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In the context of the string description for dual resonance models, the Fourier coefficients of a general

function (Neumann function) are determined. These are needed in the calculation of the amplitude for the

scattering of excited hadrons.

INTRODUCTION

The formula proposed in Ref. 1 for the transition
amplitude in a general strong-interaction collision
process involves a functional integral of the type
considered by Feynman in his formulation of quan-
tum mechanics in terms of path integrals. ' It is
possible to evaluate this functional integral by a
procedure based upon the introduction of the so-
called Neumann function for the problem. In fact,
what is needed are the coefficients in the Fourier
expansion of this function, as these are involved
in the formula for the scattering of N arbitrary
(i.e. , scalar as well as excited) particles in terms
of the physical-particle operators. ' The problem
to be treated here is to determine the Fourier co-
efficients of the general Neumann function.

This work is organized in five sections, under
the following headings.

I. Statement of the problem
II. Main results
III. Proof of the main results
IV. The case p=Z„,o!„ln(z—Z„)
V. Comment on the 3- and 4- string cases
In Sec. V the functions N „„,for the 4-string

case are given in terms of Jacobi polynomials in

X, the variable of integration in the 4-point Vene-
ziano formula.

I. STATEMENT OF THE PROBLEM

defined by n, = 2P;, with P", = (I/M2)(P', +P;);
I't~, with p, =0, 1, . . . , a, is the momentum of the
fth colliding particle (or string). In 4-dimensional
space one has, of course, u = 3, but it is one of
the most characteristic features of present dual
resonance models that they are consistent only for
certain dimensions, different from four', in fact,
the amplitude (1.1) is consistent (this meaning
relativistically invariant) only for a = 25.

The variables (Z,f in Eq. (1.1) are related to the
interaction times (v', ) of Fig. 1 by the equation

p =g n„ln(z —Z„) (1.2)

in the sense that, solving the equation dp/dz = 0,
one gets a set of solutions (z, =z, ((Z„),(n„})j;the
equations p, =Z„n„ln(z, —Z„)then determine the
variables (Z„jas functions of (r,$ and (o.,), with

p, the interaction point in Fig. 1 corresponding to
The summation in Eq. (1.2) is over all N

strings or over (N 1) of them-, if one of the Z„'s
is chosen to be infinite; this can be done, as, in
fact, one can always fix the values of 3 of the
variables (Z„)in an arbitrary way, due to the
projective invariance of the amplitude (1.1). In
accordance with this projective invariance, the

I
product (g „)in Eq. (1.1) is over the (N 3) non--
fixed Z„'s.

The function H((n, ), (Z,)) in Eq. (1.1) is given by

According to the model proposed in Ref. 1, one
considers hadrons as "strings, " represented by
curves whose parametrization is given in terms of
two real variables, v' and 0. One then defines the
complex variable p= r+io. and, for the case of a
collision of R (initial) to 8 (final) strings, with
N=R+S, one considers the region of the p plane
indicated in Fig. 1.

The formula for the transition amplitude in the
collision process described by Fig. 1 is given by'

The variables (n, ) appearing in this equation are

p plane

R
Strings Strings

FIG. 1. This region has infinite extension on both
sides of the line T =0. The points 72, . . . , 7N &

are the
interaction times. The vertical line ~ =0 is only in-
cluded for the sake of concreteness in the discussion on
Lagrange's theorem given in Sec. III C; its location is,
of course, arbitrary in the model.
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s((o,), (z,))-f((o,), (z ))(o»o ling's, „.~'.„~'... .,.iir'), .

r, s m, n r'
(1.3a)

with f(/o. )), (Z,)) defined by

f ((~ ) (Z j) —Irl (Z Z )( +s) +r)( Pr'Pr+))+( +r~ +s)( Ps'Ps+) )
s).s I

res
(1.3b)

v= lz, , -z, l'~'lz„„-z„l-',
r -"2

I ='. ,Ilz„-z, l- "'"'.&.Iz„„„-z„„
I
.

(1.3c)

(1.3d)

In E(Is. (1.3a)-(1.3d), the indices x, x", and s al-
ways refer to strings, and are to be taken from 1
to N- 1, unless otherwise indicated. The indices
m and n in E(I. (1.3a) refer to the normal modes
of the strings. The a' „areannihilation opera-
tors (the physical-particle operators referred to
in the Introduction). Q„,l r') is an arbitrary (sca-

I
lar or excited) hadron state. The sum (Z„„)ex-
cludes the term with m =n =0. The N „„,are the
Fourier coefficients of the Neumann function for
the region of Fig. 1. They are functions of (o.,)
and (Z,j. The aim of this work is the calculation
of these functions N „„,.

mn
N a A A

mn rs ~& ++& q mqr nqs ~

s r q=l

1 N-1

mo, rs ~ q qs mqr &

~S .=l

N-l
I

Non r, =—Z~ n, 5,„A„„.
r q=l

In these equations

(2.2)

(2.3)

(2.4)

The functions N „„,are given by the following
expressions, with m, n~1:

II. MAIN RESULTS

For concreteness, and to keep all the results in
parallel with those of Ref. 1, E(I. (1.2) will be
taken as

N-l

5,~, for p4N
gC

—1, for p=N

A =Re[B e'"s+ ') j

for p=1, 2, . . . , N-1, and

(2.5)

(2.6)

p= n„lnz —Z„.
r=1

(2.1) (2.7)

The case p =Z„,o(„ln(z—Z„)is much more sym-
metrical and will bg treated in Sec. IV.

with the following expressions for the B„,~ and

nqN'

dnB„„=,„[(u+Z,-Z„)-"~-~ '

e t v du '„"l g&
(r ~P)

(2.8)

N-l

B„„=B„~~P( ' —„(u+Z~-z,) ' ig (u+Zp —Z„)" & i, qssp, pvN;~In du" r=1 Q~
(2.9)

q S
(r Ag)

(skag

)

(2.10)

In E(I. (2.6), a',~ corresponds to the lower end of
the Pth string in Fig. 1, if it is incoming, or to
the upper end if it is outgoing.

The symmetry N „„,=Nn, r is apparent from
E(ls. (2.2) to (2.4).

HI. PROOF OF THE MAIN RESULTS

A. Method of solution

The familiar representations' of dual resonance
amplitudes involve a half-plane (z plane) instead
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of the region of Fig. 1. This z plane is related to
the p plane (Fig. 1) by Eq. (1.2). In the z plane the
Neumann function is known, and it has the simple
expression'

X(z, z') =In~z-z'~+In~z-z'*~. (3.1)

The problem then reduces to writing Eq. (3.1) in
terms of the variables p, p', connected with z and
z' by Eq. (1.2), using the conformal invariance of
the Neumann function. '

Posed in this way, the problem is very compli-
cated, because it implies the direct inversion of
Eq. (1.2). The method to be used will be essen-
tially the same as that employed in Ref. 1 for the
calculation of the vertex operator. It consists in
working with the function

M(p, p') = , &-(p—,p')+, .&(p, p'), (3.2)

where N(p, p') is the Neumann function in terms of
the variables p, p', i.e., it is the Neumann func-
tion for the region of Fig. 1.

From its definition, one can prove" that M(p, p'),
taken as a function of p (i.e., for fixed p'), has the
following simple properties [which are the motiva-
tion for working with the function M(p, p') instead
of directly with N(p, p')].

1. M(p, p') satisfies I aplace's equation inside
the region of Fig. 1.

2. M(p, p') has zero normal derivative, except
at the joining and separation points of the strings
(points r= 7'„r„.. . , v'„,in Fig. 1).

3. As r- a~ along the Pth string (+ ~ for an out-
going, -~ for an incoming string), M(p, p') behave:
as follows:

As it stands, it is clear that M(p, p') given by
Eq. (3.5) satisfies condition 1 above (it is, as a
function of p [i.e. , of z{p)j, the real part of an an-
alytic function). It will now be proved that condi-
tion 3 is satisfied, too.

As 7- +~ along string p, it follows from the
equation p =Q„,'o.„ln(z—Z„)that p = n& ln(z —Z~)
+O(constant), because z -Z~ in this limit. This
implies that

ln(z —Z~) =—+ O(0)
Qp

8 1
Re—ln(z —Z ) =—+O(0) .

87 n~

For q4P one has

(3.6)

(3.7)

8 Bz/Br
Re—ln(z —Z ) =Re

87 z —Z,

From Eq. (3.6), z-e'~'&+Z~, so that BZ/BT
-(I/o. ~)e' ~, which approaches zero as 7'

(+~ or -~ as explained in condition 3). Hence

(3.8)

8
Re—ln(z —Z )-0.

87 q (3.9)

Substituting Eqs. (3.7) and (3.9) into (3.5) one
finds that condition (3.3) is satisfied.

As for condition 2, it will be proved in Sec. IIIB
that one can write, for q, p=1, 2, . . . ,N-1,

»(z —Z, ) = 6,~&~++B„,~e"'~ ~+ const,
n=l

(3.10)

ln(z —Z, ) = —f„+gB„,~"'~ &+ const, (3.11)
n=1

with the coefficien „,~ a „,„given by Eqs.
(2.8) to (2.10). Define g„by'

M (p, p') - 2 Re, ln(z ' —Z~), (3.3)
(3.12)

this equation being valid for p =1,2, . . . ,N- 1.
Take z'=z'(p').

A hint for the construction of such a function
comes from the key observation that the function
M(p, p') constructed in Ref. 1 for the special case
of three strings, with p= a, ln(z —1)+o., lnz, can
be written in the symmetrical form

8 8
M(p, p') =2o., Re—ln(z —1) Re, ln(z' —1)

87 8f

for x=1,2, . . . ,¹
From Eqs. (3.10) to (3.12) one gets

8 1 "n
Re—ln(z —Z ) = 6 —+g—A cosng e"'~,

Bv ' q~ n nP n 1 P

(3.13)

Re—ln(z —Z ) = — + A cosnq„e" A',
1 8 ng

nqN
n=l N

8 8
I

+2Q2 Ree l™Reb lm'
87' . 87' (3.4)

(3.14)

It is therefore suggested that, in the general
ca,se, M(p, p') can be written as follows:

N-l 8
M(p, p') =g 2n, Re—ln(z —Z, ) Re, ln{z' -Z, ) .

q~]

(3.5)

with A„,~ and A„,„given by Eqs. (2.6) and (2.7).
From the expression for M(p, p'), Eq. (3.5), it

is then clear that the normal derivatives at the
boundaries, (B/Bo)M(p, p') and (B/Bo')M(p, p'),
will be zero, because they involve terms of the form
sinn'~ (= (ngn)(B/Bo) cosnq~) or sinn'~ as factors
of the individual summands, and g& and g& are
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zero or z at the boundaries (ends) of the Pth string.
The rule is then to express M(p, p') as a function
of k~ = $~+i q~ when studying the normal derivatives
on the pth string.

Then, it has been proved that the conjecture for
M(p, p') [Eq. (3.5)] is correct. Of course, Eqs.
(3.10) and (3.11) remain to be proved.

Now, from Eqs. (3.5), (3.13), and (3.14) one can

obtain M(p, p') in terms of any of the variables
g„,,g,', for x, s =1, . . . , N. One needs the quantities
N n r„which are the Fourier coefficients of.

N(p, p') for p on the rth string and p' on the sth
string. These can be obtained by using Eq. (3.2)
and expressing Re(&/&r) ln(z —Z, ) in terms of 0„
Re(&/er') ln(z ' —Z, ) in terms of 0,

'
by means of

Eqs. (3.13) and (3.14). One obtains the result

M(p, p')=g 2a, s,', 6,',
(
—

)(
—)+P(Pa, s,',A„„)(--)cosmic, e"'

N-1 2n
00 ce N 1

c'+g P o.,6,'„A„„-— cosnq,'e""+Pg g n, A „A„„—e™'~'"'icosmic„coen'', ,
nl q 1 r s min 1 q 1 r s

(3.15)

with 6,'~ given by definition (2.5).
The expansion of N(p, p') in terms of the Fourier

coefficients N „„,is given by [cf. Eq. (4.3) of
Ref. 1]:

N(p, p') = —6„,P—e "~'& '8~ eosnq„eosnq,'
n=l

+ 2 n „er+n s cosPl'g„cosn'g

+ 2[6„,max($, $') —g6„~—$'5,„+b„,]
(3.16)

(Z „means that the term m =n =0 is absent; the
range of m and n is from 0 to ~).

From Eq. (3.16) one obtains

8
~

8
~„N(p,p')+ ;, N(p, p')-—

Ite(u) l&lu- al (3.18)

is satisfied at all points u on the perimeter of C;
then the equation

f = a+ tA(&), (3.19)

regarded as an equation in f, has one root in the
interior of C; and further any function of f analyt-
ic on and inside C can be expanded as a power
series in t by the formula

f(&)=f(a)+Q — — [A(u—)]" (3 2o)
" t" d" ' df(u)

lytic function in powers of another analytic func-
tion. This theorem will be quoted from Ref. 5„
for the sake of completeness.

Let f(u) and P(u) be functions of u analytic on and
inside a contour C surrounding a point a, and let
t be such that the inequality

" 2m—N, „e~r cosmic„
m=1

" 2n—N,„r,en's cosng,'
n=1 s

The case q=P in Eq. (3.10)

Start from Eq. (2.1) and write it in the form
N«l

p=n~ln(z —Z~)+ Q n„l (n~Z—Z„)

'm
+ 2 —+—N n „e'r'"~s cosmgr cosnq,'.

m=1 n=l

(3.17)

Results (2.2) to (2.4) then follow directly from
Eqs. (3.2), (3.15), and (3.17).

B. Proof of equations (3.10) and (3.11)

These equations [i.e. , results (2.8) to (2.10}]
will be proved by a method based on the use of
Lagrange's theorem' for the expansion of an ana-

+ P o.
„

in[1+ (Z~ —Z„)-'(z—Z )] .

This equation can be rewritten as

g=tQ (1 —Q„pg)
r=1

(r&P)

with the definitions

t=e« ~,

Q„~=(Z„—Z~)
' lI (Z~ —Z, )

s=1
(sQ)

(3.21)

(3.22)

(3.23}

(3.24)
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N-1

f=(z —Z~) ]' (Z~ —Z„)"~'~.
(r ~P)

Define the functions

(3.25)
—

dm N-1n 1 d --~
~1 —0 u&( +"

~m~~ n+m m! dum ~ ' ' ' »
r=l

(r@)

(3.35)
N-1

P(u) =
'

(1 —Q„~u,)

(rQ)

f(u) = In/(u) .

Equation (3.22) is then equivalent to

K=tP(L) .

(3.26)

(3.27)

(3.28)

Insertion of Eq. (3.35) into (3.32) gives Eq. (3.10)
for the case qtP, with (cf. Sec. IIIC)

nl g nm
qP"=~ n-mm»

1'd"
f(0)=Qt"

„ I (1 —0 I) "~t &-
—u=p

(r ~P)

(3.29)

From Eqs. (3.27) and (3.28), f(f) = In(f/t). Using
definitions (3.23) to (3.25), one immediately ob-
tains (3.10) for the case q =p, with &„»given by
Eq. (2.8).

2. The case q 4p in Zq. (2.10)
Rewrite Eq. (2.1) in the form

N-1

p= n~ln(z —Z~)+ n, ln(z —Z,)+ g n, ln(z —Z„).
r=l

(r&P, q)

(3.'30)

Using definitions (3.24) and (3.25), this equation
can be rewritten in the following way:

(3.31)In(z —Z,) —In(Z~ —Z, ) = ln(l —Q,~g) .
Use now the expansion ln(1 —v) = —Q„,v"/n,

whose validity will be examined in Sec. III C. One
obtains from Eq. (3.31)

In(z —Z, ) —ln(Z~ —Z, ) =Q—
" (-n ")P

n=1

(~A,~" )t"(C/t)"
n

(3.32)

Apply now Lagrange's theorem with the functions
(3.26) and (3.27) and with a=0 (cf. Sec. IIIC):

1 d () 1 du,
)

2%2
m+1u g p

7t'2 u
(3.37)

the integration being over a closed curve around
the origin. One then obtains [using Eq. (3.24)],
after a simple change of variables, a factor
Z, ,[u/(Z, —Z~)]' in the integrand. From the rela-
tion Q, ov' = (v""—1)/(v —1) and a second applica-
tion of (3.37), the equivalence of (3.36) and (2.9)
is proved.

The case p=N [Eq. (Z.1l)]
Start again from Eq. (2.1) and rewrite it in the

form
N-1

p =Q n„ln(z —Z, )

+ Q o.„in[1+(Z,—Z„)(z—Z, ) '].
r=1
(r4)

(3.38)

Use now the condition (from momentum conserva-
tion')

N N-1

Pn„=0~+o.„=—n„. (3.39)

One can then rewrite Eq. (3.38) in the form
N-1

(3.36)

To prove the equivalence of (3.36) and (2.9), use
the fact (from the theory of power series) that,
for a function g(u) analytic in a region that con-
tains the origin

Using Lagrange's theorem, a power series in t
will now be obtained for (0/t)". Define f(u) by the
equation

f(n) = [4(n)]" (3.33)

(3.34)

with

with Q(u) given by (3.26). Apply Lagrange's theo-
rem with the functions (3.33) and (3.26) and with
a = 0 (cf. Sec. II C) to obtain [after using Eq. (3.28)]

with the definitions

1

X„=Z„—Z

g'= (z —Z, ) '

Applying again Lagrange's theorem with

N-1

P(u) = ]IJ (1 —X„,u)
r=1

(r4)

(3.40)

(3.41)
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and f(u) = In[/(u)] and with a=0 (cf. Sec. III C) one
gets

—ln(z —Z,)—p
+N

tn dn N l
(1 —x„,u)" ~~ &

~ lÃ ~ S dQ
(r Ag)

(3.42)

Then, from (3.44) one immediately obtains Eq.
(3.11), with B„,„given by (2.10).

it+( )I& M I +( )I&l I
(3.43)

It follows that, for f such that If I&R„/M, all the

hypotheses of Lagrange's theorem are satisfied,
with a= 0 [cf. expression (3.18)]. This theorem
then implies that Eq. (3.28) is valid for f in the
interior of C (one f for each value of f such that

I
f I&R„/M) and that expansions (3.29) and (3.34)

are correct.
From definition (3.26),

Q(u) = Q (1 —Q ~u) '~~ '~,

C. Conditions for the use of Lagrange's Theorem

It will be proved that for parts 1 and 2 in Sec.
III B the conditions for Lagrange's theorem were
met, provided one chooses the contour C to be any
contour which is inside the circle of analyticity
for Q(u) [cf. Eq. (3.26)] and which contains the
origin in its interior. A similar discussion is
valid for part 3, with t„X„„andg' taking the
place of t, A„„andP, respectively.

Take C to be a contour contained in the circle of
analyticity of Q(u) [i.e. , inside the circle where a
power series expansion of Q(u) about the origin is
valid]. It will be proved in the following paragraph
that Q(u) is different from zero in C. Then, f(u),
given in terms of Q(u) by Eq. (3.27) or (3.33),
f(u) = In/(u) or f(u) = [Q(u)]", will be analytic inside
C and on its perimeter. As C is a compact set
cf. next paragraph),

I Q(u) I
is bounded in C, i.e. ,

Q(u) I&M, for M a positive number. Let R„be
the smallest of the numbers {IuI] such that u is on
the perimeter of C. Choose f such that If I&R„/M.
Then, for every u on the perimeter of C,

tour C.
The condition that I(I must be "small enough"

(i.e. , Itl&R„/M) imposes the restrictions [from
Eqs. (3.28) and (3.25)] that Iz —Z~ I

must be suffi-
ciently small. Then, the results of Sec. III will be
valid [cf. Eq. (2.1) and Fig. 1] if v is sufficiently
large and negative for n~&0 (i.e., an incoming
string), and sufficiently large and positive for
a~&0 (i.e., an outgoing string). This causes no
trouble, as the Fourier coefficients of the Neu-
mann function can be calculated anywhere in the
region of Fig. 1.

IV. THE CASE p = g n„ln(z-Z„)r= l

In this case, in which no g„is chosen to be in-
finite, one writes, corresponding to Eq. (3.5),

N

M(p, p') =g 2n„Re—ln(z —Z„) Re, ln(z ' —Z„)~7 ~T

(4.1)

and obtains the analogous expressions to Eqs.
(3.10), using the same methods as in Sec. III.
These equations are sufficient to give ln(z —Z ) in
terms of P~, for 1 «q «N, 1 «P «¹ This solves
the problem.

V. COMMENT ON THE 3- AND 4-STRING CASES

Formulas (2.2) to (2.10) reproduce the results
found in Ref. 1 for the special case of three
strings. In this case, the coefficients B„,„[cf.
Eqs. (2.8) to (2.10)] can be put in terms of beta
functions (or, equivalently, of gamma functions)
of the variables (o.„]and (z„).Hence the functions

N„„„,[cf. Eqs. (2.2) to (2.4)] are given in terms of
simple combinations of these beta functions. '

In the 4-string case one again finds that the co-
efficients B„,„canbe expressed in closed form,
namely in terms of the Jacobi polynomials
P„'"@(x)(or, equivalently, in terms of the hyper-
geometric function)6':

(Z„—Z„)""1 2 (z z )x&(z z )v&~ (x»&o&)(~ )

withP&4, ~, &x„x„x,+P, 4, and

+1

(d =-S +1

2Z —Z Z

it is clear that the circle of analyticity of Q(u) is
given by the region where IQ„jul&1, for @=1,. . . ,
N -1; x4P. Then, this region is determined by
the points u such that lul& IQ„~I ', with IQ„~I the
maximum of JIQ„~I],for x=1, . . . , N 1; x4P. In-
this region, moreover, Q(u) e0.

From the above discussion, it is clear too that
the power series expansion used in going from
(3.31) to (3.32) is justified, for 0 inside the con-

(5.1)

(5.2)
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B„,= ' '
(Z —Z, )~ (Z —Z,)"

(Z, —Z, )"

with s&q, P, 4, q&P, q, P44, and

(5.3)

The coefficients N „,[cf. Eqs. (2.2) to (2.4)]
are then obtained as combinations of these Jacobi
polynomials.

Equations (5.1) to (5.6) can be put in terms of the
variable of integration X used in the ordinary 4-
point Veneziano amplitude, with the definition'

2 + +1 (5.4)

~2 ~l
Z3 Zg

(5.7)

2Zp Z Z
X

Q S

(Z Z )n
B = — ' ' J'"~~ ~'(X )n~ n n 3 7

with xa ~x2~ +i~g2~q~4 q~4

'+1

(d S +1

(5.5)

(5.6)

valid for z4=~. If one chooses the values of Z,
and Z, to be Z, = 0 and Z, = 1 (using the projective
invariance of the amplitude' ), Eq. (5.7) reduces to
the simple identification X= Z, .
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