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Verification of virtual Comyton-scattering sum rules in quantum electrodynamicse'
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Two new sum rules for virtual-photon forward Compton scattering derived by Schwinger are shown to be
satisfied in the case of quantum electrodynamics by explicit calculation of the lowest-order contributions.
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where the first term refers to the. situation of
noninteraction, V is the space-time interaction
volume, A."(q) is the field of the virtual photon,
and T,„, is an appropriate basis tensor. A con-
venient but unconventional choice, which is free
of kinematic singularities and zeros, is
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where s" is a unit pseudovector which covariantly
describes the spin of the target nucleon and sat-
isfies

P~s" = Q.

The coefficients, H„are functions of the two

Lorentz scalars, q and qP= —mv. Because of
crossing symmetry, it is to be noted that H, is
antisymmetric in v, while H, 2 3 are symmetric.

Schwinger proceedes by assuming that the H,

In a recent investigation of deep-inelastic scat-
tering of electrons on polarized nucleons, Schwing-
er' derived two new sum rules for virtual Comp-
ton scattering. As a modest verification of the
basic theoretical ideas used by Schwinger, we
here will investigate whether these results hold
in the known case of electrodynamics. We will
show that, to fourth order in e, the sum rules are
true, which then lends support to Schwinger's
framework. '

We will. start with a brief review of the deri-
vation of the new sum rules. The deep-inelastic
process is viewed as the absorption of polarized
virtual photons by a polarized target. The var-
ious cross sections are related to the imaginary
part of the forward Compton scattering amplitude,
which for a polarized target nucleon can be ex-
pressed as (d~J, =[(dP)/(2v}'](1/2P'), P is the
nucleon momentum)

may be represented by double-spectral forms3:
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The imaginary part of this amplitude corresponding
to the production of a real intermediate state
through the absorption of the photon by the nuc-
leon is1, 1—1mH, (q', qP)=
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where G~ and G„are the familiar Sachs form
factors
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and E, 2 are the electric and magnetic form fac-

where now M, is the mass of the intermediate state,

M 2=m2+2mv —q'.

By considering the contribution due to a single
nucleon in the intermediate state, we determine

the elastic contributions to Im H, :
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tors, respectively.
The antisymmetry of H4 in v implies that

kd(M+', M') is antisymmetric, which, in turn,
leads to the sum rule

H, (4*, —mv)= dv', v
)

1
V -V V'+V

1x —ImHH(q, —m v'). (16)

dM+ —ImH4 = 0, (13)

regarding (1/w) ImH, as the function of M+' and

q given by Eq. (8). Explicitly exhibiting the
elastic contribution given by Eq. (11), this result
can be written as

2 CLv—,ImH, (0, —mv') = (17)

Under the prescribed conditions, the elastic con-
tribution, Eq. (11), reproduces the first two terms
of Eq. (15). The remaining term must result from
larger values of v', so that in the limit v, q'-0
we deduce the new sum rule
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where l is the electric charge (in units of e) and

p,, is the anomalous magnetic moment of the
nucleon. The double-spectral form, Eq. (7), can
be written as

A second sum rule can be derived for H, from
the double-spectral representation and the lowmm

energy theorem for Compton scattering. We
consider the case of q «m', -Pq«m for which
the nucleon intermediate state is dominant. A
direct calculation yields

Finally, we remark that the known Drell-Hearn
sum rule' can be obtained from Eqs. (14) and

(17) by using the relation between the real photo-
absorption cross sections o, (where + refers to
the cases of parallel. and antiparallel photon
helicity and nucleon spin) and the imaginary parts
of H3 and H4:

—'(v, —v)= —16vvm'( m y+ HtmH). (18)3 2m

This concludes our review of Schwinger's work.
We will now verify the sum rules, Eqs. (14) and

(17), for lowest-order electrodynamics. Since
we are interested only in the imaginary parts of
the H, , we need only consider the casual vacuum
amplitude for forward Compton scattering. In
general, the causal vacuum amplitude is described
by

(dP, ) (dP, ) (dk, ) (dk, )

x(2m)'6(Q —P, -'k, )(2')'6(Q —P, —k, ),

"here, for forward scattering (k, =k, =q, P, =P2=P, Q=P+q),
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The various ImH, are related to I „„by q'=0. In terms of the variable x=v/m, we find
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C=J.
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For H] p 3 we are only interested in the case of

ImH, =
Q
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and

Q
ImH2 = 44m

x3+9x +8x+2
x'(2x + 1)3

1 xa —2x —2
+ —

4 ln(2x + 1)x' (23)

ImH, =, - 2 - + —,ln(2x+1)
5x+3 . 2x+3

32m4 x 2x+1 x'

magnetic moment,

Q
Wa = (26)

As for II~, we will consider the sum rule, Eq.
(14), for arbitrary values of q'. To lowest order,
the sum rule reduces to

We can now check Eq. (17). We find

(24) J dx Im H, = —,E,(y ),
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which gives the known value of the anomalous
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val. ue of x.
It is interesting to investigate the behavior of

the polarization asymmetry,

By explicit integration of ImH„Eq. (27) is veri-
fied. ' As we noted above, the Drell-Hearn sum
rule" (to the order considered)

—[xlmH, +21mH, ](q'=0)=0dx
(31)

x~1m H, Im H, ~ 4(Im H, )2. (32)

It is easy to see that this is satisfied for x -0 and

for x-~. Numerically, one can verify that the
inequality is very easily satisfied for any other

is a direct consequence of Eq. (25) and the y =0
form of Eq. (2'7).

Two final points deserve comment. In terms of
cross sections, ImH, is determined by means of
an interference between longitudinal and trans-
verse polarizations. ' As such, it satisfies an
inequal. ity which, for q'=0, is

P(v, q') =
0+ +0 (33)

in the deep-inelastic region, as a function of
~ = 2m v/q'. Schwinger' has conjectured that P
ranges from —1 for &u near unity to +1 for ~
large, with a single sign change. What is the
situation in pure electrodynamics? With the in-
formation at hand we can make only the following
immediate remarks. In the elastic region, where
e =1, it is evident indeed from Eqs. (10) and (11)
that P = —1. In the inelastic region, we can use
Eqs. (23), (24), and (29), at q'=0, to compute P
in the iwo limits v/m-0 and v/m- ~. The results
are, respectively, P(0, 0) =0 and P(~, 0) = -1. To
calculate P in the deep-inelastic region we would

have to extend our calculations to arbitrary values
of v and q' for all the ImH, . This is just one
example of the interesting questions which deserve
further study in this area.

*Work supported in part by the National Science Foun-
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factors. (See Ref. 2.) There is as yet no proof that
this representation is valid in electrodynamics, nor is
there an alternative derivation of the sum rule (13).
The fact that the sum rule holds in electrodynamics
leads us to suspect that the spectral representation (7)
is valid there. [In particular, it is interesting to ask
whether Eq. (29) for ImH& can be recast in the form
of Eq. (8).]

48. D. Drell and A. C. Hearn, Phys. Rev. Lett. 16, 908
(1966). The Drell-Hearn sum rule states that

dv 2'' (2
tg (v) —o (v)] =

0 v

SFor the ImH4 term, we first integrate by parts on the
ln) part. The lower limit of the integrated term yields
the correct result. The sum of what remains then
integrates to zero.

This sum rule may also be directly verified from the
invariant amplitudes for real photon Compton scattering
presented in papers by K. A. Milton, Wu-yang Tsai,
and L. L. DeRaad, Jr. [Phys. Rev. D 6, 1411 (1972);
6, 1428 (1972)]. To this order, using the notation pre-
sented there, the Drell-Hearn sum rule becomes the
easily verified statement

du ImM&(v) =0.


