained in Eq.
(23), Sec. IV. Equation (42) reveals that the
chiral phase damps exponentially to zero for
i),

~ x~ »1, and varies rapidly, with scale 1/z«I/p. ,
in the region of the confined fermion. A typical
chiral phase variation is shown in Fig. 2, where
the values m = 1, I/4f' = 3, and p =0.14 were used.

If one uses a chiral symmetry breaking term of
the more conventional form, 2, = m = cfcos(6/f),
the results are substantially the same as those
above for small c(y.'-c/f). The major difference
appears in the form of the corrections to the en-
ergies, which in this case are

For small g and x in the confinement region, we
can replace G in (37) by a constant, 1/2g, and

obtain

and 1c'"1
(H) —= 8f m + —— sin (43b)

d0 1 2 pt I I 2 1——= ——7i'+ — dx'q(x') = ——)I'+ —,
dx 2f 4f 2f 4f '

VI. CONCLUDING COMMENTS

(38)

which is correct to order g/a and where we have
used the normalization condition for g. Substitu-
ting (38) into (31), we have

We found that the chiral-symmetric model (5)
is equivalent to the massive Thirring model plus

dp 1
Z — ~, —m cos2(t)+ 4~, )7 (39) —= 3.0 fL =.I 4I

4f2

Now, Eqs. (32) and (39) are identical to (14') and

(14"), with the energy eigenvalue E replaced by
E —p/8f' (and i(. by I/2f ). In particular, the
fermion wave function g', and equivalently q, (I),

are not affected at all to this order of p. . The
fermion energy E and the total classical energy
(H) are modified slightly to

8/f 0

1

8f gf
(40)

-6 -5 -4 -3 -2 -I 0 I 2 3 4 5 6
X

(H)=8/2mstn, + ",.1
(41)

Knowing g, we can compute the chiral phase from

FIG. 2. Typical behavior of chiral phase when a small
mass is included for the "pion" field. Shown is the case
m =1, 1/4f =3.0, p, =0.14.
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a decoupled massless scalar field. As shown in

Appendix A, this is true even in quantum theory.
The spontaneously broken chiral model does con-
tain a Goldstone boson, but it is a free field (as
can be checked in perturbation theory); the in-
frared problem associated with massless bosons
in one space dimension' is thereby avoided.

In a broken chiral model, the massive pseudo-
scalar field is no longer decoupled from the fermi-
on (this has also been verified in perturbation
theory), but the confinement of the fermion field
persists.

Before we can establish contact with reality,
however, the following questions must be an-
swered:

1. Does the same kind of confinement occur in
three spatial dimensions with a nontrivial internal
symmetry'P Does it confine the right kind and
number of quarks7 Realistic chiral confinement
models we can envisage are in some respects
very similar to the SLAC bag model, except for
pions and except with respect to PCAC.

2. How does our classical solution emerge
in a quantized versions The recent papers of
Goldstone and Jackiw, "and Dashen, Hasslacher,
and Neveu" are important in answering this gen-
eral question, but we have not pursued this prob-
lem in this paper. Similarly, we have not fully
explored the implications for our solution of
Coleman's work on the connection between the
(quantized) massive Thirring and sine-Gordon
models. '

3. Are there solutions similar to the present
one but in different fermion number sectors (other
than the trivial extension discussed in Appendix
p)?

Note added in Proof. A. Zee pointed out to us
that the massive Thirring model is formally
equivalent to the ([i)ii)2 interaction theory, namely,

& =4(iIt-~)i[- kg(4~) 4}' (44a)

= p (i ft m)(+g—(pi[)'+ )mass counterterms .

(44b)

This is due to a special property of the one-di-
mensional theory which states that there is only
one independent four- fermion local interaction.
To demonstrate that the two Lagrange functions
(44a} and (44b) are indeed equivalent, one can
show explicitly that both Lagrange functions give

rise to the same Feynman rules. We have shown
in this paper that for g=-X' &0 the massive
Thirring model (44a) contains a confined (and, as
is understood, bounded) one-fermion solution.
For g &0 the original Thirring Lagrange function
(44a) no longer leads to any confined solution. On
the other hand, the Lagrange function (44b) does
not contain any confined solution for g &0, but it
has a confined solution for g&0. Viewing the
complementary nature of these two descriptions,
we conjecture that the true quantum-mechanical
one-fermion state of the massive Thirring model
is described alternatively by these two confined
solutions in their xespective regions of validity,
i.e., for g&0 the fermion is described approx-
imately by the confinement solution associated
with the Lagrange function (44b), and for g &0
it is represented by the confinement state as-
sociated with the Lagrange function (44a). To test
our conjecture, we have computed the one-
fermion-loop quantum corrections to these con-
finement states and found that, at small ~q~, the
corrections are always small. Thus, in the weak
coupling limit, the classical confinement solution
studied in this paper should provide a good de-
scription for the one-fermion state even after
the one-loop quantum correction is taken into
account. We should present the details of these
calculations in a separate publication. The auth-
ors wish to thank A. Zee for discussions and for
informing us of his results.
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APPENDIX A

To show the equivalence of the quantized La-
grangian (5) and the massive Thirring model, we
proceed from the path-integral formula for the
generating functional for Green's functions of the
former,

2„((,( )=f[d(„d8d d( ]exp))Ii fdic[(„~——'(„'8+((()(-m+xyy„a" 8)()+(~(+( (]I,

where $ and t' are anticommuting fermion source functions.
We express P„ in terms of two scalar fields (t) and o:
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4'j =
[ 4+&].

The generating functional (Al) can be written as

Z,„((,( )= f[ ddd'a ddePdd]exp x S„y[)]'8 ,'-{e-j'y)' +-,'{[)jo)' +)[A„ej'y —X V, e['o

A.
d4&'+Tj)(i(jt —m) g+ $tg+P $ (A2)

where A„=T[)y,y~jj), V„=gy~g. The functional integration over 8 is trivially performed, yielding the factor

I6(e'y(x)) .

The condition 8'Q(x) = 0 in general implies

[)"(t)(x}= e"'s„(d(x),

where

[)'(x)(x) = 0 .
If we define a new variable s(x} by

s(x) =o(x) + (d(x)

and eliminate &r(x) in Eq. (A2) in favor of s(x), we obtain

2

p,»($, $ ) = [ds dpdp ]exp i dx z(e„s)' —XV&S"s+Tj)(i[f—m) j([)+—Tj)y]x(T()y"f+( p+p (

(AS)

(A4)

The transformation g=e ' '[")X eliminates the term —A. V„B]'s:

Z:((, (') = f ldx dx'] exp {s

x [de]exp{e

A.
~

dx X(ij)j —~) X+ 2 Xy](XXY"X

ds[—(s„s)' ~ ( xs ' '* ~ x (e' "
]I (A5)

Thus, the Green's function (T(g(x, ) ~ ~ ~ ji)(x„)P (y, ) ~ ~

P (y„))&,» of the chiral model (5) is related to the Green's
function (T(X(x,) ~ X(x„)X (y, ) ~

X (y„))&» of the massive Thirring model through

&T4(x,)" I(x.)0'(y, ) 0'(y. ))&..={&(X(x,) "X(x.)X'(S,) X'(y.))&T»

where s(x) is a free massless scalar field.

Z=T]), (ig[j —m- Xy,y~[)q 8) g, + p([)„8)', (B1)

where ji),~ represents the fermion field operator
The classical solutions to the massive Thirring
model will be introduced through the connection
to the nonlinear o model. The Lagrange function
(Bl) implies that the field equations

(iP —m —Xy, y "s~ 8) g, = 0, (B2)

APPENDIX B

In this appendix we formulate the precise mean-

ing of classical solutions in models containing
fermions. We begin with the nonlinear o' model

[)„([)j'e xT[ y,y-]'jc.,) =0.
By classical solutions to (B1) in the one fermion
sector, we mean the following:

1. 0 is a t."-number function.
2. Express the field operators i[),p and p„as

(BS)

= pa+ ~ ~ (B4)

(B5)

where a (a ) is the annihilation (creation operator
and g is the c-number wave function associated
with the lowest energy, localized one fermion
state. The wave function ( obeys the classical
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equation

(iP —m —Ay, y "sp 8) g =0,

dx ~ =1.

(B6)

(B7)

other fermion. They obey the orthonormality con-
ditions

(B15)

s„(sp8 —zqy, y py) = 0. (B9}

The dots in (B4) and (B5) represent higher-fre-
quency fermion and antifermion states which we
ignore in the classical solution. "

3. Replace the bilinear product g i)i in (B3) by

(B8)

which leads to

Now, we replace p. i}i., in (B8) by

Pop Pop (&op &op) two-t'ermion

Then, Eqs. (B6) a,nd (B9) are changed to

(iP —mhysy P 8 p8)g&
——0, i = 1, 2

s, [s&8 —~(y,y,yPq, +q,y,yPq, )]=0

(B16)

(B17)

(B18)
Equations (B6), (B7), and (B9) specify the clas-

sical limits of our models, where 8, ((~, and gt
are all c numbers. It is important to note that
these equations can be obtained directly from an
effective classical Lagrange function

2„,= i}i(iP' —m- Ay, y "&p8)g+ 2(&„8)'. (B10)

In (B10), i}i, gt, and 8 are all treated as commut-
ing numbers. The precise meaning of g (g ) is giv-
en in (B4) and (B5), and it should not be inter-
preted as the classical limit of the anticommut-
ing i)i,p. (In fact, g„, as an anticommuting oper-
ator, does not have a classical limit. )

By choosing the associated free boson field s(x)
=0 as in Sec. II, we have, from (B9),

In the two-fermion sector the "classical" Thirring
equation is

[iy'- m+A. '( ii,iy"y, +i)i,y"y, )yp]y; =0, i =1, 2.

(819)

The generalization of these results to the N-fer-
mion state is now obvious.

In a theory with an internal symmetry (e.g. ,
color), the introduction of the N-fermion confined
state with N smaller than the degree of the in-
ternal symmetry can be handled trivially. In this
case, there is no exclusion principle to complicate
the problem and al.l fermions are in the ground
state with the same spatial wave function g(x),

»8 ~qy, y Py =0, (B11)
i)'; (x) = 4(x)n;, (B20)

and consequently through (B6), an analogous clas-
sical equation for the massive Thirring model,

with

(imam+~'i')y-Pqy„)q = 0 (B12) (B21)

We define Eq. (B12) to be the classical equation
of motion for the massive Thirring model. This
result can be derived from the effective Lagrange
function

The orthonormal. ity conditions on p; is guaranteed
by the proper choice of the unit vectors q; in the
internal space. We have, for confinement states,

A,

&.« =P(iK-m)4+
2 (i}y„f}' (B13)

8p8 =A.Q i}i, y5y pp, =NAiliy y pii, . (B22)

g, =p,a, +$2a2+ (B14)

where g, and g, are the wave functions for the in-
dividual fermion states in the presence of the

by treating P as a commuting c-number wave func-
tion. Equation (B13}is the starting point of Sec.
III. We emphasize again that g should not be con-
sidered as the classical limit of g, , but rather it
should be interpreted as the c-number wave func-
tion appearing in (B4).

The generalization of our formulation to the
multifermion sector is straightforward. As an
example, we consider the two-fermion sector.
Then we have, instead of (B4),

(iji( —m- Ay, y p8 "8)i}i= (ip —m+NiPiiiy„gyp)iii= 0.

(B23)

E„=m cosNA. '/2 =m cosN/8f'. (B24)

Note that we must now require N/4f' &ii to ensure
positive fermion energies. The total. energy for
the N-fermion case is

The fermion wave function is just as in the single-
fermion case but with the repla. cement A. -NA. .
In terms of f = I/2A. , we find the energy of the
N-fermion state as
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FIG. 3. Comparison of simple trial solution for the o model with exact results of Fig. 1. The solid line is the trial
function and the dashed line is the exact result. (a) Chiral phase, 9/f; (b) g~g; (c) gg.

(H)„=m Sf's in(N/Sf '). (B25)

APPENDIX C

For 1/f'-0, we have (H)» -Nm, as it should,
and for the limit N/Sf'-w/2, (H)~ 2mN/m.

where the energy of the fermion E appears as the
Lagrange multiplier. We seek a trial function
which minimizes the total energy H&0.

From Eq. (C2) we find that

We give here a brief summary of a variational.
estimate of the confinement solution which pre-
ceded the exact solution presented in the text.
The following discussion is really an appraisal
of the variational technique in a problem such as
this.

We begin with the Hamiltonian

1 d6I 2 t o id o d6I
H = dx — —+g~ iyoy' —+myo+A. —lII

2 dx

(C1)

—+~/ /=const=0,d&

dx

since for a confined solution the left-hand side
must go to zero as x-+ . We choose as our
trial function

-&„x&x,
x

6(x) = —6'0 —,—x~&x&xo
0

Oo, x& —xo

(c5)

(CS)

with the constraint

By the variationa, l principle, we have

—gag p
—Q

(C2)

(C3)

and determine the xo which minimizes H&Q. The
parameter 6I o is determined from the integrated
form of (C5):

6(~) —8(- ~) = —X

or

and 28 =A.. (C't)

d d&
iy y —+myo+ A.——E Q = Q,

dx dx
(C4) The eigenvalue E is determined from the Dirac

equation (C4). It is a root of
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m —E E+A.~/2xo+mE = — + nz'+ —arctanx x (C8)

The total. energy H is

d6
H =E+2 dx

dx

occurs at mxo = 1.5, where E = 0.26 m, and

(H)„„,,„,,„~ = 0.76m, (C10)

A,
2

= E(x,) +
xo

(C9)

The solution of Eq. (C8) and the minimization of
Eq. (C9) may be effected numerically.

For A.
' =3, we find that the miminum of H&0

to be compared with (H),„„,=0.67m. Some of the
characteristics of the variational solution are
plotted in Fig. 3, and are compared with the exact
results from Fig. 1. The variational approach
certainly works as well as might be expected with
such a simple trial function.
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