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The present article lays the theoretical foundation for a scattering theory of quantum electrodynamics,

which is completed into a practical calculational scheme in the accompanying article. In order to

circumvent infrared divergences, an infrared renormalization procedure is instituted whereby a

Lorentz-invariant, but indefinite, inner product is defined for a class of photon test functions defined on

the future light cone k* = (1, k), @ > 0. This class includes test functions whose low-frequency
behavior is given by ¢*(k) ~ ep */p - k, for which the usual inner product § d *k Qw)™' ¢, *(k)(—g ")d.(k)
is infrared- divergent. The Fock space of such test functions provides a representation space for the asymptotic
fields of quantum electrodynamics. It contains subspaces in which the indefinite metric is non- negative which,
when completed in the norm, yield physical Hilbert spaces. This Fock space of test functions thereby replaces
the nonphysical Hilbert space of the usual Gupta- Bleuler method and its positive- definite but noncovariant metric.
As an application the S matrix and finite transition probabilities are found for the bremsstrahlung emitted by
the classical external current of a scattered charged particle. A final result is a simple weak asymptotic limit of
the charged field . It is used as a starting point in the accompanying article, for the derivation of reduction

formulas for the quantum electrodynamical S matrix.

1. INTRODUCTION

The outcome of the present investigation is an
S-matrix description of scattering processes in
quantum electrodynamics. As in a theory of mas-
sive particles, the S matrix is the set of on-mass-
shell momentum-space Green’s functions (T
products). However, because the photon is mass-
less, the singularity at the charged particle mass
shell is not a simple pole, and “going on the mass
shell” requires multiplication of the Green’s func-
tion by powers of p? — m? different from unity to
get a finite S-matrix element. Before arriving at
this goal, it is necessary to make the somewhat
lengthy theoretical detour, which is the subject
of the present article, caused by the need to con-
struct a suitable representation space. The S-
matrix and cross-section formulas follow in the
accompanying article.

In any scattering process involving charged
particles, infinite numbers of infrared photons
are emitted coherently. Since the early work of
Bloch and Nordsieck! it has been understood that
a transformation out of the Hilbert space contain-
ing finite numbers of photons to one containing
infinite numbers of coherent photons is necessary
to get finite cross sections. In more recent years
coherent spaces have been used particularly by
Chung,? Kibble,® Kulish and Faddeev,* and others®
in conjunction with renormalized Feynman ampli-
tudes to obtain finite cross sections. Despite the
important insight which these works provide, they
have not so far resulted in a convenient scheme
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for practical calculations. These are still done,
following a method introduced by Dalitz® and elab-
orated by Yennie, Frautschi, and Suura,” which
calls for the introduction of a small but finite
photon mass in intermediate stages of calculation,
but which cancels out of cross sections when a
sum over final photon states is formed. We hope
that the calculational scheme presented here and in
the accompanying article may offer some practical
advantages over the massive photon method, espe-
cially in situations where radiative damping is a
large effect.

The present approach grew out of an earlier
attempt® to obtain Lehmann-Symanzik-Zimmer-
mann (LSZ) type reduction formulas for quantum
electrodynamics whereby, starting from an ex-
plicit expression for the asymptotic fields, S-
matrix elements are expressed in terms of
Green’s functions. The asymptotic charged field
presented earlier correctly accounted for the dis-
tortion of the plane wave e‘”’*, occurring in the
charged field, by a logarithmic operator phase
exp[ieQ(p)1In|p+ x| ], which is produced by the long-
range Liénard-Wiechert potentials. This led to a
finite S matrix for Coulomb scattering. However,
the earlier approach severed too violently the
Liénard-Wiechert potentials from the infrared
radiation, and thus led to ambiguous expressions
for S-matrix elements in terms of Green’s func-
tions. The singularities of Green’s functions in
quantum electrodynamics at the mass shell of the
charged particles have been studied by many
authors,® with the most complete results presented
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by Fradkin® and Kibble.® The conclusion of these
investigations is that if the charged particles go on
their mass shell one at a time, the singularity for
the ith particle is of the form (p;? —m,;?) " 1*Pi*%i,
instead of (p;2 —=m;®) ™!, as in a theory without
massless particles. The imaginary part of the
power reflects the infinite Coulomb phase shift
and corresponds to the distortion of the asymptotic
charged field by exp(iy; In| p;* x| ). The real part
is an effect of the soft photons, like radiation
damping. This suggests that the infrared radiation
distorts the asymptotic charged field by the factor
exp(B8; In| p; - x| ). In the present work we derive an
operator form of the asymptotic charged field
which contains these distortions, Eq. (1.2). When
inserted into the reduction machinery, they lead
to a cancellation of the singularity of the Green’s
function and produce a finite S-matrix element.

In this way the asymptotic field may be thought

of as being reconstructed from the singularities

of the Green’s functions. The central problem in
obtaining an asymptotic field with the requisite
properties is to find a suitable vector space on
which it is to be represented. This is the problem
of reconstructing the asymptotic state space of
quantum electrodynamics from the singularities
of the Green’s functions. However, we have pro-
ceeded in the opposite direction. Namely, we have
obtained an asymptotic field as an ansatz solution
to the equations of motion at asymptotic times.
The ansatz solution contains formal operator ex-
pressions that are infrared-divergent and are thus
really undefined expressions. At this point a rep-
resentation space is constructed in which the un-
defined expressions are assigned a meaning. It is
then verified that the resulting asymptotic field
when used with the reduction machinery leads to
finite S-matrix elements. The construction of the
asymptotic representation space is the core of the
present article, the reduction formula being post-
poned to the accompanying article.

To obtain a suitable representation space, it
turned out to be necessary to modify the Gupta-
Bleuler method,™ although the basic idea of an
indefinite metric, which is in fact necessary for
a formulation of quantum electrodynamics in terms
of local fields, is retained and even elaborated.

In the usual Gupta-Bleuler method, the vector
potential A and the charged field § are represented
on a nonphysical Hilbert space H which possesses
both a positive-definite, but Lorentz-noninvariant
inner product (, ) andalsoa Lorentz-invariant, but
indefinite inner product (|). There is a subspace
on which the indefinite inner product is non-nega-
tive which, when completed in the norm, yields a
new physical, Hilbert space H ,,,,.."* However, A
and ¥ are not observable fields, so the require-

ment that they be represented on a Hilbert space,
which would be necessary for a physical interpre-
tation, is in fact lacking. Indeed, in the usual
Gupta-Bleuler method, the role of the nonphysical
Hilbert space H is merely to provide a topology
for the vector space on which A and ¥ are rep-
resented. In the present approach, the nonphys-
ical Hilbert space H and its positive-definite but
noninvariant inner product (, ) are abandoned.
Instead the asymptotic fields are represented on
a Fock space of test functions which is provided
with an indefinite and Lorentz-invariant inner
product. This inner product is nonnegative on
certain subspaces which, when completed in the
norm, yield physical Hilbert spaces. This ap-
proach offers the possibility of a reconstruction
theorem for quantum electrodynamics. Suppose
the Wightman functions of quantum electrodynamics
have all the usual properties except positivity.
Then the usual reconstruction theorem?!? may be
followed to the point of yielding local fields which
are operator-valued distributions on a Fock space
of test functions that possesses an indefinite inner
product. If it can be shown that the metric is non-
negative on certain subspaces which are also in-
variant under the action of the observable fields,
then these subspaces may be completed in the
norm to yield physical Hilbert spaces. From this
point of view the indefinite-metric formalism does
not require the additional ad hoc postulate of a
Hilbert space with two distinct inner products.
Instead, it differs from an ordinary field theory
with positive-definite metric simply by a weaken-
ing of the positivity postulate.

In the present approach the nonphysical Hilbert
space is replaced by an asymptotic state space
which is a Fock space of test functions. In their
dependence on photon variables the elements of
this space are sequences of n-photon test func-
tions, n=0,1,2,..., which, in each photon vari-
able, are test functions defined on the future light
cone k" =w(1,l§), w >0, The motivation for intro-
ducing this Fock space of test functions is that it
is possible to establish on it an indefinite, sesqui-
linear [see definition preceding Eq. (3.28)], Her-
mitian-symmetric, Lorentz-invariant inner prod-
uct, not only for test functions ¢, (k) =¢,(w, )
which are regular at w=0, so f¢§(k)¢“(k)d3k/2w
is finite, but also for test functions whose behavior
at w=0 is given by ep,/p+k, for which the usual
inner product is infrared-divergent. The extension
of the definition of the inner product to include such
test functions proceeds by a regularization, or
infrared renormalization, procedure. A subspace
of the Fock space of test functions on which the
extended inner product is non-negative is spec-
ified by two conditions. The first is transversal-
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ity, k+a(k)| )=0, which is the usual Gupta-Bleuler
condition. The second is a condition of infrared
coherence,

: - - €4 P#

&%a“(k)‘>—wﬁ;m|>- (1.1)
It states that the vectors in the subspace are
eigenvectors of the zero-frequency annihilation
operator, with an eigenvalue, which is character-
istic of the subspace, determined by a set of
charges e, and momenta p,. Thus a subspace of
non-negative metric, which may be completed in

J

t—> too

the norm to a physical photon Hilbert space, is an
eigenspace of k- a(k) with eigenvalue zero, and an
eigenspace of wa" (k)| w=o With eigenvalue
—(2m) 7323 e, PE(E, =D, - B) 7Y, where pff =(E,, D,).
The quantum-electrodynamic S matrix for brems-
strahlung of low-energy photons satisfies both of
these conditions. The fact that a positive-definite
inner product is established for such a space
means that the bremsstrahlung cross section is
made finite by the infrared renormalization.

On the asymptotic space, the charged field ™
has a particularly simple weak asymptotic limit,

3
lim 40 =4%() = e | G 3 [D(p, 200, (P ple™* +a (PID(p, o ). (1.22)

If the factor D(p, x) were missing this would be the usual Dirac free field with electron annihilation opera-
tor b,(p) and positron creation operator d:(p). Instead D(p, x) represents a logarithmic distortion of the

plane wave given by

pexl
m

D(p, x)=exp [z’«z@(p)e(p +%)1In

The first factor, found previously,® represents
the logarithmic distortion of the plane wave pro-
duced by the Liénard-Wiechert potentials of other
particles, with

A= 3z [ @ L) (19

(p-p')? = 1p°p"?]
Here p(p) is the charge-density operator in mo-
mentum space

p(p)==ed(p? -m)(p?) 3" [6](p)by( 1) —d] (p)dy(p)]

s

(1.4)

The remaining factors in Eq. (1.2b) represent a
similar logarithmic distortion of the plane wave
produced by the zero-frequency infrared coherent
photons, but with real coefficient

1 ~
A(p) = (ZW)S/zfdkEfﬁ.ﬁwa“(k) R

m

The constant /;, with dimension of mass is an in-
frared renormalization constant which cancels out
of all observable quantities. The asymptotic limit
(1.2) is a weak asymptotic limit. It must be sand-
wiched between normalizable states; ¢ *(x) itself
is not an operator, but a bilinear form, for AT(p)
is defined to act only to the left. The simple
spatial dependence of the asymptotic limit (1.2),
namely a logarithmically distorted plane wave,
allows the derivation of reduction formulas. This
is taken up in the accompanying article.

]exp[—eAT(p)ln<€_i;;xll>} exp [eA(p)ln <€~+L5L——xl—1>} (1.2b)

The plan of the present article is as follows. In
Sec. II the field equations at asymptotic times are
solved by ansatz. The solution for the charged
field is found to contain infrared-divergent opera-
tors that are lacking in definition. Section III is
devoted to constructing a representation space on
which these operators can be given a meaning.
This is the space of test functions mentioned
earlier. The heart of the construction is an in-
frared renormalization procedure which provides
an inner product for wave functions that are not
square integrable in the infrared. Physical Hilbert
spaces are constructed by completing in the norm
subspaces on which the inner product is non-neg-
ative. In Sec. IV asymptotic fields are given a
meaning as operators on the Fock space of test
functions. First the free vector potential is con-
sidered. Then bremsstrahlung by the classical
external current of a scattered charged particle is
studied in detail as a methodological introduction to
the scattering problem in quantum electrodynam -
ics: An S matrix is provided which gives finite
transition probabilities. Next the normalization
of the charged field is related to the normalization
of the renormalized electron propagator by com-
paring it with the propagator of an asymptotic
charged field. Finally the weak limit of the asymp-
totic charged field given above, Eq. (1.2), is ob-
tained. This allows the derivation of reduction
formulas for the quantum-electrodynamic S ma-
trix, dealt with in the accompanying article.
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II. EQUATIONS OF MOTION AT ASYMPTOTIC TIMES

In this section we solve the field equations at
asymptotic times by ansatz. We work, in the most
conventional manner, with the Fock space of free
particles until divergent expressions are encoun-
tered which will force us to seek another repre-
sentation space. Let the states of free incoming
electrons, positrons, and photons be generated
in the usual way by creation operators bs‘"T(p),
d;“f(p), and aL"T(k), respectively, which satisfy

{62 p), 3T (p")} = 2B (5 - B')3,1 (2.1a)
{ar(p), a2 (p")} =2E8 (5 - B84, (2.1b)
[af(k), alr (k)] = —g,, 208 (& —K), (2.1c)

where g*” =diag(l, -1, -1,-1), p*=(E,p), ¥*=(,k),
E={+m?%?, and w=|K|. The corresponding
particles are free in the sense that they transform
in the usual way under the Poincaré group. In
particular the generators of space-time displace-
ments are given by

3 . N s i
pr= [ SL S [0 (ppip) + i (p) p)] p*

+ f %a;"*(k)(_g“)a;"(k)k". (2.2)

There are corresponding expressions with “in”
- ‘“out,” and until further notice, the “in” label
will generally be dropped.

The electric charge operator @ is given by

Q=fd“z>p(i>), (2.3)

where p(p) is the charge-density operator in mo-
mentum space

p(p)=—ed(p? —=m*)6(p°) 3 [b] (P)bs(p) - dd (p)ds(p)],

(2.4a)

or, if there are different kinds of charge-bearing
particles, of masses m,, such as electrons and
muons,

p(p)= " €8(p* - m,2)6( 1)

X 3" [ba(P)bsa(P) = dd(P)dsa( D] .

(2.4Db)

As an ansatz the renormalized Heisenberg elec-
tric-current operator J,(x) is taken to have the
asymptotic limit

lim J,(x)=J (%)

t—> to0

= f a’pp(p)(p*/p°)0%(X - Bt/p°)

= [atoton [ aroitx-pm)
' (2.5)

This corresponds to the current of classical par-
ticles moving uniformly along straight lines
through the origin, as is proper because at asymp-
totic times any finite impact parameter is neg-
ligible compared to pt/E. Because p(p) commutes
with the momentum operator, J*(x) does not
appear to have the correct transformation law
under displacement for finite values of x. How-
ever, if matrix elements of this operator between
normalizable states are formed, it is found that
at asymptotic times J*(x) decreases like {73, with
a finite spatial integral. Under a finite displace-
ment a, the change in J* (x) is of order at™* which
is negligible by comparison. Thus J*(x) does
behave correctly under translation in the sense
of a weak asymptotic limit. Other asymptotic
fields will be found which behave similarly, and
the results of our calculations, which make use
of asymptotic properties only, will be manifestly
translationally invariant.

The renormalized Heisenberg vector potential
A*(x) in the Feynman (Gupta-Bleuler) gauge sat-
isfies

92Ab=J* (2.6)

with formal solution

AP (x) =AFI(x) +f A (x —y)I* (y)d %y, (2.7a)

A8 () = A ¢ [ AWt (y)ddy,  (2.70)

where A™(x) has the usual expansion

in 1 a3k in =-ikex inT ox
AMx):W %[ (R)e T v al (R)ett Y]

(2.8)

and in—out. In Eq. (2.7a) there are contributions
only for y°<x° so for t=x°~ —, we insert the
asymptotic limit for J*(y) and obtain

lim A, (x)=A7(x)

t— =

=Ain 1 (e PPIPy
=Ay (x)+4ﬂfd ‘b[(p-x)z-pzxz]”z'

(2.9)
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The last term represents the Liénard-Wiechert
potential of the asymptotic charged particles. It
will be estimated later in various circumstances.
The main problem is to find the asymptotic limit
$™* of the charged field ¥. If the photons were
massive, it would coincide with the free field

900= Gy | G T (ol

+d]"(pYvs(ple?].

Instead it will be found from the equation of motion
that

@ —m)P® +e:A*Pp™ :=0, (2.10)

where A® is the asymptotic form of A just ob-
tained. Here normal ordering means that the cre-
ation and annihilation parts of A™ appear on the
left and right of ¥*, respectively, and the charged
particle creation and annihilation operators in

¥* appear respectively on the left and right of

o™, To obtain a solution of this equation at asymp-
totic times, consider each momentum component
p of " as a wave packet whose center of gravity
moves along

Xy =pyT. (2.11)

Then, in the eikonal approximation, each mo-
mentum component by(p) becomes multiplied by

(%)

E(p,x)=:exp [z‘e AR( [rr)p“d'r:] . (2.12)

Here the upper or lower sign applies to early or
late times, and 7(x) is obtained by contracting
x=p7 with p,

T(x)=p* x/m?. (2.13)
Upon inserting Eq. (2.9) for A™ one finds
E(p, x)=explieQ(p)e(p- x) In| cp+ x| JR(p, x),
(2.14)

where € is the sign function, and

_1_ 4y pp ’
Q(p) = 41;fd 4 [(p.p/)z_pzplzluzp(i’ ).
(2.15)

The integration constant appearing inside the log-
arithm, In|cp- x|, may be given any desired value
by a unitary transformation involving only the
charged particle creation and annihilation opera-
tors. It will be assigned a convenient value in
Sec. IVD. Contributions at 7=+ have been
dropped. The radiation operator R(p, x) is given
by

R(p, x)=exp[a’(¢, ,(x) ] exp[-a(¢, ,(x)],
(2.16)

where

a%k 1
Zw“

(-&"") py () (2.17a)

(the metric on polarization indices is —g,,),

u
ol (R, %)= (2 )3/2 ppk p<li%)—£>, (2.17b)

and is recognized as the operator which, when
applied to the vacuum, produces the coherent
state characterized by the function ¢, ,(%, x).

A preliminary form of the asymptotic charged
field ¢ .. is obtained by multiplying in normal
order each momentum component of the free field
by the eikonal factor E(p, x),

Do) = e | B 3 (B (b, )b, Pl ple ™

+dl (PE(p, x)v,(p)e™*].
(2.18)

According to Eq. (2.14) E(p, x) contains a logarith-
mic distortion of the plane wave caused by the
Liénard-Wiechert potential of other particles, and
the radiation factor R(p, x), Eq. (2.16), which
creates a coherent state when applied to the vacu-
um. However, the length square of the n-photon
component of this state is given by

(=1y'T e* fd3k p? ]"

Lo ) T ol (2.19)
which diverges in both the ultraviolet and the
infrared. The ultraviolet divergence is presum-
ably controlled when ¢, (x) is smeared with a
test function g(x) because the w integration in Eq.
(2.16) converges weakly at large w and, in fact,
no ultraviolet divergences are encountered in the
present work. However, the divergence at w=0
is not eliminated when ¥ .. (x) is smeared, because
in R(p,x), x always appears multiplied by w.

This means that when (smeared) ¢, is applied to
any vector in the Fock space, the result is either
meaningless, or zero, or lies outside the Fock
space. Thus the operator expression for ¢, is
really undefined. In the next section a representa-
tion space will be constructed by an infrared re-
normalization procedure in which ¢, will have a
finite operator meaning.

III. INFRARED RENORMALIZATION
A. One-photon space

In the preliminary asymptotic field just found,
one encounters the formal expressions

L a1 () (-2, 2) (3.12)
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TE o, () (=g"") 0k, 3) (3.1b)
20 i -g (Pu ’ ’ .
with
"y -e  pt (zk pp+ x>
9k, x)= s x| =T (3.2)
This function has the low-frequency limit
-e P
hmcp (B, x)= G bR (3.3)

which in independent of x. For such a wave func-
tion the usual inner product

[ ort-g"0, %% 5.4)

diverges at w=0, which is the crudest form of the
infrared divergence. Consequently the operators
(3.1) are without precise meaning and calculations
with them lead to infrared-divergent expressions.

These divergences will be circumvented by a
modification and elaboration of the Gupta-Bleuler
method, described in outline as follows. It will
be shown that a Lorentz-invariant, Hermitian-
symmetric, sesquilinear but indefinite form may
be established on a space of test functions which
includes functions whose low-frequency behavior
is given by

4

hm(,f)”(k Z g,zp 7 (3.5)

a=

where the ¢, are complex constants. This induces
an indefinite metric on the Fock space constructed
with such test functions, namely the space of se-
quences of symmetric n-photon wave functions,
n=0,1,...,%, which are test functions of type
(3.5) in each variable. It will be shown that the
indefinite metric is non-negative on certain sub-
spaces of this Fock space of test functions. A
class of physically equivalent Hilbert spaces will
be obtained by completing each of the subspaces
in the norm.

Before embarking on the formal construction it
is convenient to establish notation and some ele-
mentary Lorentz transformation properties. Pho-
ton wave functions are defined on the future light
cone k“=w(1,72), where £ is a point on the unit
sphere that represents a light ray, and the fre-
quency w measures distance along a light ray,
OH(R) = oM w, 73). Under Lorentz transformation
k' =AM k', wand k= (I%l,l’éz,é'“’) =k* transform ac-
cording to

W’ =(A%+ A", Fyw, (3.6a)

s Ny AR
rio_ 0 J
k TASG AR (8.60)

Observe that light rays transform independently
of frequencies. Observe also that frequencies
transform multiplicatively so the vertex of the
light cone w =0 is never reached under Lorentz
transformations. The orbit of £ under A is thus
the product of the unit sphere B2=1 and the open
half line w>0. Because d3k/2w=dkw?dw/2w is
known to be invariant under Lorentz transforma-
tion, and because dw/w is invariant under the
transformation (3.6a), we obtain for the Jacobian
of the transformation (3.6b)

dk’ =dR(A% + A%, R7)2 3.7

It is convenient to introduce for each light ray
k the 4-vector quantity

Br=(1,k) =k w, (3.8a)

which, however, under Lorentz transformation
does not quite transform vectorially

an

kb= —7. .

Aoy kU (3 8b)

Its contraction with an ordinary 4-vector p- 2 =p°
—pikt=E - p*k’ is not quite a scalar, but instead
under the change of variables (3.6b) it satisfies

~ ApeR’
pek= Kf%"ﬂ" (3.9)
This yields a result which will be useful later.
Let F(p,* k) be a function of p,*k, a=1,.. .,A
which is homogeneous of degree -2 in the p, *
Then the integral J(p,)= fdkF (p, k) is an invari-
ant function of the p,,

J(Pg) =J (Ap,) . (3.10)

Because the wave functions of interest, q)“(w,l%)
diverge as w approaches zero according to Eq.
(3.5), it is more convenient to work with wave
functions

FHw, k) =w(w, k) 3.11)

)

with finite infrared limit

A i
lim fA(w, B)= $ =Sa Pa_ 3.12
u}—»n;f ((.d, ) HE:T (2,”)3/2 Pa‘}} ( )

Under Lorentz transformation the f* transform
according to

FH(R) = (U(A))H(R) = (A, R*) TIAF, FY(A ™) .
(3.13)

The usual inner product takes the form
dk (*dw ~ v ~
Glr= [T Lt e hgrie, b,

(3.14)
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which makes the infrared divergences painfully
apparent when the f have a finite limit at w=0.
This completes the preliminaries and we proceed
to the formal construction.

Consider a space of complex test functions
f¥w, k), defined on the product of the closed half
line w =0 and the unit sphere k%=1, which are of
fast decrease as w approaches infinity. For our
purposes, the only essential feature of this space
is that f”(w,l%) and 8f“(w,fc)/8w be continuous as w
approaches zero and have finite limits at w=0
which may depend on %,

£,y =tim w0,/ 2L (0, B)=1im L (w, B).

wrp QW
(3.15)

Let &, be the subspace of such test functions which
vanish at w=0,

fHw,Bye &y: f40,k)=0.

Since, in addition, their first derivative is finite,
they vanish like w to the first power, and the
usual inner product (3.14) is finite. Let &, be the
space of test functions with behavior at w=0
specified by

(3.16)

Hw, ke 8, FU0,k)=cfik), (3.17)
where ¢ is a complex constant and
s =1 pF
fh(k)= TR (3.18)

This space may be loosely thought of as the space
of one-photon wave functions associated with a
charged particle of momentum p. For these, the
inner product (3.14) is obviously divergent. Final-
ly let & be the space of test functions f“(w,l%) made
up of finite linear combinations of functions of &,
for various p,

A

o, ES: f10,k)=Y" cufh(B).

a=1

(3.19)

The space & appears to be the natural space for
the study of the infrared problem. It may be
thought of as the space of possible one-photon
test functions in the presence of several charged
particles. We have obviously § D8, D4&,.

Let us describe briefly, to establish notation
and as a model for future constructions, how the
usual one-photon physical Hilbert space may be
constructed. On &, the inner product (3.14) is
finite, but indefinite. However, on &}, the sub-
space of &, consisting of transverse wave func-
tions,

frE8t: kyf¥k)=0and f* < &, (3.20)

the inner product is non-negative, {f|f)=0. The

transversality condition also reduces the number
of polarization components from four to three.
However, the space &} also contains test functions
of vanishing norm which form the subspace &9 of
functions f* parallel to k*:

fre 82: fHR)=k"f(k) and fre &Y. (3.21)

Let [85] be the space of equivalence classes [f]
of test functions in &} (modulo test functions in &3):

[65]=8%/85 or
LAhElf]: fi-fE88.

In [&;] the inner product ([f]|[g]), for
[7],[gl€[8}], calculated by taking any represen-
tative elements, ([f]|[g])=(flg), is positive-
definite. The formation of equivalence classes of
transverse test functions reduces the number of
polarization components from three to two, as
desired. Finally the physical one-photon Hilbert
space 3¢'?) is the closure of [§5]. Namely, it is
the vector space whose elements are equivalence
classes of Cauchy sequences of vectors in [8}]
(modulo Cauchy sequences which converge to zero)
with an inner product defined to be the limit of the
inner product in [§}]. The construction of the
Hilbert space 3 from the space of non-negative
norm &} is a standard construction, called com-
pletion in the norm, which in no way depends on
the nature of the space §}. It has been described
many times® and will be used here repeatedly.
Note that, in contrast to the usual Gupta-Bleuler
method, we have not introduced a nonphysical
Hilbert space with noncovariant but positive-
definite norm defined on the 4-component wave-
function space. Nor shall we. By establishing
an indefinite form on & instead of just on &, it
will be possible to effect a similar construction
for photons associated with charged particles.
However, in this case it will be necessary to go to
the Fock space F(8) before a suitable subspace of
non-negative metric may be found.

Any vector f, in §, may be written as

FLR) = cf E(R)F,(R) + FE(R) (3.23)

where fl(w,lz’/) satisfies f,(0, E): 1, ,€8, and
fH(k) is given by Eq. (3.18). The generic element
of § may thus be written

(3.22)

A -~
FHRY =D cafb (R (R) + £h () .

a=1

(3.24)

The linear form on & will be obtained by (anti)
linear extension after it is defined for the separate
terms in this expansion. For f,, f] & &8, the inner
product is the usual one,

*°d

Ghro= [T [ R e w, 6.2
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and similarly for the inner product between f}(k)
=fH(R)f,(R) and f, = &,

Gl =l = [ [ L -guriee).

(3.26)

These inner products are convergent because f,
is finite at w =0 while f, and f/, which are zero at
w =0 with finite derivative, vanish like w. [This
is not true for vectors in 3(3(1), and (3.26) would
diverge for some f, in 3, However, an inner
product between f, and the generic element of 3¢ (¥
is not defined.] By (anti) linear extension from

T g ® [ 2l

Eq. (3.23), the inner product for any f& &§ and
fo€ &, is given by

== [ [ 22 pmeyg, ).

(3.27)

There remains only to define an inner product be-
tween £,(k) = f,(R)f, (k) and £, (k) =, (R)f,(R). 1t
would diverge under the usual definition. Consider
instead the usual inner product in which the left
factor is regularized by the substitution
fHE)~-f(R)6(p-k-ml), where p?=m? and lis a
positive number with dimensions of mass,

R st N w \ @ R
TIEG [ o (2T 1m0

Here w(l)=m I p+F£)™*, and the contribution at w == vanishes because all test functions are of fast decrease
there. The last integral remains convergent if the lower limit of integration is replaced by zero, which
involves neglect of terms which vanish with /. Let the result be the definition of the inner product for

UR) =FRR)F (R), fL(R) =L (R)F (),

= [ @ [ don (BE) 2 1001

[ [ aom(E) 2.

With this definition the divergence of fo dw/w is replaced by the convergence of —ﬁ) dwlnwd/dw. As de-
fined, the inner product depends on an arbitrary constant I, which is a typical renormalization phenome-
non. Observe that the inner products (3.25) and (3.26) may be integrated by parts with vanishing contribu-

tions at w =0,

Galrp= [ B [ awn (BE) 2 parwaraeo,

o= [ B [ aowm (BE) L pparg.

Therefore, by requiring that the inner product be sesquilinear, i.e., linear in the second factor and anti-
linear in the first factor, the inner product has a unique extension to all f, & §, and all f’ & & given by

Gl [§ [ ao(EE) Zigerel.

(3.28)

Finally because by definition every vector fin § is the sum of vectors in 8,,f= Z_za lfp , the inner product
for any f, f' € & becomes by antilinearity in the first factor

= fF [ aw Z{m(”“ E) 2 gy ()f,a(k)]}.

(3.29)

Because dw--+9/dw--- is invariant under the Lorentz transformation (3.6a), this inner product is Lo-
rentz-invariant. Thus a covariant sesquilinear form has been established on &.

We shall prove that despite its unsymmetmcal appearance and derivation, the inner product is in fact
Hermitian symmetric, {(f|f")=(f'| f)*. Let A(%) be an arbitrary function of k, and possibly depending also

on the p, or p,. We have

<flf'>=f%’§jo Z{( Poka 10 ) 2 sy, (k)]}
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The first term is the integral of an exact deriva-
tive with respect to w. Therefore, with f“ (0, k)
=c,fL (k) FHR) =254 1h,(R), f1H(R) = Z)bf, (k), and
F30, /)= cyfhik), where f4() = - (2m)2p/p+ F
we have

FLry=30 creipad b av(FIN sy (3.300)
where "

Pl pbya= [ Gin (p ’ kA(k)>f (B)(~gy)f3, (B),

(3.30b)

irram [ [ avm (5 ) Slmm s,

(3.30c)

Thus the inner product has been written as the sum
of two terms. The second is obviously Hermitian
symmetric and makes no explicit reference to the
zero-frequency limit of the test functions. The
first involves an integral over light rays and de-
pends only on the constants ¢, (c¢;) and momenta
pq (p}) which characterize the zero-frequency limit
of the test functions. Because <plp’>A is real, to
establish Hermiticity it is sufficient to show that
1=(p| p") A~ (1| p) 5 vanishes. With f} (k)
=_(2m)32p* /p - k2 we have

b P’

1 fdﬁ pokm’ )
=——{ =In
@m)yJ 2 (p chm )pebpiek
The integrand is homogeneous of degree -2 in
p+kand p’-ﬁ, so Eq. (3.10) applies and / is in-
variant, I (Ap, Ap’)=I(p,p’). Moreover, I depends
only on the unit 4-vectors p/m and p’/m’,
I(Ap/m, Ap'/m')=I(p/m,p'/m'). 1t is always pos-
sible to choose a Lorentz transformation A such
that Ap/m =p’/m’ and Ap’'/m’ =p/m (A is a 180°
rotation in the center of mass of p/m and p’/m’),
soI(p/m,p'/m')=I(p'/m’, p/m). However, by
inspection of the integral, I is odd under the inter-
change p/m-— p'/m’, so I=0. Q.ED.
Note that in dealing with particles of different
mass, the appearance of m in the definition of
the inner product is essential in establishing

F={F(")}={F('0)1 F&)(k), F(,.) ) “"(kl cecky)

y .

g
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Hermiticity. The constant [ represents an infrared
renormalization constant which is common to all
charged particles. It will be shown that all physi-
cal quantities are independent of /, which may
therefore be assigned any value, for example,
l=1. However, it is convenient to keep it as an
arbitrary parameter for bookkeeping purposes.

Thus a covariant, sesquilinear, Hermitian inner
product has been established on &, for which
Eqgs. (3.29) and (3.30) are convenient representa-
tions. Since we will shortly deal with wave func-
tions of several variables it is convenient to write
the inner product as

L= [ @Ry =g @), (3.31)

which represents its formal properties and indi-
cates which variable is eliminated when the inner
product is formed. However, (dk), does not satisfy
the usual definition of a measure, although, if
either for f' is in &, then (dk), = dk =dkdw(2w)™?,
which is a measure.”

B. Photon Fock space

The extension of the inner product from &, to §
involves what is essentially a linear subtraction.
Therefore, one does not expect to find a subspace
in § where the inner product is non-negative, be-
yond the original one, §;. However, the situation
is quite different in the Fock space F(§) con-
structed from § where, on certain subspaces,
the linear subtraction is converted to a multipli-
cative renormalization. Let F(§) be the direct
sum

F8)= p&™, (3.32a)
n=0

where §(°) is a one dimensional vector space, §®
=§, and 8™ is the symmetric tensor product of
&™) with itself # times

&M = (g%, . (3.32b)

The elements F,G of F(§) are thus infinite se-
quences of symmetric nz-photon tests functions
which are test functions in § in each variable:

(3.32¢)

Addition and multiplication by complex numbers have the usual definition. We shall call F a Fock test
function and F(8) a test-function Fock space. An inner product between F={F(,} and G ={G(,} is provided

by the definition

2L (=1)" ; ek
(Fl6)=F6yr 30 S [ TL ), Fly ™ e,
n=1 * r=1

The inner product may diverge because of the infinite sum. However,

.. 'k,,)G(,,)“l. .o

u Ry e k) (3.33)

it is finite on many subspaces, for
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example, on the sequences with only a finite number of terms different from zero.
A creation operator denoted by cT(f), f €8 which maps F(§) into F(§) may be defined in the usual way.
With F={F(,,)} and F(_;,=0, a new sequence cY(f)FeF(8) is provided by the sequence
[e (f)F](n) o u"(kx e Ry) f“l(kl)F(n-l) "(kz ceckg) oo+ fin(k )Fpl-]_) p"_l(kl *tknoy) - (3.34)

Comparison with Eq. (3.33) shows that the Hermitian conjugate operator to c¢t(f), satisfying, for F,G
E€F(8),

(c(NGIF)=(GlcT(f)F) (3.35)
is given by
(e Flh " ey e lep) = = f(dk)zf’ﬁ(k)F?n'ff{ B CRRERY SR (3.36)

Note that ¢ T(f) depends linearly on f, whereas c(f) is antilinear. These operators satisfy the commuta-
tion relations

[e(f), e (@)]=(flg) . (3.37)

The vacuum state |0)=(1,0,0, ...) is annihilated by all the ¢(f), ¢(f)|0)=0. It is now possible to assign a
meaning to the formal expression (3.1) introduced at the beginning of this section, namely by the replace-
ments

fdk 1) (=g (k)= cT(we), (3.38a)
LR =g 03 ()= c(w9). (3.38D)

This gives a meaning to ¢,.(x), the preliminary form of the asymptotic charged field. (The reader who
prefers to see an application before continuing the present formal development may turn to Sec. IVC
where the propagator (0| T[9,,. () ¥, ()] 0) is calculated.)

The annihilation operator c¢*(k) depending on a single momentum vector k, defined by

[CHBIFILS " Pty e ) = Bl o0, by o o By) (3.39a)
for F={F¢y """k, + <+ k,)}, satisfies
[cH(R), cT(f)]=f (k) (3.39D)

and maps $(8) into $(§). (However, the corresponding creation operator c**(k), with [c (&), c](%")]
= —g“,,é(,)(k — k') produces a sequence of distributions and not another Fock test function.) Comparison
with Eq. (3.37) yields

o) = [(ar)f P (=g, ®), (3.40a)

or explicitly, by Eq. (3.29), with f =23.7,,, /5,85,

e [4E fdwz %‘“(m ) Lk ede, 0] } (3.40b)

The operator c#(k) is useful for characterizing various subspaces. In particular the subspace on which,
as will be seen, Maxwell’s equations are satisfied in expectation value is provided by

kyctR)F=0, (3.41a)
which implies transversality of all test functions in the sequence F={F,}, n=1,2, ...
RuyFiny2 " Pk, by e oo k) =0, n=1,2,... . (3.41Db)

Because F,, is symmetric, this is the same as transversality in each variable. With c¥(k)=c*(w, £), the
zero-frequency annihilation operator depending on the light ray £ is defined by
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c*(R)=c*(0,%).

(3.42)

The subspace F(8,) of sequences of test function which vanish at the origin in each argument is specified

by
c*(R)F=0.

(3.43).

Let us construct the physical Hilbert space for photons in the absence of charged particles. The method
is the same as for the one-photon space. For F,G<F(8,) the inner product is given by ordinary integra-

tion

oo

-1) cee X
(FIG)=F§GO+Z£n—')_fdk1...dknFé‘nl) u"(kx"'kn)G(")“l"'“n(k1"'kn),

n=1

where dk=dkdw(2w)™'. Let F(8}) be the subspace
of (8,) consisting of transverse Fock test func-
tions, i.e., they satisfy Eqs. (3.41). For these,
the norm (F| F) corresponding to Eq. (3.44) is a
sum, possibly divergent, of non-negative num-
‘bers. Let F°(§%) be the subspace of F(§}) consist-
ing of vectors of vanishing norm. They are char-
acterized by F,,=0 and every F(} " "Fn(k, « « - &,)
has at least one component parallel to 2. Let
[F(8¢)] be the space of equivalence classes of
vectors in F(§}) [modulo vectors in F°(82)] that
have finite norm. On [F(§{)] the norm correspond-
ing to Eq. (3.44) is positive-definite. The physi-
cal Hilbert space of photons in the absence of
charged particles, which we shall denote by 3(0),
is the closure of [F(§7)], namely the vector space
whose elements are equivalence classes of Cauchy
sequences in [F(87)] (modulo Cauchy sequences
that converge to zero).

Note again, as in the one-photon case, that we
have not introduced the traditional device of a
nonphysical Hilbert space with noncovariant but
positive-definite norm defined on the 4-component
wave-function space.

The essential point in the construction is the
existence of the subspace F(§3)C §(8) with non-
negative metric. Having found one such subspace,
we obtain a large class of new subspaces with non-
negative metric simply by applying any operator
of F(8) which preserves the inner product. For
our purposes operators of the form

U(f)=expla™(f) -a(f)]
=exp[ - z(f|f)]exp[a’(f)]exp[ - a(f)]
(3.45)

are more than sufficient.
These operators satisfy the Weyl relation

U(f)U(g)=exp[-3(flg)+2(g | N]U(f +2).
(3.46)

(3.44)

Vectors of the form F(f)=U(f)|0) with f€§ are
coherent states, with explicit form given by

F(f)=exp[-3(f|f)]exp[a’(f)]I0), (3.47a)

or, in terms of components F,,(f)=exp[- (1],
and for n= 1,

Fony ()" inlley o« + k)
=exp[— 2(f | F)1f ¥1(ky) + + - f nlley) -
(3.47b)

They have unit norm (F(f)| F(f))=1 and are eigen-
states of the annihilation operator

cHR)F(f)=fH(R)F(S) .

Let W (&) designate the subspace of F(§) formed
of finite linear combinations of coherent states,

(3.48)

N
Few(8): F=Y c,F(f)). (3.49)

i=1

From Eqgs. (3.45) and (3.46) we see immediately
that the inner product (F|G) is finite for all F,
Gew(8). Moreover, U(f) is well defined on

W(8) and in fact it maps W(§) isometrically one-
to-one onto itself. Let w(8;) be the subspace of
W(8) consisting of vectors of the form ) ¥, ¢, F(f;),
fi€8. It is also a subspace of F(8¢), so the me-
tric is non-negative in W(87). In fact, completion
of W(87) in the norm again produces 3¢(0), be-
cause finite linear combinations of coherent states
are dense. Furthermore, U(f) is well defined on
every vector of W(§}) for every f€8, and there-
fore produces a subspace of non-negative metric
which is different from W(8;) if f €8 is not in §§.
When completed in the norm it produces a new Hil-
bert space different from 3C(0).

We consider only the positive metric subspaces
produced by U(f.,s)), With fy, 5 specified as fol-
lows. Let f{, ;(k) be a transverse test function
kfl. 5 (k) =0, satisfying, with & =(w, k),
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e (0,R)=

Z e}, (k

A
- —€q p”

, Ly 21372 Pa’kx . (3.50a)

The e, are the electric charges of the particles
with momenta p,. Transversality implies

Zea=0
a

Let W'{e, p} be the image of W(§;) under U(f{, »)
WHe, ph =U(fie, ) W(8S), (3.51a)
w0} =w(&7) (3.51b)

This space is independent of which transverse f
satisfying Eq. (3.50) is chosen, for we have

U(f)=uNUNHU)]
=U(Nexplz(f1 )= IOU=F 1),

and if f and f’ are both transverse and both satisfy
Eq. (3.50) then —f +f’'€8} and U(~f +f') maps
W(EE) into itself. The space W*{e, p} enjoys the
following interesting properties:

(1) The metric is finite and non-negative on
w*e, p}, so W*e, p} may be completed to a Hil-
bert space 3¢{e, p}.

(2) W+{e,p} is transverse, which means, as will
be seen in the next section, that Maxwell’s equa-
tions hold in 3¢{e, p}. To show transversality ob-
serve that for Few{e pt, we have F=U(f, ,))F,
where F,ew*{0} C F(§}). Because
[2uct(R),U(fie, )=k S e,}(R)U (fyo 1) =0 and
k,cH(k)F,=0, it follows that % uCH(R)F=0.

(3 *{e p} is an eigenspace of the zero-fre-
quency annihilation operator c*(%) with eigenvalue
Yae Sh(R)==@2m) 2 e,pk/p,o k. Interms of
the component test functions of F={F,,}cWe,p},
this condition means

(3.50D)

im FL Py e ky)

w1—>0
—Zeaf

(1t follows from [c*(k), U(f)]= F*(0, B)U(f) and
c*(k) F,=0 that F e W*(0)C F(8,)) Call this
property infrared coherence. It is destroyed by
the photon-number operator N{F,} ={n F,,}, so
the number operator does not exist on the infrared
coherent space W*{e, p} nor its completion 3¢{e, p}.
On the other hand, the momentum operator

: “"(kl cook)}

(n-1) un(k2°"kn)- (352)

P“{F(,,)

={(kf 4+ o +REFLN T Ry e k)

preserves the infrared coherence property and
transversality, so its acts within 3¢{e, p}.

The physicist immediately recognizes that pro-
perties (2) and (3) are commonly attributed to the
S matrix in quantum electrodynamics, which is
why W*{e, p} has been singled out. In fact pro-
perty (3) leads precisely to the usual real in-
frared divergence of the bremsstrahlung cross
section. However, property (1) tells us that an
ordinary Hilbert space has been established for
precisely this case.

Each of the Hilbert spaces C{e, p} provides a
representation of the canonical commutation rela-
tions of ¢(f,), cT(f,), fo€3™). It may be shown
that these representations are mathematically in-
equivalent for different sets {e,p}#{e’, p’} because
they are characterized by different eigenvalues
of the zero-frequency annihilation operator c(%).
However, the support of f(, ,; may be restricted
to an arbitrarily small neighborhood of the origin.
Since every measurement is made over a finite
region of space-time, no measurement at strictly
zero frequency is possible. Thus every Hilbert
space 3¢{e, p} is physically equivalent to 3¢(0).

Any one of the ¥¢{e, p} may be chosen to describe
a given physical situation. It is a matter of mathe-
matical convenience which one is chosen.

Let us compute the explicit form of the inner
product in ‘w*{e,p}. Without greater effort, we
may in fact obtain the explicit form of the inner
product between a vector in W*{e, p} and a vector
in w*{e’,p’}. Let F and F’ be generic elements
of W*e,p}and W*{e’,p’}, respectively:

i=1

I J
F=) ciF(f)), F'=) c/F(f}), (3.53)
i=1

where F(f;) is the coherent sequence F(f;)
:{F(n)(fi)}

F(n)(fi)ul. o u"(k]_ . ‘kn)

=expl— 5| FOlFiMRy) - F17(Ry)

(3.54)

and similarly for F(f}). The test function f!(k)
is transverse and its zero-frequency limit is in-
dependent of the index 7,

A
u
lim £ Y0, B)= —C _Pa_ 3.55
Jim 7 (w, &) 02:1 T bk (3.55a)
and similarly for f;
lim f/¥(w k):i Sl (3.55b)
woo @m)¥2 p;-k

We have
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(FIF)=32%" cr e, {F(f)IF(f,) (3.56)

i=1 j=1

and
(E(fINF(f=C0lU T (f:)U (f})I0)
=exp[— 2 (fil f)= (SN FP+CFal AL
(3.57)
From Eq. (3.30) we find

(-1

nl

(FIG)a=F§Go+ Y
n=1

— 7 Wy 0
(dk,) o= = dk, dw, In <A(/§)> b

The derivatives act on F(,)G (). This inner pro-
duct is obviously sesquilinear and Hermitian sym-
metric. In view of Egs. (3.54) and (3.58), the
inner product (3.57) may be rewritten as

G AF e De, €ipal i)
a,b

XCE(fNF(f Da- (3.60)

Because the inner product (F|G), is sesquilinear
and because the exponential coefficient is indepen-
dent of the indices ¢ and j, we obtain from Eq.
(3.56) for the inner product between generic ele-
ments # and F’ of W{e, p} and W{e’, p’} the ex-
plicit expression

(FLE)=exp( 3 eael(pal pita JKFIFs. (3.60)
@b
For F,G ew"*{e, p} this reduces to

<F|c>=exp<2e,,eb<paipb>A><Flc>A- (3.62)
a,b

The inner product {¥|G), makes no references to
which infrared-coherent subspace the vectors may
be in, and the exponential coefficient depends only
on the infrared-coherent subspace W*{e, p} and
not on the particular vector.

The topology of F(8§) is such that W(§) is a
dense set and the conditions of transversality and
infrared coherence define closed subspaces. It
follows by continuity that the inner product is giv-
en by Eq. (3.62) throughout each subspace F*{e,p}
defined by these two conditions. For the same
reason it is also non-negative throughout gHe, pt,
the subspace consisting of those vectors!? that are
annihilated by % ,c"(%) and that are eigenfunctions

" BT
) /(dkl)A’ . -(dk,,)AFynl) Hn (By***ky) G(")ul' .. u,,(kl <ok,

(Fd =" eaeibal Pi)n
a,b

ﬂ%. fw w i Hx ’ )

+f 2 J dwln(A>aw[f,~ (R)f} u(R)].
(3.58)

It is convenient to define an inner product (F|G),

depending on the arbitrary function of E, A(R), for
any F,GeF(§). With F={F}, G={G}, set

(3.59)

(3.59b)

of the zero-frequency annihilation operator cu(l%)
with eigenvalue —(27)~%2Y, e,p¥/p,*k. If the sub-
space W*{e, p} or F*{e, p} is completed in the
norm (3.62) the physical Hilbert space 3C{e, p}
results. The reader may wonder why the space
F(8) is introduced at all since W(§) suffices for
the construction of the physical Hilbert spaces.
Later we will want to consider states with definite
numbers of photons. They are in F(§,) but not in
W(E,)-

Although the formal construction of 3¢{e, p} is
the same as for 3¢(0), there is a difference be-
tween the spaces which is worth mentioning. The
two Hilbert spaces are obtained from the closure
of the space of equivalence classes of Fock test
functions ['W*{e, p}] = w*{e, p}/we, p} and
[ «w*{0}] = w*{0}/w°{0}, respectively. The space
of equivalence classes [W'{:++}] may in each case
be made into a space of test functions by choosing
a representative, for example, the unique Fock
test function F in each equivalence class [F], all
of whose component test functions Féj,}; Ry e k),
n=1,2,..., vanish when any polarization index
W, is zero. With this choice it may be shown that
when Cauchy sequences are formed (modulo
Cauchy sequences that converge to zero in norm)
the corresponding sequences of n-photon test
functions, in the case of 5¢{0}, converge almpst
everywhere to n-photon wave functions. How:ever,
due toa resurgence of the infrared divergence, they
donot necessarily converge tofunctionsatall, inthe
case of ffC{e, p}. This does not invalidate our construc-
tion; 3¢{e, p} is simply a more abstract space. Inner
products must be calculated in the dense subset
of 3¢{e, p} whose n-photon components are wave
functions, before taking limits.

For applications, the inner product (3.62) is the
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principal result of this section. The appearance
of the arbitrary A which cancels between the ex- -
ponential coefficient and the inner product (F|G),
is very convenient in practice, for A may be
chosen to make the infinite series (3.59), which
defines the inner product (F|G),, converge as
rapidly as possible. In particular in a scattering
experiment with good resolution it will be seen
later that if A is appropriately chosen (approp-
riate means that A is essentially set equal to the
energy resolution), then the exponential coeffici-
ent contains the usual radiation damping factor,
and the successive terms in the infinite series
(3.59) which defines (F| F), are of order (aA)" so
the series is well approximated by its zeroth
term. Usual perturbation theory yields a series
in (alnA)". To see the radiation damping factor
emerge, let A(%) be a constant independent of k.
Then by Eq. (3.30b), the A dependence of the ex-
ponential coefficient is AZ{¢?} where

Ble,pb=-Y cues [ 55 FLBT o, ®)
a,b

-1 dﬁ €4Pq >
ar/ T (T o

The 4-vector —(27)"23, e, pH(p,+ £)~t, which is,
in fact, precisely the eigenvalue of ¢#(£) which
defines the space W*{e,p}, is spacelike, because
on contraction with the lightlike vector &* =(1, &)
it gives J,e,=0. Therefore, its square is nega-
tive and Eq. (3.63) shows that B{e, p} is positive.
So AB{e:?} yanishes as A approaches zero. The
integral is easily evaluated term by term, by
exploiting the Lorentz invariance expressed in
Eq. (3.10), and one finds

B{e,p}=—azb) o Yoo cOthis (3.64)
where ¢,,> 0 is the hyperbolic angle between p,
and py: PPy = mymy, coshy,,. Thus AB{e# gives
the familiar dependence on the experimental reso-
lution. It will be convenient to refer to the expo-
nential factor exp()) e, e,{ P,1p,)s) generically as
the damping factor.

The inner product depends on the renormaliza-
tion constant ! through the multiplicative factor
1-3{¢.#}  However, if states are normalized to
unity, this factor obviously cancels out of all
probabilities.

IV. ASYMPTOTIC FIELDS

In the present section we will show-how the
asymptotic fields of quantum electrodynamics
may be represented as operators on the Fock
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space of test functions constructed previously.
We consider in Sec. IV A the free vector potential,
in Sec. IV B, bremsstrahlung by the classical ex-
ternal current of a scattered charged particle, in
Sec. IVC, the propagator of the preliminary
charged asymptotic field ¢,., and finally in Sec.
IV D we obtain a simple weak asymptotic limit of
the charged field.

A. Free vector potential

The free vector potential will be designated A in
this subsection only. In position space A ,(x) is an
operator-valued distribution on test functions
ju(x) which are interpreted as classical currents.
Write

AG)= [Au6)(=g" (00 22 (4.1)
and let
Fu®)=Fulw, B)= [ 5 (0t (4.2)

be the Fourier transform ofjp(x)Awith k restricted
to the future light cone, k" =w(1, %), w=> 0. The
operator A(j) is defined to be

AG)= @%%[cvwf Y+ e(wi)] (4.32)

where ¢'(f) and c(f) are defined in Egs. (3.34) and
(3.36), corresponding to the symbolic representa-
tion

Au(x)=(21r)"3/2f(dk),w[c:ﬂ(k)eik"% culkye™ 7]

(4.3b)

As usual, we smear only with test functions j*(x)
which are of fast decrease at infinity. Consequent-
1y wf,,(k) vanishes at w =0 and is an element of &,
so (dk), may be replaced by dk = sdkdw /w,

1 dk = ke o
Ay(x)= By f—z— ./0 dwlcli (R)e'®* v ¢ (R)e™H*%] |

(4.3¢)

To gain some insight into the space-time char-
acteristics of the free vector potential on F(8),
consider the weak limit of this operator as x| - .
Namely, c,(k)and c](k) represent matrix ele-
ments in §(§) and are therefore smooth in #, and
we evaluate

1 dk ~ S\ te thon
Ay(x)= Wf —z-fo dolcl(w, B)e=tc -iknw

+cplw, R)e ~(e+iknw]

for large |x|. An € has been introduced to make
the integral on w well defined. This gives, by the
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Riemann-Lebesgue lemma,

1 dk [ cl(k) cu(R)
(2n)7? f 2 [e —”ife x e +“z'k- x:| ’

(4.4)

lim A, (x)=

x|

where c¢(E)=c(0, k). This weak limit is a bilinear
form because c¢'(k) is defined to act only to the
left. Observe that there is a leading contribution
of order |x|™, whereas the Klein-Gordon field
goes like |x|~¥2, If the matrix element is taken on
the infrared-coherent subspace Fe,,p,} charac-
terized by the eigenvalue ct(B)=-(2r)¥?

XY .. Pt/ (P -E), we obtain

lim A¥ (©)lge ot

(217)3 fdk Ep o(h %), (4.5)

l%m A“(x)l{eama}

x|—>e

—0(—x2 H
- (—-x%) Z - fapa e (4.8)

Thus on an infrared-coherent subspace the vector
potential at large distances has a leading term of
order |x|™* whose support lies outside the light
cone, and which precisely cancels the Liénard-
Wiechert potentials of a set of particles with
charges e, and momenta p,. At large positive
times this accords with the requirement of caus-
ality if the charged particles {e,,p,} are produced
in a collision of neutral particles, for the Liénard-
Wiechert potential alone overdresses the particles,
and the infrared photons remove the excess which
is in the spacelike region.

Recall that the subspaces F*{e,p} of F(8), which
may be completed to physical Hilbert spaces
3¢{e,p}, are characterized by transversality
B c(k)F*{e,p} =0, and infrared coherence

c*(R)F e, p}= [ @n)” S/ZZe ph/pa ] Fe,p},

where c*(k)=c"(k)|,-. Each of these subspaces
must be left invariant by physical observables.
From Eq. (4.3a) we have

[cu(R), A(H)] = (zjr“—;mmk), (4.7)

so transversality is preserved by A(j) if the cur-
rent is conserved, and infrared coherence is pre-
served if wj (k)|,=0. Thus A(j) is observable
if and only if wf (k)= ;.

Finally let us briefly verify that the Maxwell
field F,,=8,A, - 8,A, is observable and that the
free Maxwell equations 3,F"”=0 hold as operator

equations on ¥¢{e,p}. Let fu,(x) be a classical
antisymmetric tensor, and set F(f)=4[F, f*’d*x
=—[Ay0,f"d*x=A(j), withj"=8,f"". This cur-
rent is conserved. If in addition wf(k)e 84, which
is true if f*” is of fast decrease, then F(f) acts
within 5*{e,p}, and F(f) is observable. From the
equation of motion 824 =0, we have 8“F””= -8"3- A,
so Maxwell’s equations are not satisfied on F(8).
Upon smearing with a test function a,(x) the last
term becomes

A(8d-a)= (‘éi)lyg[CT(wkk' a)+clwkk-a)] . (4.8)
When applied to a vector in F*{e,p}, the second
term gives zero because F'{e,p} is transverse,
whereas the first term gives a vector of zero
length. Therefore, as an operator on [F*{e,p}],
the space of equivalence classes of vectors in
5*{e,p} (modulo vectors of zero length) A(38* a)
is the zero operator

A(d3-a)[F*{e,p}]= (4.9)

It is therefore also the zero operator on ¥{e, p},
the closure of F{e,p}, so Maxwell’s equations
hold as operator equations on JC{e, p}.

B. Bremsstrahlung by the classical current
of a scattered charged particle

Let the vector potential A be coupled to a given
classical currentj*,

8%A,(x)=j u(x) .

If j¥(x) is a test function of fast decrease in all
directions of space-time, including timelike di-
rections, then the charge q(t):fj"(t, X)d3x ap-
proaches zero at asymptotic times. If the current
is conserved the charge will consequently be zero
at all times. Thus the restriction to test functions
of fast decrease, however convenient mathematical-
ly, will be inadequate to deal with simple scatter-
ing situations in which there is a net charge.
Consider instead a test function of the form

j“(x):fd3sp(’§)fao dr z%(1,8)0%x -2 (1, 8)) ,

(4.11)

(4.10)

where z"(1,§)=0z"(r,§)/67. This represents the
current produced by a scattered classical extended
charged particle whose different parts have impact
parameter S and corresponding 4-trajectories
z"(r,8), with charge distributed by impact pa-
rameters according to the density p(5). Thus p(§)
may be taken to be a test function of fast decrease
in R®, and e= [d 3sp(8) is the total charge. To rep-
resent the current of a scattered extended classi-
cal particle at asymptotic times, the different
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parts must be at relative rest, the whole moving
uniformly

lim 2,(7, 8)=p,u, lm Z,4(7,8)=p;,, (4.12)
T—> =00

T
the limits being independent of 3.
The Fourier transform of this test function

i“(k)=fd3sp(§)f dr 2" (1, 5)e*# ")  (4,13)

is required for values of % on the future light cone,
in which case it represents the classical radiation
emitted by the current. The integrand is oscil-
latory for large values of 7. I the integral is de-
fined by insertion of ¢™¢!"! it is equal to the ex-
pression, obtained by partial integration,

=z _ se = [ ikez(T,s _d Z.“(%y 3)
j “(k)—zfd sp(s)f_bc ar et**#( )d'r[k—'z‘('r,E)]'
(4.14)

This displays the fact that radiation occurs only
if charge is accelerated. Consider now the zero-
frequency limit of

_ wjt(k)
FHR)= T

-0

(4.15)
With f*(k)=f " (w, %), one finds, from Egs. (4.12),
U oY wf“(k)
70, k)= @ |, .,
_ _te (. pi _ pf
- e (pf'k 7 .k> , (4.16)

which characterizes an element of the test func-
tion space &8, ‘described in the last section.
The equation of motion (4.10) is solved by

A“(x)=A“i"(x)+fAm (x=9)j*(»)dYy , (4.17Ta)
A“(x):A“““‘(x)+fA“d(x—y)j"(y)d“y . (4.17p)

Here A" and A*°" are free vector potentials
which are related by

Ai::(x>=A°;:‘<x>-fA(x—ywy)d‘* , (4.18)
A(x)zAret(x)_ Aad(x):(_Ti)s %Z_)E (eik-x _e-ik-x) ,
(4.19)

or

A 1 dk e
AW =A50) = oy [ 5 dwleTg(h)

+e g (k)] ,

(4.20)
where
gu(R)= @%‘;%;iu(k) . (4.21)

Let A°' be represented as an operator on the space
of test functions F°"(§) according to Eq. (4.3c),

ou 1 d'k ou ikex
AP (x) = @ 5 dwlc™ (k)e*

+ c‘f‘“'(k)e =ikex ] .
(4.22a)

Then Eq. (4.20) shows that A*"(x) is also an oper-
ator on the test function space F°''(§), with a
similar expansion

in 1 d;e in ikex
A (x) = a7 ) 5 dw[cl™ (k)e'*

+cp(k)e ],

(4.22b)
where
e ()= (k) —gu(k) (4.23a)
cip T(k) = e (k) — g (k) | (4.23D)
or
() =N -C2lf) (4.242)
cn(f)=c(f)-{flg) . (4.24b)

Let the unitary scattering operator S on F°* be
defined by

S =exp[c™T(g) - co(g)] . (4.25)
It satisfies
cmT(f)=SCout1‘(f)ST’ cin(f):SCout(f)ST , (4.26)

and corresponding in-states F™ for any state
F'< F°'(§) may be introduced according to

Fin =S out i (4'27)

The space of in-states is given by
F(8)=SF(8)=F""(8) . (4.28)

Although these relations have the same form as
the usual quantum-mechanical scattering relations
in a Hilbert space, their meaning is rather dif-
ferent, for F"*(§) contains many physical sub-
spaces F""{e,p}, each of which may be completed
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to a Hilbert space ¥{e,p}, and correspondingly
for in—out. However, S is not an operator that
acts within any of the physical subspace F{e,p}
for we have, from Eq. (4.21),

K 3 —-€ pp 1’"
g( )|w=o= W;(P-——fwef.k _P_L’ri‘k , (4.29)

which gives, ‘with ¢, (k) =c,(0, B),

Hout /% - —e p}‘ - pf
("> (B),51= Gy (pf-k ). @s0
Thus from a given infrared-coherent subspace, S
produces another infrared-coherent subspace. In
addition, because the currentj, is conserved S
preserves transversality

[Bec(R), S]=0 . (4.31)
Thus we have
EFi" +{ea ’pa}zsf}.ouﬁ-{ea ,pa}

= 50u{+{{ea rpa}@{e’pf’ - e"bi}} :
(4.32a)

When these spaces are completed in the norm,
this relation extends uniquely to

5™ e,, 0,1 =S5 e, .0}

=ZCOM{{ea ’pa}ea{e’pf y e’pi}} .
(4.32b)

Thus, unless p,=p; the S operator maps a given
Hilbert space into one in which the commutation
relations have a mathematically inequivalent rep-
resentation, ¥™{e,,p,}#35**{e,,p,}. The S op-
erator becomes a mapping of Hilbert spaces and
of vectors within the Hilbert space. Once a choice
of Hilbert space for the in states is made, the

S operator specifies what Hilbert space this is in
terms of out variables.

It is a matter of convenience which in-Hilbert
space is chosen to represent a given incoming
experimental situation, for, as remarked earlier,
although they are mathematically inequivalent,
they are physically equivalent in the sense that
any experimental situation may be represented
with arbitrary accuracy in any one of the various
Hilbert spaces 3¢"{e, p}. Some authors* make
use of the in space associated with the charges
and momenta of the incoming particles only,
J¢™{e;,p;}. This has the advantage of symmetry
se™e;,p; =55 e, ,p;}=3"{e,,p,}, and for this
reason, it is the only choice if one is working
within the nonphysical Hilbert space of the tradi-

=)

tional Gupta-Bleuler method. However, unless
the initial state has total charge zero, trans-
versality cannot be maintained,!® Eqs. (3.50). This
may be dealt with by placing a positron behind the
moon for every electron nearby, or by restricting
the violations of transversality to arbitrarily low
frequencies, so the corresponding violation of
Maxwell’s equations is undetected. [This can be
done by defining a positive-metric subspace by
the condition 2+ c(k)| ) =Qf (k)| ), where @ is the
total charge and f(k) is a smooth cutoff function
which is —=(27)¥2 at w =0, and whose support is
restricted to arbitrarily low frequencies.] How-
ever, in the present approach it is convenient to
make use of two Hilbert spaces, {0}, the com-
pletion of {0}, and 3¢®Y0}, the completion of
Fout*{0}. These spaces have states in which a
finite number of photons is present. They corre-
spond closely to the retarded and advanced bound -
ary conditions of classical physics, and we write

g =g"{0}=F"(8,), (4.33a)
gt t=gn{o}=g"(8;), se~=5x"{0} , (4.33b)
F2d = g0} = FE,) , (4.33c)
gut= ﬂzouﬁ'{o} - EFuut(éw; ), e =5€oul{0}' (4.33d)

According to Eqs. (4.32), generalized to several
charged particle, these spaces are related by

Jeret =SI}Cad =3(;0m{{ef’pf}®{ —€; rpi}} ’ (4.343)
S:[el =Sf}—ad=5:0ut{{e/,pf}${_ei,pi}} . (4.34b)

As in classical physics the retarded representa-
tion appears most natural for the scattering situa-
tion. This allows the incoming state to be de-
scribed in terms of a finite number of particles
without any infrared history. The description in
terms of out variables is then fixed by the S op-
erator, a dynamically and not historically deter-
mined entity.

The retarded and advanced subspaces F™' and
F“ allow a simple characterization of the S op-
erator. Consider the generic matrix element

(G |Finy =(GUt|SF™Y | (4.35)

F,G& F(8). The explicit form of the S matrix
(4.25)

S =exp[-3(glg) ] exp[c*T(£)] exp[-cout(g)]
(4.36)

allows the generic S-matrix element to be written
in terms of the sequences F={F, }, G={G,},

i 1
(G |F) = Z = = f (dRy), * ** (dky,),(dR]), + + - (dkL), Gl (RY*+ + L)
xsn,m(k{"'krll; kl...km)F(m)(k]_'..km) ’ (4.37)

1
et m !
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where polarization indices have been suppressed. The explicit form S} , of the connected part of the
kernel S, , is given by

S mlky * 2 Ry eyt e k) =expl ~2( gl ] g (k) < g (k7 ) g* (k)" * » 8% (k) (4.38)

Of all the physical subspaces F*{e,p}, only the subspace F'{0}= F(8}) has states which are eigenstates of
photon number, and only it has the property that the inner product of any of its vectors with any vector in
F(8) is formed by ordinary integration. Let F and G° be elements of F*{0} which lie in the m and z pho-

ton subspaces, respectively, so Fo"c F™*{0}=F"" and GO F°'*{0} =F*. It is convenient to write
Fon=fFrt  GS'=G', which gives for the S-matrix element

1
mn!

(G IFR) =

where dk=dkdw(2w)™ represents ordinary inte-
gration. Taking (improper) momentum eigen-

states in the usual way we rewrite this formally as

<k1' cee kr’zadlkl' .. k,’:‘) =S",m(k{ ee e kr’.; k1' . km) B
(4.39b)
This formula, generalized to include charged-
particle variables, will be the starting point in
the derivation of reduction formulas for the S

matrix in quantum electrodynamics. The definition

of an S-matrix element as an inner product be -
tween vectors of two disjoint non-negative sub-
spaces F™' and F*, each of which may be com-
pleted to two disjoint Hilbert spaces 3¢™' and 3¢,
clearly distinguishes the present approach from
the traditional Gupta-Bleuler method which con-
tains one physical Hilbert space.

Use of 3" has the advantage that the simple
question, “What radiation is produced by a given
classical current?” is well posed. It has a simple
answer. Let the counter of outgoing photons be
described by a projector P(£2) onto a volume  of
final-state phase space. The volume € is in fact
a set of volumes &,, for each n-photon subspace,
which is symmetric under permutations. Assume
for simplicity that polarizations are not measured.
Then the projector P(2) acts on photon states
F ={F(,} according to

P(Q){F(n)(k1' t kn)} ={Xn(k1 toe kn)F( n)(k1' o kn)} ,
(4.40)

J

£ nl

fdkl- cedh,dll - ARLGE(R] RS R Bl Ryt o R )F (Rt v o By

(4.39a)

-

where x,(k,**-k,)=1for {k,**-k,} = Q,, and

X(ny (R, * *k,)=0 otherwise. For example, if Q is
the volume of phase space specified by the condi-
tion that no photon is observed with energy greater
than w,, then

Xn(Ryo st k) =0(wy—w,) *r B(wy—w,) . (4.41)

Because zero-frequency photons are undetectable
the projector must satisfy
lim Xn(k]_' i kn) =Xn-1(k2. * 'kn) . (4.42)

w0
This ensures that the infrared-coherence property
of F is preserved by the projector P(f2), Eq.
(4.40).

For the question posed above, the initial state
contains no radiation, so the system is in the
state |0i") =S|0°"') which is an element of F™.

The probability p (R2) that the system be observed
to lie in the volume  of final-state phase space
is

P (2)=(S0° |[P°u(Q)S0°*) (4.43)

where S is given in Eq. (4.36). We may drop the
out label. The state S|0) is the sequence

1810) ) =expl-x gle) g (k) - gy (k) -
(4.44)

Hence the inner product (4.43) is given by

p(9)=eXp[—<glg>]{xo+ i (_1)"f(dk1); s (dky), xn(kl'"k,.)[gffl(kl)g“l(kl)]"'[gﬁ"(kn)g“"(k,,)]}. (4.45)

With gh(k) = @7)"¥%wj *(k), Eq. (4.21), this is the

complete answer to the question “What is the radi-

ation produced by the given classical current
02"
As an example, suppose the projector is given

r

by Eq (4.41). Then the probability p,(w,) that no
photon be observed with energy greater than w,
is given by

polw,)=exp[—(gl2 lexp[glxg)] , (4.46)
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where xg(k)=0(w, - w)g(k), or

polwo)=exp| [ (@), g5 (R (09w - wy) .
(4.47)

But 6(w — w,)g(k) vanishes for w less than w,, so
it is an element of §, and for it the inner product
is obtained by ordinary integration (dk), ~dk
=dkdw(2w)™!,

polwo=exp| [(ak [ % grboto - wole () ],

(4.48)
or by Eq. (4.21)

1 a’k 3k
Polwy) = eXp[m 35 fw- wo)J (k)j “(k)]
(4.49)
a familiar answer. In fact with
, -1 d3k -
|]| 2 (2.”)3 f 0(w - wo)f M(k)] “(k)> 0
(4.50)

the probability of observing precisely # photons
with energy greater than w, is similarly found to
be

_ (lud" o2
Palwo)= =51 exp(=il,.) , (4.51)
the usual Poisson distribution. This is precisely
what would be obtained if j ,(x) were of fast de-
crease, making S an operator that acts within the
Hilbert space %"{0}. However, with lim,_, ,f (k)
=(27)"¥%ie(p; /p; k—p;/p;* k), each of these
probabilities vanishes as w, approaches zero like

_(__%.}'rﬂ_ w,? ; (4.52)
- l _.1___ A .;CPJ‘_ _l,ep 2>
B=-3 (2n)3fdk(p,-k “pi-k) >0,

- (4.53)
B= oz (¥4 cothyy; — 1),

which gives the expected dependence of the transi-
tion probabilities on the resolution w, of the final-
state detector.

C. Normalization of the charged field

The substitution (3.38) assigns a meeting to
¥, the preliminary form of the asymptotic
charged field.  Even if this is done, however,
¢, does not become a satisfactory asymptotic
field, for it is a mixedbeast, containing elements
of a strong asymptotic limit and a weak asymp-

totic limit. In Sec. IVD a consistent weak asymp-
totic limit will be obtained from ¢, .and which will
be used in the accompanying article to derive
reduction formulas. As a strong limit it obviously
has the wrong transformation properties. How-
ever, its inadequacies only show up in higher-
point functions. If an asymptotic two-point
function

G* (%,9)= 0| T [¢ (¥) ¥, )]10) (4.54)
is calculated it has a reasonable appearance, as
we shall see. In momentum space it has the same
singularity at the electron mass shell as the re-
normalized electron propagator obtained by sum-
ming Feynman diagrams.®*® By comparing the
propagator at the mass shell calculated in these
two ways, one may relate the renormalization
prescription for Feynman diagrams to the normal-
ization of the charged Heisenberg field.!®

So far our discussion of the asymptotic state
space has been restricted to the photon degree of
freedom. To deal with photons and other particles,
which we call generically electrons, the appropri-
ate space is the direct product of F3(8) (55'(8))
the representation space for photons described
previously, and a representation space for the
electrons. The latter may be taken to be either
the traditional Fock-Hilbert space of the electrons
3ein (33" or else, for a more symmetric treatment
of photons and electrons a Fock space of test
functions defined on the mass shell §in (Fot), On
both spaces the usual inner product is positive-
definite, and our notation will not distinguish be-
tween these two alternatives.

Let x°-9° be positive, so the asymptotic propa-
gator (4.54) becomes

G* (%,9) = 0l 4o (%) T, ) 0), °>3°.  (4.55)

From Eqgs. (2.14), (2.15), (2.18), and 6,(p)|0) =0,
dg (p)|0) =0, and p(p)|0) =0, we find

6" (9= o | SLB+m (01RG, )R (9] 0)
x g™ iP"(x=3) (4.56)

since ug (p) was normalized to ) us (P)u, (p)=F+m,
and by Eqgs. (2.16) and (3.38)

R(p,x)=exp[c'(f,,, *D]exp[-c(f,,, (0], (4.57)

“lexp(ikppx/m?).
(4.58)

fo,o" (R, %) == (2M) ™% ep¥ (b )

Use of the commutator (3.37)gives
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(OlR(P,x)Rf(p,y)]O> :exp{(—zﬁnz)—3 f%%[ dwln (pmf>%ﬁFGXP[_ik.pZ;(x_y)i\},

(ouff.(p,x)b‘t*(ﬁ,y)l0>:e"p[(zn)3 2 (prkP

where

:f dwln(b.kw> 0 exp[ (e+£z— p—.kw],
o ml /8w m m

(4.60)

and 2 =X —~7y. An € has been introduced to define
the integral. With s=(e+ip-z/m)(p+k/m)w as the
integration variable, one has

sm d
J= fdsl [e+zp z)l:l e,

J=C+In[(e+ip-z)l/m].

(4.61)

Here C = — [5dslns e is Euler’s constant

C=0.5717.... Itis convenient to introduce a new
infrared renormalization constant

1,=1e° (4.62)
SO

J=In[(e+2p-2)l,/m], (4.63)

which gives
(O|R(p, x)RT (b, ¥)|0) = [e+ip-(x =),/ m]’.
(4.64)
Here for convenience the constant B8 is defined by

e? a

@me 71

B= (4.65)

This gives for the asymptotic propagator (4.58)

Gas (x,y)= (21ﬂ)3[d3p(ﬂ+m [€+ip-(x—y)ll/m]s

X g™, (4.66a)

A similar calculation valid for x°< y° gives

1 d

( Bem)[e—ip-(x - y),/m|°

x gt (x=9) (4.66Db)
These expressions have the correct Poincaré
transformation properties, so the incorrect trans-
formation properties of zppm only show up in the
higher-point Green’s functions, as asserted.
Moreover, the asymptotic two-point function is
even local.

We are interested in the behavior of the asymp-
totic Green’s function near the mass shell in mo-

e? dk pz) J]

(4.59)

r

mentum space. Set G* (x-y)=G* (x, y) and use the
integral representation
(e+ipx)P - ——I———Idtt'ﬁ‘le’(“”"‘)‘. (4.67)
- B) 0
This representation is valid only for 8<0. How-
ever, Eqs. (4.66) are entire in 8, and our final

expression will be continued back to positive 8.
One has, for x°>0,

1 (1, 1
as I s U —_—
o0 (i) o
J’ dtt-ﬂ- f_p (ﬁ_‘_m -l(l""t)P‘x
(4 68)
or, with p’ =(1+¢)p and M =m (1 +¢), dropping
primes,

ooy ) el e ()

as ;
xjﬁfi( B M)e ®F (4.69)
where p* = (E,p), E=(p?+M?)"2. This has the form

of a standard spectral representation, and we
have, for all x,

" ~ __i_ 1 ) 1722 ”W m 1+8
G ()= (2m)* <_rjl_> F(—B)j,; F(M—m)
fd‘*p (”"M)e ”;x . (4.70)
With
G ()= (’ilrr)a [ate= e (4.71)

we obtain for the momentum-space asymptotic
propagator

o (L mE rraAM ( om \YP peM
as _ 1 am
¢ (p)ﬁl(m> F(—B)f,,. M? (M—m) PP —M%+ie

(4.72)

This has the correct analytic structure for a local
field, so our preliminary asymptotic field is doing
better than is required, which is merely to have
the correct structure near the mass shell. A
simple calculation yields the quantity of interest



11 SCATTERING THEORY FOR QUANTUM ELECTRODYNAMICS. I. ... 3501

lim G (p)=T(1+ ) —b) ( = e)s,

52 om2 P—mPrie \m? - —i
s (4.73)
= —

The singularity is a familiar one. It has been
obtained by many authors®'® studying renormalized
Green’s functions, and may be regarded as an
exact result of quantum electrodynamics, al-
though a rigorous derivation within the framework
of renormalized perturbation theory is still lack-
ing. Our derivation allows an immediate con-
nection between the normalization of the propa-
gator and the normalization of the corresponding
Heisenberg field as an operator or the asymp-
totic state space. Suppose that the renormalized
electron propagator G(p) is calculated in pertur-
bative renormalization theory with an arbitrary
normalization prescription. Near the mass shell
it will agree with an expansion in powers of « of

i(f+m) ( m? >B'

z(a) (4.74)

PE=m?rie \m? - p? —ie
Here z(a) is a power series in « with finite co-
efficients. In this case the corresponding re-
normalized Heisenberg field ¢ has the normali-
zation

lim ¢(x)=2,"2¢ (x), z,= 1 n Bz
20> 4 o] pre ’ [¢] F(1+B) 2l1 :

(4.75)

The reduction formulas derived later allow the
S-matrix elements to be expressed in terms of
Green’s functions calculated according to the
given renormalization prescription. An alterna-
tive approach is to use Eq. (4.73) to provide an
on-mass-shell renormalization condition: Nor-
malize the electron propagator so that z,=1, i.e.,

i(15+m)( 2ml, >B

~m? i€ \m? - p? - je

lim G(p)=IL(1+B) 7

2> m2
(4.76)

In this case the Heisenberg field has the normal-
ization
lim ¢(X) = e (%). (4.77)
%0 >+

Finally let us make a few observations. As
mentioned earlier I, and hence also [, =1¢°, is an
infrared renormalization constant common to
fields of different mass. Consequently in virtue
of the infrared renormalization, the charged
field has picked up an anomalous dimension (mass
units)

[o]=3-38, B=a/m. (4.78)

As may be seen by evaluating Eq. (4.66) at large
x, this anomalous dimension controls the large
distance behavior of the propagator. It is gauge
dependent, and Eq. (4.78) holds in the Feynman
gauge. Consider next the spectral decomposition
of the exact propagator G(p),

G(P)=ifdM2 [ﬁp;g‘f?;z‘ fzz(éllz)] . (4.79)

At values of M? sufficiently close to ## it must
agree with Eq. (4.72),

_ lLB Bb+m
T 2mI(=B) M=m)**P -

(4.80)

limzﬁpl(Mz)wz(Mz)

M2 - m

However, because B=a/7 is positive, the integral
(4.79) in fact does not exist, so the propagator
does not possess a spectral decomposition at this
point. This is a phenomenon produced by the in-
definite metric, because in a positive metric
Hilbert space the spectral decomposition is pos-
sible, for representations of the Poincaré group
may be reduced according to mass. In support

of this, observe that for intervals sufficiently
close to but excluding the mass shell, m+€e<M<m
+ 2€, the spectral function is arbitrarily well
approximated by Eq. (4.80) and is negative-definite.
This is also a gauge-dependent phenomenon. How-
ever, as B approaches zero the propagator ap-
proaches the free propagator whose spectral
function is a mass-shell 6 function with coefficient
plus one.

D. Weak asymptotic limit of the charged field

The preliminary form of the asymptotic field
which was used in the last section has too com-
plicated an x dependence to be used in reduction
formulas. In the radiation operator R(p, x),

R(p, x)=exp[c"(f, ,()] exp[-c(f, ,(¥)], (4.81a)

- p ibep be
Fou (00 Grmsin e (HBE) i)

the x dependence involves exponentials of exponen-
tials. However, as mentioned in the Introduction,
the known singularities of the Green’s functions
at the mass shell suggest that the distortion of
the plane wave due to radiation should be similar
to that produced by the Liénard-Wiechert potential,
namely logarithmic, but with a real coefficient
exp[B;In|p-x|] instead on an imaginary coefficient
exp[iy; In|pe x|]. Equations (4.81) in fact lead to
precisely this behavior.

The annihilation operator c¢(f, ,(x) may be writ-
ten using Eq. (3.40b)
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c(fe,(®)) = (2—;;372— dk ‘bu f dw ln< ){cu(k)-é%exp I:_ ip.xzp.%w}+exp[- ip-xp-few} 8cu(k)}' (4.83)

C(fe,p(x

m m? dw

An € must be introduced as usual to make the integral well defined. We are interested in the asymptotic
fields at asymptotic times, so let us estimate these two terms for large times. Also, we seek a weak
asymptotic limit, so the annihilation operator acts on a Fock test function F to its right, whereas the
corresponding creation operator c*(fe_,(x)) in Eq. (4.81) operates to the left. Recall that for

F={Fp(k> k), c(k) acts according to [ c(k)F], (k> k,) =F, +1)(k, ky>** k,). Thus in making estimates
¢, (k) may be replaced by a test function with argument k2. By the Riemann-Lebesgue lemma, the second
term in Eq. (4.83) vanishes like £ 'In¢ for large ¢{. The first term contains an extra power of ¢ owing

to the derivative with respect to w. Because c(k)=c(w, k) is dlfferentlable in w at w=0, and because the
contribution to the integral comes from frequencies w of order /™!, c(w, k) may be replaced by c(k) c(0, k),

and we have

tlin:” c(fe o)) = @ )3

The integral over w was effected previously, Eqgs.
(4.60)—(4.63), with the result

- dk b c(k)
@) 2 pk

lun c(f, (%) = In [€ + ipxl, /m],

(4.85)
where I, =1 ¢ and C is Euler’s constant. It is
convenient to introduce

__ 1 (dk p-c(R)
AL= G ) 2 Sk

(4.86)

It depends only on the zero-frequency annihilation
operator c(ie), so infrared-coherent subspaces
which are eigenspaces of c(l%) are also eigenspaces
of A(p). We thus obtain the simple result

lim c(f, ,(x)) = ~eA(p) In[e +ip+xl,/m]. (4.87)
t >

Note that the use of the test-function space was
essential in obtaining this limit.

When it is substituted into Eq.(4.81) for the
radiation operator, one finds, with

S(p, x)= lim R(p, x), (4.88)

t—>to
S(p, %) =exp| ~ e AT(p) In(€ — ip+xl,/m)]

xexpl e A(p) In(e +ip-xl,/m)]. (4.89)
This logarithmic distortion produced by the ra-

diation field corresponds precisely to the x™*
terms in the asymptotic vector potential, Eq.

—e (dkp* c"(k)fdwl <£’_

ml

)——-exp[ < ziﬂx)?n_;w] (4.84)

r

(4.4). Thus the distortion of a plane-wave com-
ponent of the charged field which is produced by
the radiation field is in fact logarithmic, like the
distortion caused by the Liénard-Wiechert poten-
tial. However, the latter is distortion by a log-
arithmic phase, whereas the distortion produced
by the radiation field is in the magnitude, for
A(p) and AT(p) acting to the right and left, respec-
tively, have real eigenvalues. This may be
thought of as the origin of the phenomenon of
radiation damping. Observe that whereas R(p, x)
is an operator, its weak limit (4.89) is a bilinear
form, for A'(p) must act to the left. Its action to
the right is undefined. Let D(p, x) be the asymp-
totic limit of the eikonal factor E(p, x), Eq. (2.14)

]S (p, x).
(4.90)

D(p,x)=exp i

For convenience, we have fixed the constant ¢

of Eq. (2.14) at c¢=I,/m which involves a choice

of phase in the electron space. When this is
substituted into the preliminary asymptotic field,
$res EQ. (2.18), we obtain the desired weak asymp-
totic limit of the electron field

V0= o GRS DG, 0N (e

+dg (P)D(p, x)v, (p)et**].
(4.91)

This expression will be the starting point for the
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derivation of reduction formulas in the accompany-
ing article.

Note added in proof. The indefinite metric intro-
duced in Sec. III A to deal with infrared divergences
is similar to the indefinite metric which eliminates
ultraviolet divergences that has been proposed by
0. L. Zav’yalov (Teor. Mat. Fiz. 16, 145 (1973)
[Theor. Math. Phys. 16, 735 (1974)]) and O. I.
Zav’yalov and P. B. Medvedev (Teor. Mat. Fiz. 18,
27 (1974) [Theor. Math. Phys. 18, 19 (1974)]). I
am grateful to Professor Zav’yalov for bringing
this work to my attention.
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