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%e investigate the conditions under which the Bethe-Salpeter equation with a scalar-exchange

interaction (in the ladder approximation} will in the small-relative-time limit give rise to scattering

states. Our results indicate that the exchange particle should be at least slightly unstable (nonzero full

width I }.The role of I is compared with cutoff factors occurring in nonrelativistic potential scattering.

I, INTRODUCTION

The Bethe-Salpeter (BS) equation' was first con-
ceived as a relativistic analog to the nonrelativis-
tic Schrodinger equation. The ultimate goal should
then be for the BS equation to explain both bound-
and scattering-state properties of relativistic
systems. The primary efforts to date have been
devoted to studies of the bound-state properties, '
but increasing efforts have been recently placed
on the scattering-state properties" of the equa-
tion. The work of Schwartz and Zemach' is of
particular interest since it expresses the results
explicitly in the intuitive position representation
and allows for simple comparisons with the non-
relativistic Schrodinger equation.

In a recent paper' which we shall refer to as HH,
we pointed out that conditions must be imposed in
order that the scalar BS equation with causal
Green's function give rise to scattering solutions.
The conditions were necessary in order to elim-
inate certain divergent behavior of the causal
Green's function in the asymptotic timelike re-
gions of the variable x-x'. Our results indicate
that one may either take the infinite-momentum
limit or a small-relative-time limit. For the
small-relative-time limit, suitable restrictions
on the interaction are also necessary. These arise
from cancellations between factors occurring in
the causal Green's function and the interaction
I(x) in a region where the two light cones pertain-
ing to the problem intersect. The condition on
the interaction I(x) takes the form of the vanishing
of integrals of the general form

6D
dt/ e &$(GJ &z )f 'I(xI)

in the asymptotic region (r ~) where D* refers
to a space-time region. More specifically, A(x)
has to vanish faster than e™,where m is the
mass of the scattering scalar particles. The above

condition is satisfied if I(x) is short-ranged and
has the form

I(x')=I,(x')e "' ',
with a &m. However, the latter restriction on the
form of I(x) is only sufficient and not necessary
for A(r ~) t-o vanish exponentially. For ex-
ample, the ladder approximation for a scalar-
exchange particle of mass p,

I(x) =

which plays such a prominent role in applications
and investigations of the BS equation, does not
seem to satisfy the above form. However, it may still
satisfy the more general expression involving the
exponential behavior of Eq. (1.1). We shall show
in this paper the conditions under which the ladder
approximation with scalar exchange will satisfy
the A(r-~) condition for scattering. Our results
indicate that this can be accomplished if the form
factor for the scalar-exchange particle has a pole
below the real axis in the complex mass plane.

In Sec. II we review our notation and summarize
the relevant results obtained in an earlier paper. '
The explicit form of all the necessary integrals
involving the scattering condition as well as the
interaction in the scalar ladder approximation are
presented. Section III contains the pole approxi-
mation and the resulting scattering conditions and
Sec. IV contains our summary.

II. INTEGRAL SCATTERING CONDITIONS

W'e shall follow the notation of our previous pa-
per HH, with x, and x, being the space-time four-
vectors which locate the particles 1 and 2. The
relative space-time coordinate x is then x,-x, and
the magnitude of the spatial part of x is x. We let
co denote the center-of-momentum energies of our
equal-mass particles and ~ is an energy variable
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Ae, (x) =
-b+t

dt'e '" 'I(x'), 0&a&m (2 1)

which varies from 0 to m in one case and 0 to ~
in another case. From HH, if the relative time
t is small and if the interactions are short-ranged
with b being the range of the force, then in the
timelike region of x—x', the integrals

for both f, & 0 and t &0.
Let us next work with a more general expression

for the ladder approximation interaction for equal-
mass scalar particles. If p(p, ) represents the
spectral distribution (we have suppressed other
energy variables not pertinent to our problem),
f(x-i2)) then has the form

A/32(x) =
-(r-b- t)

dt'e'l""&' f(x'), 0& z&m (2.2)

which reduces to
Ac, (x) = dt'e ~*"~l' f(x'), 0& g& oo (2.3)

4 3(t2 2)1/2 dp. p, p(p)K, (p(r' t, ')'"-).

Ac2(x) =
—(y-b- t)

dt'e&'" &' f(x'), O&z& (2.4)
III. POLE APPROXIMATION AND RESULTS

(2.12)

must all vanish exponentially in the asymptotic
region r- ~. Specifically, Aq, and A~2 must van-
ish faster than e " and A&, and A~2 must vanish
faster than expt-m(r'+z')"'] in the asymptotic
region. Once these asymptotic restrictions on the
A's are established, the scattering boundary con-
dition

1
A/3, (x) = dp, p. p(p, )r(p, , r, t),

e-j Bt

I et us begin by working with Eq. (2.1),

(3.1)

e jar
4(x) = 4 (&) + f (~) (2.5)

-b+ t

(3.2)

is satisfied.
Let us consider the ladder approximation ex-

pressed in Eq. (1.3), with p. being the mass of the
scalar-exchange particle and X being the coupling
constant. Equation (1.3) can be reduced to the
form

I(x) = — dk —sin(kr)e
4A.

p (dg

for t& 0 and

(2.6)

I(x) = — dk —sin(kr)e
4A,

p
(2.7)

jk(X-j 7))

I(x i2) )=, d'k-
k2+ p. 2-Se

reduces to

(2.8)

for t &0. The above integrals can be evaluated if
we add a small imaginary part to the time variable
x x-i j, where q =(0, 6(t)/)), and perform the
limit of q going to zero after the integration. The
expression

r(p, , r, t)=
e-j 87

dr K( p,i~).i (3.4)

K, (i p, 2) can be replaced by its asymptotic form
since the range of integration is only over very
large values of 7. The asymptotic form is

n e '"'
K, (iP.2) = —— (3.5)

On substituting Eq. (3.5) into Eq. (3.4), we have

and I3 =z + &u. The variable r represents the field
point and r' represents the source point (region
where the interaction is nonzero). For small rel-
ative time, r-b+t can be replaced by r-b which
is much greater than 0 in the scattering region.
If we let 7'=t"-r",

j 8(7 2+P ~ 2)1/2
I"(p, , r, t) = dr (, „)„,K( p. iv. ), (3.3)

0

where v', =I(r-b)'-r"]'/'. Since the range of the
force 5 is greater or equal to r', r» 5, and v» b,

k sin(kr)
(k2 + p 2)1/2

xe -(Tt+ jlt i)(k2+p2)

From a standard book of tables, '
(2.9)

(2.10)

e-j(8+P) 7

I"(p., r, t) = —— d7
r T'"

Equation (3.1) can now be written as

1 e-j 87

Ae, (x) = —, dr „,Q(v),Bn' 7'"
where

(3.6)

(3.7)
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Q(&) = dp pp. (p)e, (3.8)
Vp

The guestionisnow: Whatform of p(lu) will leadto
exponentially decreasing forms for A»? Many
forms were tried, but the only successful simple
forms found were those containing a pole in the
lower complex p. plane,

G,„,= g a'„,
"odd= &

(3.18)

where

a„= „(-,'+ n) —[l2 cos(nP)-P sin(nP)]
r(-', + &)

f (u)
l2-(P&-2P)

(3.9) —cos(nP) [ (3.19)

Giving f(p, ) suitable properties, Eq. (3.8) can be
evaluated giving

Q(7) =2~i&(l2/, ij/. )-e '»'e "', (3.10)

As, (x) =
-2F( &-2u)

4n

e-(P+5 8)7

g7 j (s.11)

where P=P+i/, ~. The integral can be expressed in
terms of the incomplete gamma function
1(-2, (p, + ip)r), with Eg. (3.11) becoming

As, (x) = (p, + iP)"'r(-2, (p+ iP)2") .

where &(l2&-ip) is the residue of gf (p, ) evaluated
at the location of the pole. On substituting into Eq.
(3.7), we have

a„= „(—", + n) —[p, sin(nQ) + P cos(nQ)]r r(-", + n) -„r
—sin(22$) (3.20)

6Re
+ g

"odd =1

(3.21)

The sums are only over the odd numbers of n. In
studying the convergence properties of a function,
we can always replace the function with another
one which is larger at every point r. We can
therefore replace G„„and6„,. by

G,.= g (3.22)

(3.13)

where

For large values of 2', I'(--,', (p, + ip)r) can be ex-
pressed in terms of an asymptotic expansion'

e {I'+» 8)r-G(~)
( 2$ (P P) ) [( 'p) ] 3/2r~()

n=p
(

)„(Np.r)"
nt (3.23)

"odd= 1

Let us next consider the expansion of the function
-Sp~

)

(-1)"I'(-', + n)
[()/+ ip)r]" (3.14) where ~ is an arbitrary finite real positive num-

ber. We can rewrite this expansion as

The series diverges; however, it is an asymp-
totically convergent series, that is, the series
converges only for large values of r. Since we
are working in the asymptotic r- ~ region, this
poses no problem.

It would be helpful if the series G(2') could be
replaced by a more workable function. Let us
break G(r) into real and imaginary parts,

e """=1+ Q b„,
nodd -1

(Alar)"
nt n+1 (3.25)

In the asymptotic region of r- ~, since the max-
imum values of ~a„~ and )a„(are bounded by

G„=g (-1)"I (-,'+ 22)ft-"cos(ny)
n= 0

(3.18) I'(—,'+n) (—,'+n)I2/P+(-', +n)
2

II (~2 g P2)PI /2

(3.16)

G„= '
+ Q a'„

"odd =1
(3.17)

G, =Q (-1)"I"(-,'+ n)A "sin(nP),
n=p

where A =2'(p, 2+JS2)2/2 and sing =Py/B. It will be
convenient to rewrite GR, and &„„as

it is clear that b„is greater than ~a"„~ and )a„(.
Since we have also em/2& 1, we can replace G2,
and G, each by exp(-A/p. r). The asymptotic prop-
erties of A»(x) are then determined from

A„(x)=[(l + 2P)~) '/'e-""e "'"2". -(S.28)-

As, (x) can be treated in a similar fashion as
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r
As, (x) = dt'e' ~' I(~', t') . (3.27)

Ae, (x). If we make the same assumptions of small
relative time and small values of the range b, Eq.
(2.2) can be written (for large r) as

inary mass). From standard nonrelativistic po-
tential scattering using Schrodinger's equation,
an alternate to the wave packet description is to
introduce a cutoff factor in the potential, for
example'

However, on inspection of Eq. (2.12), we have
V(x) =V(x)e "" (4.5)

I(x, t) =I(x, t), - (3.28)
to avoid divergent expressions of the form

which will give us

Ae, (x) =As, (x) . (3.29)

A, (x) = 4„F(I,fu )(t -+ z+ ty)"'

x I"(-—', (p, + z + iy)r), (s.so)

For Ac, (x) and Ac, (x), we can show again that
Ac, (x) =Ac, (x) in the asymptotic region for small
relative times. Substituting Eq. (2.12) into Eq.
(2.4) and making the same assumptions as before,
we have

dt'e' ' (4.6)

This cutoff factor can be transferred over to the
Green's function in the form of an imaginary part
added to the energy. One then takes the limit
n - 0 after the integration operation. We interpret
the above in terms of assuring ourselves that the
potential is gradually turned on in the interaction
region and is not present at asymptotic times

If we consider the j procedure of Sec. II,
I(x) of Eq (2.8.) has the form

where y = p. & +in. The incomplete gamma function
can be represented by

lim I(x iq)= —„,e '"'e "~2'F~p 2

g ~00
(4.7)

where

(3.31)

if we allow q to remain small but not zero after
the integration. The interaction clearly does not
cut off at large time values and therefore does
not play the same role as Eq. (4.5) in nonrelativ-
istic scattering. However, if we let p. = p.p-ip. ,

(-I)"I (-', +n)
[(p.+z+ sy)r]" (3.32)

2', p, i
lim I(x) = „,e '"n'e "' .
7' ~00 7'" (4.8)

Using the same procedure as before and replacing
both the real and imaginary parts of H(r) by an
exponential e ~"+ in studying its asymptotic be-
havior J]Qyp we have

Ac, (x) =[(p.+z+ ty)r] "'e '~"e

(3.33)

IV. SUMMARY

The conditions mentioned in Sec. II require that

and

Az, (x) ~ e

- ~~2+ & 2~~~~&

(4.1)

(4.2)

Our results from Eqs. (3.26) and (3.33) indicate
that

and

Az, (x) ~ e ~"'"""

(x) ~ e (N+ 1)(P +8)r

(4.3)

(4 4)

We see that the conditions (4.1) and (4.2) are satis-
fied if (N+1)p, &m.

Let us attempt to give a physical reason for the
necessity for introducing such a procedure (imag-

The interaction is damped out at asymptotic values
of 7, essentially the same behavior for the non-
relativistic potential scattering. The main dif-
ference is that we can let a —0 after the integra-
tion in nonrelativistic potential scattering, while
in the relativistic Bethe-Salpeter equation we must
not set p. =0 after the integration, as it is needed to
damp out an e "factor appearing elsewhere in the
timelike region.

Since p, is just the half width of the unstable
particle, we must have (N+1)I'/2, where I is the
full width larger than the mass m of the scatter-
ing particles. Let us compare again with non-
relativistic scattering theory. From Eq. (4.5),
I/o'. gives an order-of-magnitude estimate for the
time interval of the interaction. In the relativistic
BS equation scattering from Eq. (4.8), 1/I' is an
estimate for the time the interaction is on. That
this also corresponds to the lifetime of the ex-
change particle is somewhat interesting, but not
surprising since we would not expect the time
interval for the interaction to exceed the lifetime
of the exchange particle. Since N is an arbitrary
real number, we can satisfy the condition (N+1)I/2
+m with a sufficiently large N and any nonzero I .
Therefore, we need the exchange particle to be
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just slightly unstable. This is a feature that never
shows up in nonrelativistic formalisms, but enters
into the BS equation via the mass terms in the
timelike regions of x-x'.

All known scalar mesons have nonzero values'
of I' and thus can contribute to BS scattering as
exchange particles at small relative times. For
perfectly stable (I'=0) scalar-exchange mesons,
the scattering conditions at small relative times
can still be satisfied if they are also tachyons,

with i p, being the imaginary rest mass of the
partxc

les�.
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