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Structure of the vertex function in finite quantum electrodynamics
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We study the structure of the renormalized electromagnetic current vertex, I „(p,p+ q, q), in finite quantum
electrodynamics. Using conformal invariance we find that I „(p,p, o) takes the simple form of Z&y„when the
external fermions are far off the mass shell. We interpret this result as an old theorem on the structure of the
vertex function due to Gell-Mann and Zachariasen. We give the general structure of the vertex for arbitrary
momentum transfer parametrically, and discuss how the Bethe-Salpeter equation and the Federbush-Johnson
theorem are satisfied. We contrast the meaning of pointlike in a finite field theory with the meaning
understood in the parton model. We discuss to what extent the condition Zl = 0, which may hold in conformal
theories other than finite quantum electrodynamics, may be interpreted as a bootstrap condition. We show

that the vanishing of Z, prevents there being bound states in the Migdal-Polyakov bootstrap.

I. INTRODUCTION

In recent years a serious effort has been made
to try to understand the ultraviolet structure of
local field theories. This requires a study of
Green's functions far off the mass shell where
ordinary perturbation techniques are generally
unreliable, since this is the kinematic region
which generates the divergences met order by or-
der in perturbation theory. Johnson, Baker, and
Willey' have tackled this problem vigorously and
developed a finite theory of quantum electrody-
namics (finite QED) in which the divergences
organize themselves away nonperturbatively.
Their theory may now serve as a prototype for
the sort of short-distance behavior we might ex-
pect in a realistic quantum field theory, and may
be characterized by the concept of dynamical di-
mensions. ' In their theory an eigenvalue condi-
tion for the coupling constant is required in order
to make Z, ' finite with the photon propagator be-
ing asymptotically canonical. The electron propa-
gator acquires an anomalous dimension which can
be removed in the generalized Landau gauge (the
finite gauge) to make Z, ' finite, and the composite
mass operator:gg: must acquire a negative anom-
alous dimension in order to make the bare mass
vanish so that mass renormalization is then also
finite. Theories of this type are also known to dis-
play asymptotic conformal invariance, ' and hence
conformal invariance may prove useful in limiting
the forms of the Green's functions of the theory,
and may provide nonperturbative asymptotic in-

formation about the theory.
In this work we shall use conformal invariance

to construct the vertex functions of finite QED to
obtain their structure. Such information is useful
in itself, and it will also enable us to determine
the nature of the pointlike behavior of the dressed
electron in a finite renormalizable field theory.
As we shall see, this behavior is very different
from the meaning of pointlike understood in the
parton model. Our approach will also help in
studying to what extent the condition Z, =0 is a
bootstrap condition for the vertex in theories
where it is expected to hold. We shall present
our main results in this introduction and leave
the details of the calculation to Sec. II. For com-
pleteness we shall also discuss in Sec. II how the
Bethe-Salpeter equation and the Federbush-
Johnson theorem are satisfied in finite QED in
the vector current sector, and also make a sim-
ilRr RnRlysls for the axial-vector vertex,
f'„.(P,P +e, v)

The most convenient starting point is to intro-
duce the canonical commutator

[j,(x), q(y)]u(x, -y, ) = Ce'(x y)y(x) .

In the finite theory this commutator is not de-
stroyed by renormalization (except that there may
be a c-number anomaly), so that the renormalized
current is still canonical. Moreover, in the finite
gauge the electron is also canonical so that the
conformal ansatz for the renormalized connected
unamputated vertex function G„(x, z, y) in coordi-
nate space gives4

Z, '
& (y -z) (z —x) Z, ' (x —y) (z„—x„) (y„—z„)

4n4 (y -z)' ~ (z —x)' 4w4 (x-y)'(y -z)'(z —x)' (z —x)' ( -z)'
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(3)

where we have normalized with respect to a free
Fermi theory. Here f(o.) is the function whose
vanishing makes Z, ' finite. ' (We remind the
reader that since Il& „is not multiplicatively renor-
malizable, conformal invariance has been applied
to the unsubtracted Il„, .) We may now rewrite
Eq. (3) in the form

II„,(z) =
~ ( g„„—s„s„)—, (4)

after removing a term proportional to g„,z '64(z)
by regulating, so that II,(z) is now transverse.
(This is a well-known feature of conformal invari-
ance which can only be achieved for Lorentz vec-
tor operators of dimension 3.) Noting that the
Fourier transform of ~ 4 is given by
iw'[I'(0)+In@'] we now make a subtraction to ob-
tain

(5)

to give the structure of the renormalized vacuum
polarization.

Since we have Eq. (2) explicitly we can then in
principle take the Fourier transform of G„as
well, but in practice we can only do this in pa-
rametric form since the integrals do not appear
to be reducible to named functions. However, for
zero momentum transfer (with P' serving as an
infrared cutoff) an analytic solution will be ob-
tained in Sec. II which when combined with the
Ward identity leads us to an amputated vertex
which satisfies

lim I'„(P,P, 0) =Z,y„,
p2~ ~oo

(6)

a remarkably simple form. This appears to be an
old result of Gell-Mann and Zachariasen' which
says that the asymptotic behavior of the vertex

Here A. and B are arbitrary functions of the cou-
pling constant with all of the space-time structure
specified by the conformal group alone. In our
notation Z, ' is the c-number anomaly of the elec-
tron anticommutator in the finite gauge, i.e., the
gauge-independent part of the electron wave-func-
tion renormalization constant. [Equation (2) may
not be the complete G„because of difficulties met
in trying to make gauge invariance compatible with
conformal invariance. ' Extra form factors may
be required, and this point will be discussed in
Appendix A. ] Since the current is canonical the
vacuum polarization is fixed by conformal invari-
ance to have the form

function as the momentum goes to infinity is the
same as that of Z, as the cutoff goes to infinity
(Z, being finite in our case). Note that this is
not the same as another relation which has ap-
peared in the literature,

lim I'q(P =m, (P+q) =m', q)=Zy„,
q2 ~ ~00

(7)

which would be the asymptotic behavior of the on-
shell form factor. There is some confusion in the
literature between Eqs. (6) and ('I). Kallen's famous
wrong proof' that one of the renormalization con-
stants in QED had to be infinite was based on the
validity of Eq. (7), and it is not too clear from
reading Ref. S as to which asymptotic limit its
authors had in mind. However, we only need re-
call that Z, is a renormalization constant which
multiplicatively renormalizes a product of fields
at the same point and hence is related to short-
distance behavior, so that it must be determined
by a Green's function in which at least two legs
go far off the mass shell. This is analogous to
the relation for the off-shell propagator in the
finite gauge.

lim S '(P)=Z, P',
2

(8)

We mention this to contrast with the parton model.
In the parton model Eq. (7) is assumed to hold

and hence Eq. (6) says that Z, is given in a sim-
il3r manner by inserting a current carrying zero
momentum into the off-shell propagator and then
shortening the distance between the two fermions
so as to trap the insertion. Equation (7) is
a Priori unreasonable (but could still presumably
hold in particular dynamical situations) since the
asymptotic behavior of the on-shell form factor
is not given by the short-distance limit (it is an
infrared problem). It was of course realized that
even if Eq. (7) were to be true in some theories
it could not be expected to hold in QED since Z,
is gauge-dependent (unless, of course, Z, just
happened to vanish in all gauges). This in fact
started the controversy which led to the develop-
ment of finite QED, and in a sense we have come
full circle historically by deriving Eq. (6) [in-
stead of Eq. (7)] as a consequence of the finiteness
of the theory, so that Eq. (6) is consistent with
all the renormalization constants being finite.

Though we cannot determine the on-shell form
factor, we can bound its asymptotic behavior by
inserting the form factor into the discontinuity of
the vacuum polarization [which is in fact zero
since the vanishing of f(o.) removes the discontinu-
ity from Eq. (5)]. This then gives"

lim I' (P'=m', (P+qP =m', q)=0 .
(P~ f 00
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(with Z, nonzero) rather than Eqs. (6) and (9), so
that it uses a different interpretation of the word
"pointlike" than that which applies to the electron.
[We are not aware of any derivation of Eq. (7) in
the perturbatively asymptotically free non-Abelian
casek2 either where Eq. (6) will still hold since the
theory is canonical (up to logarithms), since as-
ymptotic freedom does not apply outside the light
cone. ] We mention this to indicate that the parton
model goes a lot further than the light-cone alge-
bra, and that the use of Eq. (7) in it (particularly
when extended to timelike (I2) may be unwarranted.

Though this paper is concerned with finite @ED
we would like to discuss here the closely related
conf orm31 bootstrap developed by Migdal and
Polyakov. Our discussion will give us some new
information about the bootstrap nature of the
ansatz of conformal invariance with anomalous
dimensions, and we will also see (in Sec. II) why
finite @ED is not a bootstrap of this type. We
shall analyze the discussion given by Migdal' of
the:iXPT()&5): theory under the ansatz of conformal
invariance with anomalous dimensions. Let d~
and d~ be the anomalous dimensions of the meson
and the fermion, respectively. (In this theory
there is no gauge, so that the usual positivity re-
quirement leads to dp& 2, d~&1.) If we renor-
malize the theory at some mass point p, , then the
wave-function renormalization constants are given
by

so that both Z~ and Z~ vanish, Let us introduce
Ze '/', which renormalizes:iIty5(: so that

where de is the anomalous dimension of the
pseudoscalar composite. We introduce Z~ which
renormalizes I'~, the vertex made by inserting
:i~,y: into the inverse fermion propagator, which
then satlsf les

P E 6

A2 de /2-d~

p,
(12)

Now since we are in an infrared-stable theory we
require an eigenvalue condition for the bare cou-
pling constant, so that there will in fact be con-
formal invariance with anomalous dimensions.
Thus

Z z/2Z ~/2
e

0

~4-&e-& g~ /2

I[L
(13)

is finite (with A+5(i)(t) being a. renormalization in-
variant), so that we obtain a consistency condition

d~+de —-4 . (14)

But d„& 1, so we see that de &3, so that:igy5$:
has to have a dimension less than canonical. (Ex-
actly the same situation is met in discussing mass
renormalization in finite QED where the dimen-
sion of:Pg: is required to be less than canonical. ")
Now dP& —,', so that from Eq. (12) we conclude that
Z~=O.

Now f. ~ satisfies the Bethe-Salpeter equation

q' (k, (P+q, q) qq, + J q'kq=q(kkq)S(k)5 (k, k+q, ,q)S(k+q), (15)

where the renormalized kernel is built out of the dressed propagators and the dressed three-point func-
tion (Q~ T(g(x)&p(z)p(y))~Q) (= G i, ). The conformal ansatz for 1 P (unamputated) gives'

(X -z) (z —x) 1
P( k k S)

[( z)2](1+d())/2 75 [(& &)2](k+de)/2 [(& )2](2dPM9) 2/ (16)

This I P (together with a similar structure for
G d) then reproduces itself self-consistently in
Eq. (15) when ZP =0. Thus the bare vertex which
has canonical dimension is eliminated, and the
ansatz of conformal invariance with anomalous
dimensions reproduces itself with the convergence
of the integration in Eq. (15) achieved since de &3.
Hence we recognize the condition de & 3 as the con-
sistency condition that the conformal bootstrap be
impleme ntable.

Migdal in his paper did not actually discuss the
equation for I'p but rather that for 8d which is
also homogeneous when Z~ = 0. This equation is
then nonlinear in C@ and is thus a bootstrap equa-
tion for the dressed G & three-point function. This
equation also looks like a typical homogeneous
bound-state equation in which the meson could have
been a pole in the off-shell fermion-antifermion
scattering amplitude. Since the kernel is itself
made up by exchanging the same meson the situa-
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tion looks like a bound-state bootstra, p. Hence it
is often stated that the vanishing of the renormal-
ization constants Z~, Z~, and Z„gives a bound-
state bootstrap. Moreover, this approach is usual-
ly coupled with an analog of Eq. (7) (see, e.g. ,
Ref. 14) where the implied fast-falling on-shell
form factor is interpreted as a compositeness con-
dition. Now of course if there are bound states in
the fermion-antifermion scattering amplitude their
vertices will satisfy homogeneous equations at the
pole. So let us suppose there is a pseudoscala, r
bound state in the conformal theory. Such a bound
state would have to appear as a pole in I"~, which
symbolically behaves as

KSy58y~

However, we are in a situation in which Z~ =0,
a,nd thus I'~ ca,nnot contain a pole. Hence the ex-
istence of homogeneous equations is a necessary
but not sufficient condition that there be bound
states. (The sufficient condition is that the off-
shell bound-state vertex function satisfy an in-
homogeneous equation. ") Thus in the example dis-
cussed by Migdal we see that the condition Z~ =-0

actually prevents the meson from being a boot-
strapped bound state, and in his model:iPy, g: is
the source of the meson field instead of the meson
being a pole in F~." Thus though the conformal
bootstrap leads to self-consistent equations for
the dressed vertices and to an eigenvalue condition
for the (bare) coupling constant, it contains no

bound states, and hence it appears to us that the
conformal bootstrap cannot provide a field-the-
oretic realization of the S-matrix bootstrap.

D=n(l —n)p'+ p(l —p)q'+2npp q,
C,q

= —4n(1 —n)pgpq —2p(l —2p)q~q
—2p,q, (1 —n)(1 —2p) —4p„q, np,

then

1 1-a
G =-Z 'B ' dn dP '—"+-

pB 2 D 2D

(21)

1„(P, P, o) =Z.(& B)y„-, (24)

whose nontrivial content is that there is no Py„P'
term at q„=0. However, the renormalized Ward
identity in differential form gives

Z~ r'I'„(p, p, 0) =r", s -'(p),9

1

so that

Z, =(A —B)Z, .

Thus finally we obtain

(25)

(26)

(22)

It does not appear possible to integrate Eq. (22)
right out analytically so we keep it in this form.
Further simplification is possible at q„=0, how-
ever, and yields

(p p 0) =Z -'Sy' 4 "- -"'~")2*
pB » 2 y p2 p4

We now amputate the fermion legs using Eq. (8).
(This definition of Z, may not necessarily coincide
with the definition that Z, is the residue at the pole
of the unrenormalized propagator, since a con-
formal theory has infrared problems, but will
suffice for our purposes. ) Thus we obtain

II. CALCULATION OF THE VERTEX FUNCTION I;(P,P, o) =Z r„, (27)

We shall proceed directly to take the Fourier
transform of Eq. (2). The 2 term is simply done
and gives

A.
Z -1

VA 2 p' yp (p'+g) (18)

FT= 4 kg k+P h k-q (19)

so that we obtain

The second term can be handled by noting that the
Fourier transform (FT) of f(z —x)g(x-y) h(y —z)
is given as a Feynman diagram by

the advertised result. Also we note that in gen-
eral I'&(P, P +q, q) will not have the simple form of
Eq. (27) since the other form factors supplied by
|",

&
will appear as well so that there will be terms

of the form P'y&(P+/), etc. In passing we also re-
mark that I'„(P' = 0, (P +q)2 = 0, q) is found to be in-
frared-dive rgent, as is expected in a massles s
theory. For completeness we have also calculated
f'„(p,p, 0) in an arbitrary covariant gauge, and we
leave the details to Appendix B.

It is instructive at this point to consider the
Schwinger-Dyson equation satisfied by the vacuum
polar ization,

(0+1')(2&p qp)-
(I +p )4(u —q)'u' (20)

Z2II,(x- z) = lim ' Try„G, (x, z, y),
x~y 1

(28)

We evaluate this integral using Feynman param-
eters. If we introduce

where the limit is taken symmetrically. Thus
from Eqs. (2) and (3) we obtain the relation
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(29)

so that there is effectively only one form factor
at the eigenvalue. Combining Eqs. (26) and (29)
we then obtain the relations

A = —,'[4f(n) —1],
1

( o)
~B=~[f(n) -1] .

1

Thus if we can go to the mass shell in Eq. (25) to
recover the familiar Z, =Z„we can then infer the
interesting fact that both A. and B are necessarily
nonvanishing at the eigenvalue.

We would like to stress that Eq. (27) has been
derived from the fact that j„ is canonical, and has
not required the use of Eq. (29). In a, sense we
have been working with an abstracted theory in
which we only look at Green's functions with ex-
ternal fermion lines and fermion composites such
as the electromagnetic current, and have required
this theory to display asymptotic eonformal invari-
a.nce. (We recall that the Ward identity holds be-
fore we extend the theory to a. local gauge. ) We
can thus discuss the fermion sector in a nonper-
turbative and non-Lagrangian manner without an
explicit photon. " It is only when we ask what
particular Lagrangian field theory is going to pro-
vide us with these Green's functions that we in-
troduce the dimensionless ej„~" interaction by ex-
tending the theory to a local gauge and then make
a graphical analysis. Then the equation of motion
OA.„=ej„essentially dictates that the photon must
be introduced canonically if e is to be finite. Thus
finite QED may be thought of as a theory in which
a global canonical current remains canonical after
extension to a. local gauge. Before we introduce
the photon explicitly, however, A„„, which is de-
fined by the fermion sector only, satisfies con-
formal invariance in Eq. (5) without requiring
f(n) =0. We mention this to indicate that Eq. (27)
may then hold ln a more general context than
finite QED alone.

We turn now to the Bethe-Salpeter equation sat-
isfied by I'„,

I'„(P +q(, q) =Zy„+ f d'AK((, )(q5(A)

x f"„(k, k+q, q)S(k+q) .
(31)

Ordinarily in perturbation theory the finiteness
of the left-hand side is achieved by a cancellation
of the infinity of Z, against the integration over the
kernel. In finite QED we make the integration
finite by fixing the gauge of the propagators of the
internal photons. This i.s to be contrasted with

the conformal bootstrap situation discussed pre-
viously in which the integration in Eq. (15) was
made finite through anomalous dimensions, with
the ansatz of conformal invariance with anomalous
dimensions reproducing itself identically in Eq.
(15). In finite QED we have strictly canonical di-
mensions, so that a bare vertex is compatible with
confoI'IIlal lnvariance ill Eq. (31) with Ilonvalllslllllg

Z, . Thus Eq. (31) is not a nonlinear integral
equation for I'„, so that there is no vertex boot-
strap infinite QED (unless perhaps Z, just happens to
vanishat the eigenvalue). Moreover, sincewe have
an explicit ba, re vertex in Eq. (31) we must ask how
the conformal ansatz of Eq. (2) reproduces itself
in an inhomogeneous Bethe-Salpeter equation. The
answer wouM appear to have to be that when we
build the kernel out of I"„and then feed in Eq. (2),
we will obtain all together two coupled equations
for the different projections such as y„, Py&g,
etc. , and these two relations will self-consistently
be Eqs. (29) and (26). (Recall again the connec-
tion between canonical dimensions [used in Eq
(2)] and current conservation [used in Eq. (25)].)
Unfortunately, we are unable to confirm this ex-
pected interplay between the A and B form factors
since we only have Eq. (22) in parametric form.

It is instructive however, to consider the dres-
sed ladder approximation to Eq. (31) in which we
replace the kernel by a single dressed photon
coupled to the dressed vertices of Eq. (2). If we
only retain the A form factor, we see that Eq.
(31) is not satisfied in the ladder approximation
since point couplings in the integration (which is
now just like the usual lowest-order radiative cor-
rection to the vector vertex) generate a, nontrivial
momentum dependence at arbitrary q„which can-
not be reproduced by the remaining terms. Thus
to reproduce this momentum dependence we will
need the B form factor as well, so that already
in the ladder approximation we will need an inter-
play between the form factors. [It is conceivable
that the 4 form factor could satisfy Eq. (31) by
itself when we use the exact kernel rather than
just the lowest-order approximation. Since we do
not know the exact kernel we cannot eliminate this
possibility. ] This situation should be contrasted
with that found in the pseudoscalar Yukawa, theory,
where the dressed ladder approximation to Eq. (15)
is satisfied by Eq. (16). We note that Eq. (16)
does not correspond to a point coupling unless
d~=-,'-, de=3 (so tha. t d„=l), which was already
excluded. Thus I'~ has a nontrivial momentum de-
pendence which is reproduced identically. The
only ease where the dressed ladder approximation
will not be satisfied is when both the meson and
its source are canonical, so that the coupling is
a point coupling. The only nontrivial theory in
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which both the meson and its source are canonical
is finite QED (since Z, renormalizes the charge
by itself}, so that this is the only case where the
naive pointlike A. form factor will not suffice.
Thus we see that finite QED is not a vertex boot-
strap theory, and we see the specific role played
by the a.dditional B form factor x8

Another interesting formula is obtained by in-
serting Eq. (27) into Eq. (31), viz.

Z, d k JC(P, k, 0)S(k)y„S(k) = 0,

(34)

where Z„renormalizes the axial-vector vertex.
This time there is no relation

2 (35)

unless we invoke chiral symmetry to fix the
"axial" vacuum polarization Schwinger term. Al-
ternatively, Eq. (35) should also be expected to
follow from the consistency of the axial-vector
vertex Bethe-Salpeter equation. However, there
is a relation analogous to Eq. (32),

Z„d kEP, k, 0S ky&y, S k =0. (36)

Equation (36}is of interest since it explains why
the existence of a nontrivial solution to the self-
consistent equation for the fermion mass does not
require the presence of a Goldstone pole in f'„,.
In finite QED the electron mass is required to
arise dynamically (so that m, is zero to solve the
mass-renormalization problem), and since QED
is a closed theory there should, one hopes, be no

which must be satisfied for arbitrary external P.
Thus we see that the Bethe-Salpeter kernel is
compact and square-integrable in finite QED, or
at least its y„projection is compact, at q„=0.
This is of course to be expected since Z, ' is
finite at the finite QED eigenvalue. We shall re-
turn to this point again below in discussing the ab-
sence of Goldstone poles in the axial-vector ver-
tex, but remark only now that a compact kernel
at the eigenvalue is in fact welcome, since ulti-
mately we would like to make contact with con-
ventional low-energy quantum electrodynamics,
which should contain a positronium bound state.

We discuss next the axial-vector vertex. We
define A„B,analogously to Eq. (2) by putting the

y, immediately to the right of the p, index. This
leads to

(33)

The axial-vector Ward identity then yields

accompanying Goldstone boson. The authors of
Ref. 16 noted that the y, projection of the kernel
was noncompact so that the pseudoscalar bound-
state problem was not of the Fredholm type. We
see now that at the eigenvalue a possible pole in
I'„, is avoided by Eq. (36) so that the y„y, pro-
jection of the kernel can be of the Fredholm type and
still not produce any Goldstone pole in f'„, even
while it satisfies an inhomogeneous equation [sim-
ilar in structure to Eq. (17) only with a nonzero
Z„and with a denominator equal to unity at q„=0j.
These points will be explained in more detail else-
where. "

We conclude this section by noting how the
Federbush- Johnson theorem" is satisfied in finite
QED. All that happens is that all matrix ele-
ments of the current j„are purely real (i.e., just
the equal-time parts of the T products survive at
the eigenvalue), while in the Wightman functions
j„annihilates the vacuum since Z, is finite. In

general the Federbush-Johnson theorem states
that the n-point T products of a fundamental field
will vanish if the imaginary part of the two-point
function vanishes. For a composite operator, how-
ever, some real parts can survive even if its
two-point Wightman function vanishes. This is be-
cause of the singularity at equal times that the T
product possesses (i.e. , the equal-time com-
mutator of j, with g is independent of j,). Thus in
finite QED (O~ &(j,j„j,j, ) ~Q) vanishes, but not
(&l &(gj„p)~8, so that the Federbush-Johnson the-
orem does not entail the separate vanishing of 4
and B. We mention this because the discussion of
the Federbush-Johnson theorem is obscured by the
lack of positivity in certain gauges in QED." Our
point is that the real part of F„ is not obliged to
vanish even if the Federbush-Johnson theorem
can be extended to the charge sector in the finite
gauge. Also II„, is purely real at the eigenvalue.
However, the subtlety is that even a real F„could
contribute a logarithmic divergence to II„, through
the Schwinger-Dyson equation to give Il„„adis-
continuity. Equation (29) stops this from happen-
ing by a cancellation between the form factors.
Thus we need more than one form factor in order
to satisfy the Federbush-Johnson theorem. Thus
in conclusion we again remark that it is this inter-
play between the form factors of Eq. (2) which has
enabled us to maintain consistency in the various
situations that we have discussed throughout this
work.

APPENDIX A

In this appendix we discuss briefly the interplay
of gauge invariance and conformal invariance. As
we noted in the Introduction the transversality con-
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dition on ~„„ is only achieved if j„has dimension
3. Thus a canonical photon of dimension 1 mould

not be transverse. Adler' and Abdellatif' have
resolved this conflict by introducing an extra
four-vector 6„, a gauge point, so that the con-
formal photon propagator (&~ &(A~ (x)A,(y))~@ be-
comes a three-point function in an arbitrary con-
formal gauge, b„. Suppose we now try to con-
struct the G& vertex in perturbation theory by con-
sidering only graphs with a single continuous elec-
tron line dressed with free conformal photons.
This G„(x, &, y) will now depend on b~ as well, so
that instead of the previous two form factors of
Eq. (2) there will now be six independent form
factors. "Moreover, since we now have four
coordinates we can build harmonic ratios, so that
the coefficients of these form factors will no
longer be pure constants. By using the Wilson
expansion Christ' was able to eliminate these
extra four unwanted form factors and recover
Eq. (2) in the special gauge where 6 is chosen to
be z„, the coordinate of the external current.
This then leads us again to Eq. (24) in this par-
ticular gauge but not necessarily to Eq. (2'7) since
in the presence of 6„ the Ward identity corre-
sponds to a different kinematic configuration than
that used for the short-distance Wilson expansion
analysis. Thus in perturbation theory we obtain
slightly less information than deduced in this
paper. However, it is a moot point as to whether
Christ's discussion should actually be applied at
the eigenvalue. As we have indicated, there is a
nongraphical formulation of the theory which dis-
cusses the fermion sector alone without ever
needing to introduce an explicit photon. In this
approach we go straight to the eigenvalue and
introduce Eqs. (1) and (2) without any need to in-
troduce a gauge point at all, so that there are only
two form factors which satisfy Eqs. (26) and (29).
This viewpoint, which merits further study, then
implies that there are two formulations of con-
formal finite @ED, a perturbative graphical one
summed loopwise with free photons, and a non-
perturbative one at the eigenvalue, with perturba-
tion theory not being a good guide to the structure
of the theory at the eigenvalue itself.

There is one other open question posed by the
work of Schnitzer and Christ. At the eigenvalue we
have the naive Wilson expansion

plus additional terms which are irrelevant to this
discussion. The consistency of this expansion with
the structure of Eqs. (2) and (3) (the Crewther
analysis) leads to the relations"

Thus from Eqs. (30) (with Z, =Z, ) we deduce that
the Wilson eoeffieients have to be infinite at the
eigenvalue, which is not a desirable situation.
(Anomalous infinities in Wilson coefficients
will also be obtained if the axial-vector current
triangle anomaly is not renormalized at the eigen-
value. ") We shall conclude this appendix by
presenting a possibility which could remove the
undesirable infinities in Eq. (A2). In obtaining
Eq. (A1) it is tacitly assumed that at the eigen-
value the naive Wilson expansion still holds and

has the structure suggested by perturbation the-
ory, where j„ is given explicitly by the fermion
bilinear:Py~g: . However, in our discussion of
Eqs. (1) and (2) we never needed to make such an
identification for j„. Now in general the confor-
mally invariant Green's functions of fermion lines
and fermion composites do correspond precisely
with the naive forms that would be obtained in a
free massless fermion theory, except in the
special case of Eq. (2). In a free fermion theory
the coefficient 8 vanishes identically, whereas
in finite QED we need a nontrivial B form factor
to maintain consistency, as we discussed in this
paper. This suggests that at the eigenvalue the
current j„ introduced in Eq. (1) may be repre-
sented by a more complicated object than:Py„g:,
so that there could be possible additional terms
in Eq. (A1). Unfortunately for the moment we see
no way of testing this proposal, and of determin-
ing whether or not the Wilson expansion is re-
liable in a finite field theory.

APPENDIX 8

In this appendix we discuss how Eq. (27) is
modified in different gauges. In an arbitrary eovari-
ant gauge the electron propagator acquires an anom-
alous dimension d~, so that

(Bl)

[i.e., in an arbitrary gauge the wave-function re-
normalization constant of the electron is given by
Z, (A'/p, '}' ' &]. Because of this anomalous di-
mension Eq. (2) also needs to be modified so that
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g, 'A (y -z) (z —x) &g-3 /2

4m (y -z}4&~ (z —x}4 [(x-y}2][& ' 't

(x -y) (z„—x ) (y„-z ) I 'z' '
4/4 [(x-y}2]i"~-~'l(y -z)'(z —x)' (z —x)' (y -z)' p,

'

Thus with our choice of gauge-independent constants Z, ', A., and 8 introduced in Eqs. (2) and (8) we see
that the only modifications due to changing the gauge can be absorbed in changing the various powers that
appear.

Before we calculate the Fourier transform of Eq. (B2) at zero momentum transfer we point out that this
is a problem which has a general solution. Suppose we are given a three-point function which has the form
of a product of powers f(z —x)g(x-y)h(y -z). Then

4

G(p, p, 0)=,f (k)g(k+p)h(tz) .

Introducing E(k) =f (t.')h(k) we can then write G (P, P, 0) as a one-parameter Fourier transform of a product
of powers

(B4)

so that the Fourier transform can be performed analytically. Thus a conformal-invariant three-point
function can always be determined analytically at zero momentum transfer.

If we now apply this method to Eq. (B2) using the relation

J e"" .+, „I'(2 -X)
(-x')' I'(~) (-~')'-' '

we obtain after some arithmetic

(B5)

2 F(d 1
) ( P2)7/2 If~ t. gay P (5 2~+)PQPP ] 2

We now amputate, using Eq. (Bl), to find

(Be)

I'„(P,P, 0) =Z, (A -B)2'"z ' —,~ „"
2 P'

(B7)

Inserting Eqs. (B7) and (Bl}into the Ward identity again leads to Eq. (26), as expected since the c-number
coefficients are gauge-independent. Thus we obtain finally

2 (3-2uE)/2

I
to be compared with Eq. (27).

(B8)
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