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Scattering of one-tlimensional bags in the interacting string formalism*
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We apply the interacting string formalism of Mandelstam to the scattering problem of one-
dimensional bags. Lorentz covariance together with general properties of the path-integral
formalism require that the number of constituent fields be 24 and that the (mass)2, -4KBRO of
the ground state be -4mB. In this case, the n-point scattering amplitudes are precisely those
of the dual resonance model. However, we also write the four-point scattering amplitudes
fox' ax'bltzax'y +0. Then these still possess crossing symmetry but are not Lorentz covariant
unless &0=1.

I. INTRODUCTION

In this article we wish to study the possibility
of introducing interactions into the quark bag
theory' along the same lines as in the string model
as carried out by Mandelstam. ' In the full three-
dimensional theory the exact quantum treatment
of the surface motion is probably intractable. The
one-dimensional theory, on the other hand, has
the virtue that the boundary motion is exactly
soluble in light-cone coordinates. Since the
method is based on exact knowledge of the spec-
trum in the noninteracting limit, we restrict our
study to the one-dimensional case. As this re-
striction makes the study academic, we also make
the simplifying assumption of scalar constituents.

The formulation is most easily presented in the
language of Feynman path integrals. Classically,
the possibility of fission corresponds to a motion
in which the initial configuration is a single con-
nected bag and the final configuration is two or
more bags. ' At the classical level whenever the
conditions for fission are met (that is, the suit-
able boundary conditions are satisfied at an in-
terior point), there are two possibilities: (a) The
bag actually moves as two bags after that instant,
or (b) the bag does not fission and the motion
after that instant is that of a single bag. Both
possibilities obey the classical equations, the
first being distinguished from the second by a
singularity at the fission point. Quantum mechan-
ically, these two alternatives can be assigned
different probability amplitudes, which are the
functional integrals of e' ~""'"~ over the two topo-
logically distinct domains. The relative measure
of these two functional integrals is infinite, but

this infinity can be absorbed into an overall cou-
pling constant A. (which is then arbitrary) multiply-
ing the amplitude for fission. The closure proper-
ty of functional integrals together with the reality
of the coupling ensure that S-matrix elements

(2P', 2P,'2P+ )"' (0 I & I » I 2) I 3), (I.I)

where g is Mandelstam's expression with all
transverse momenta =0. The appearance of the
power g/24 is essential to maintain the closure
property of the functional integral. (This factor
arises solely from the measure. ) For three
ground states, (OI'0

I I) I2) I2) =const=X. It is
therefore obvious that the three-point function is
not covariant except possibly when g= 24, and in
that case, we know from string results that the
amplitudes are just those of the dual resonance
model.

satisfy perturbative unitarity in X. It will become
clear that there is a very close analogy between
the one-dimensional bag with g fields and a string
embedded in g+ 1 dimensions. In the formulation
of Goldstone, Goddard, Rebbi, and Thorn~ (GGRT)
the latter system is characterized (in light-cone
variables) by g transverse coordinates x'(o, r),
and x (o, v) is a function of these. In the one-di-
mensional bag, the end points x& are a very sim-
ilar function of the g fields Q'(c, v). One of the
difficulties with the string model is that in other
than 25 space dimensions the Lorentz group can-
not be represented by the usual quantum gener-
ators. That is, IM', M~ ]t0 unless d=25 and
Q.„ the intercept of the leading trajectory, is
unity. In the one-dimensional bag theory there
are no transverse Lorentz generators so this is
not a problem. In a sense, the Lorentz group is
too trivial in one dimension to yield restrictions.

To investigate the self-consistency of interac-
tions in the one-dimensional bag model we must
consider the scattering amplitudes in more detail.
It has already been remarked that the string for-
mabsm can be taken over almost intact to this
problem. The fact that for the bag Q =0 at the
ends whereas for the string Sx'/Bo = 0 has no effect
on the three-point function derived by Mandelstam'

s/24
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In the bag theory we shall find that consistency
demands o.,=g/24 as well as g= 24. We find it
attractive to separate these two conditions. It is
clearly possible to define functional integrals for
any value of g. However, n0 is fixed in terms of
g by a general feature of functional integrals. ' a
continuous dependence of the functional integral
on the domain on which the functions integrated
are defined. This same property demands the
power g/24 in (1.1). It is then Loxentz covariance
which demands that this power, g/24, be unity.
It is amusing to observe that even for g&24, the
amplitudes possess a kind of crossing symmetry
or "duality. "' The advantage of bag theories is
that the degrees of freedom giving rise to the
excitation spectrum of the hadron are fields, not
coordinates, so the restrictions are on the number
of fields not on the dimension of space-time.

Finally we wish to emphasize an assumption
made in this approach. We assume a limit in
which bags do not interact (even when they overlap
in space). Thus, classically, two bags can occupy
the same space-time region and be independent of
each other. The interactions occur only at the
boundary of the bag and at a single point in the
interior of the bag (the interchange interaction).

In the remainder of this paper we shall, as a
pedagogical example, work out the four-point func-
tion in detail and show how the condition n, =g/24
emerges. When this condition is met, dramatic
simplifications occur. The resulting amplitudes
are in general not those of the dual model, but we
shall show that they nonetheless possess crossing
symmetry.

II. THE THREE-BAG VERTEX FUNCTION

A bag containing a set of scalar fields is de-
scribed by an action

W= d2X, &„~",+ 2 ~„,~~, —B, (2.1)

Q, = 0 (inside),

$, =0 (on the boundary),

(S& (()), )' = 2B (on the boundary) .

(2.2)

(2.3)

(2.4)

Equation (2.4) can be viewed as a constraint, im-
plicitly defining the boundary surface in terms of
the independent variables Q, . It is analogous to
the equation of constraint used to eliminate the
longitudinal degrees of freedom in the string
theory 'The .form of field equation (2.2) enables
us to use the scattering formalism of Mandelstam
in treating bag interactions. ' The boundary con-
dition (2.3) leads to a different choice of the Neu-
mann function. We find I compare with Eq. (2.9)
of Ref. 2]

&(z, z') =»I z —z'I —lnlz* —z'I . (2.5)

This choice of Green's function in the functional
integral and the convention in the definition of
momenta P~ result in the modification of the ver-
tex function. ' Instead of Eq. (6.15) of Ref. 2 the
bag three-point function (Fig. 1) is

where the index a labels the field component. The
variation of this action yields the equations of
motion

1
( lp 2I I 3) —

(2p+2p+2p+)~

g/24 3 00

(a" a "'(-a )e] '=' 0 exp ——,
'
Q p N „„a'„,a' ' '

e) .
~( 4 4 1

r ys twist)= ]

(2.6)

The coefficients N „„,are, except for the sign,
equal to the ones for the scattering of strings and
are given by

A IQ2Q, atm
+mnrs =+

n„n, mn, + nn„

function we can invoke the closure property to
obtain four-point functions.

III. THE SCATTERING AMPLITUDE
FOR FOUR GROUND-STATE BAGS

with

r+I a S+I In this section we shall evaluate the four-point
amplitudes for the scattering of unexcited states.
The light-cone variables P& are used and our
metric is such that P'=2P+P =m'. Also

(2.7)
m =-(M +R =-(M + a a2

0 0 n n &

n=l
(3.1)

The two sign changes' just cancel and so the bag
vertex is the same as the string one with all
transverse momenta =0. Knowing the three-point

where -n, is the (mass)' of the ground state. The
scattering amplitude having poles in a particular
pair of channels and constructed by closure has
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the general form
OO

A. = '

d2 g e' 4 4'(a(V(C)( C(e~b), (3 2)
C

where ~a) and ~b) are the outgoing and incoming
two-particle states,

~
c) is an arbitrary single-

particle state, and ~ is the vertex function. The
variable 7 is the difference between the times at
which the bags join and separate. As will be
shown later, the amplitude (3.2) is a function of

n, and g (the number of fields inside the bag). The
dependence on n, can be determined explicitly
and is independent of the measure. The g-de-
pendent part of (3.2) can be obtained in the follow-

ing way: The measure for the vertex (2.6) is
known and fixe/, and it was shown by Mandelstam
that for g= 24 and c(, = 1 the use of (2.6) in (3.2)
leads to the appearance of the Veneziano P-func-
tion integrand. ' We can then let g and n, take on

these particular values, compare (3.2) with the
appropriate P-function integrand, and thus obtain
the four-point function for any value of g and n, .
We will illustrate the above discussion by con-
sidering in more detail the contribution with s-
channel poles to the scattering amplitude A (s, t).
Other contributions are computed analogously
and thus only the results will be given.

The graph with s-channel poles contributing to
the scattering amplitude A(s, i) is shown in Fig. 2.
We label particles as shown and define q by

P„—= 2m(2, = (1 -q)P4, P 422W n2 =qP4, 0& q& 1.
(3.3)

FIG. 1. The three-point function for joining of two

bags.

We have for the external particles

SZ Ao2

2P+„u+„' (3.4)

Further, from momentum conservation laws
P„+P„=P,4 + P„and (3.3) we obtain P+4 = qP4

and P„=(1 —q)P+ or vice versa only. We choose
P„=(1—q)P, and P, g=qP, and define

s-=(P, + P)'=2(P„+P„)(P,+I,)

(3.5a)

(3.5b)

u =- (P, —P )' = 0 . (3.5c)

The four-point function for elastic scattering of
unexcited particles shown in Fig. 2 is given by
(3.2). Using (2.6), (3.3), (3.4), and removing the

complete set of state s g, ~
c) ( c

~
we obtain for

(3.2)

0 exp —,'N~nz~ „exp — p„„q"1 —q
' " ' "'"'"exp —,'N~n „~ o 2/+3

&,n + 'n

(3.6)

where the summation oni appearing in (2.6) has been replaced by the power g, where N „=—N„„dan
where the external factors [(2P+,)"'] g~24 were omitted for ease of writing. Defining for convenience

y q 27I(1 q) 2(1 7l)s T/2'

(3.6) can be rewritten as

(3 7)

41
Q [1 1I2(1-2)]I(' g[2P ] -gl24

y +3
0

where

(s.s)

K„= 0 exp 2NmnQ~Qm y~n=l n nexp 2Nmn n~
nt 2n —I n)t gn

(s.e)

We now transform the integration variable, v, in (3.8) so that the integrand resembles that of the dual
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resonance model. This transformation is discussed by Mandelstam' and is given by

2q —1+ [1 —4qx(l —q)] 'i' 1 —[1—4qx(1 —q)] 'i'
2q —1 —[1 —4qx(1 —q)] ' ' 1+ [1—4qx(1 —q)] ' '

2x(q —1) + 1+ [1—4qx(1 —q)] 'i

2x(q —1) + 1 —[1 —4qx(1 —q)] '"
where x is the new integration variable. Using (3.10) one obtains after a short calculation

2P, [1—4qx(1 —q)] "'
ex x(1 —x)

and

X= (1- )].l-q +l[I —4q (1-q)l"'] '"[q-(1-q)]'" ' "'.

(3.10)

(3.11)

(3.12)

(3.13)

We can now write the amplitude for arbitrary no and g as

Thus now we can determine the g dependence by requiring that upon substitution of (3.11) and (3.12) into
(3.8) and for n, = 1, g= 24 the amplitude reduces to an integral over the Veneziano P-function integrand
x ' '(1 —x) ' '. Identifying K, from the resulting equation we obtain

If. -(I x)(~/») h-~/P)(~-P))) P qx+ [I 4qx(1 q)] lip(1/12) Ll/(i 8) P) j-[q -(1 q)]( P) 1 P-))-

x].I1 4qx(1 q)]

4'+ 1 tg 1/2 1 g/24+ 1 0 & 1 + I 0 s+g/6-g/x2g(l- I])

&& p xq + ~ [1 4qx(1 q)] &/ p2a(& to/ )(24&-&/7)(&-a)l[q 1 q](p)-&-p)) (3.14)

By analyzing the region of integration in the x variable it can be determined that the amplitude of Fig. 2

does not completely cover the range $0, 1)=]x). However, the whole set is covered by including in A. (s, t)
the amplitude having t-channel poles, shown in Fig. 3. Proceeding as in the previous case we obtain for
the analog of (3.8)

-& 0 tI/(I-2n) -~/I)(I- n)) $40{0/1 ~4{x0(I-n)/nTp —n
0

x)(D exp(p —'a' „a a„)pe ' ' ~X"'"'"exp(p-'a'e„aeae) p)I [pp )
mn mn

d'zy-~«&/(I-2&&-&«(&-&~lq4~0 1 q
4 o(l 6)IRQ s 2~ -g/24

+3 7
0

finally yielding
(3.8')

Ag= dX 2P 1 —kg 1 —g
'/'2 ' «2 g ' {){0-' 1 ~ -I-~0-~+g/6-g/»«&-&)

q +-[1 4q (1 —q)] "']'"("o-«")('-'«(~-'))j [q 1 q]«-~- ))q4~0-«6(1 q)(~o-r/6) ((i-n)/n)

(3.14' )

FIG. 2. The graph with s-channel poles contributing
to the scattering amplitude A (s,t).

FIG. 3. The graph with t -channel poles contributing
to the scattering amplitude A(s, t).
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The complete amplitude is given by A(s, &) =A,
+A„' however, comparing (3.14}and (3.14') we
note that the two integrands are in general not
continuous at ~ =0. This property will hold only
when

A(f, ~) =A(f, 0)

dr 2P, g (1 —x)'—
0 t

24
(3.15)

)( 1 RP t(1 )-1 IxP (3.19)

x (1-x) ' "o '. (3.16)

The complete scattering amplitude is of course
given by A =A(s, t) +A(s, u) +A(f, u). The ampli-
tudes A (s, u}, shown in Fig. 4, and A (f, ~), shown
in Fig. 5, can be computed analogously. For the
f, u amplitude a direct four-bag coupling is @so
needed. ' Defining for convenience in the case of
s-channel scattering 2P„—= 2P„=2P+ and for t-
channel scattering 2P„—= 2P„=(1 —2q)2P+ and
noting

(1 —2q)' = —— (3.17)

we can write the resulting scattering amplitudes
as

A (s, u) =A(s, 0)

= Jl dx 2P„(1—x)'—

1-cKP s (1 x) I (xo (3.18)

This requirement of continuity is merely the state-
ment that if functional integration has any meaning
at all, Fig. 2 should equal Fig. 3 when 7 =0. With
(3.15) satisfied the amplitude A(s, t) becomes not
only well behaved but also much simplified, re-
sulting finally in

4n,g
A(s, f) = dx 2P, 1+

0 .8

IV. DISCUSSION AND SUMMARY

The scattering amplitudes obtained in Sec. III
are reminiscent of dual models. For a particular
value of n, (n, = 1) they become the Veneziano
P functions. " The complete four-point scattering
amplitude, however, possesses crossing sym-
metry, i.e., has the same functional form in the
s as well as the I; variables, for arbitrary value
of n, . To verify this statement it is sufficient to
show that the functional form of the square bracket
in (3.16) remains unchanged (up to the substitution
x—1 —x) when s f. Using (3.17) in (3.16) we
easily obtain

4m~ '~', 4n„(1-x) "'

(4 1)

which is the required relation.
It is not surprising that the one-dimensional

scalar bag leads to string results when u, =g/24
=1. It is interesting that, although Lorentz co-
variance does not restrict a, and g for noninter-
acting bags, the usual restrictions arise when
interactions are introduced. A by-product of our
work is one more illustration of how a quantiza-
tion via functional integrals leads to the same
consistency conditions as operator quantization.
In operator quantization the consistency conditions
arise from the requirements on the commutation
relations of dynamical variables. In path-history

(a)

FIG. 4. (a) The graph with s-channel poles contri-
buting to the scattering amplitude A(s, u ). (b) The graph
with u-channel poles contributing to the scattering am-
plitude A(s, u). In the limit P&+ 0 its contribution van-
ishes.

FIG. 5. (a) The graph with t -channel poles contri-
buting to the scattering amplitude A(t, u). (b) The graph
with u-channel poles contributing to the scattering
A(t, u). In the limit P&+ 0 its contribution vanishes.
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quantization the conditions arise from the funda-
mental geometrical properties of closure and a
continuous dependence of the functional integral
on the shape of the domain of definition of the
integrated functions.

Finally we should emphasize that the system
studied here is highly unrealistic. Not only have
we restricted ourselves to one space dimension,
but we have also ignored spin and interactions
among the constituents. Low has argued" that a
reasonable model of the Pomeron in bag-like
models can only be achieved if the constituents
interact. The scattering mechanism described in
the present article can at best describe nondif-
fractive scattering. Also it is not clear that in

three dimensions it makes sense to formulate
interactions among bags in the perturbative way
described here: The essential difference is that
in three dimensions fission can proceed via a
continuous deformation of the surface so that the
measure for interacting diagrams may be uniquely
prescribed in terms of that for noninteracting
diagrams.
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