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Algebra of causality
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A set of trilinear equal-time commutation relations is proposed as a generalized second-quantization
scheme for fields satisfying conventional statistics. The scheme specifies the bilinear equal-time
commutation relations between distinct fields (a finite number for each spin for the representations
considered) in addition to the commutation relations of fields with themselves. Multiplet schemes for a
particular representation of "generalized fields" satisfying the trilinear equal-time commutation relations
are studied. It is shown, that generalized vacuum expectation values can be defined, and that the
S-matrix formalism can be developed for generalized fields. Differences with the conventional 8-matrix
expansions are examined, in particular in connection with possible applications to renormalization
procedures. A novel regularization method, based on the bilinear equal-time commutation relations
between distinct fields, is considered.

INTRODUCTION

Because of their relevance to quantum field
theory, bilinear equal-time commutation relations
between distinct fields have repeatedly been dis-
cussed in the literature. The conclusion in both
the Hamiltonian" and axiomatic' contexts is that
a "regular locality"' can be Klein-transformed,
by a succession of Klein transformations4 if nec-
essary, to the "normal locality'"" for which, by
definition, distinct fermions anticommute and
boson-boson and boson-fermion field variables
commute for spacelike separations of the argu-
ments. In a regular locality, be definition, any
two field variables either commute or anticommute
for spacelike separations of the arguments, but
the commutation behavior is not (necessarily)
normal. Covariant components of a field are as-
sumed to have the same commutation behavior
with respect to other fields.

Klein transformations, though nonunitary, should
presumably not affect the physical content of a
theory. It has generally been recognized that in a
theory with anomalous locality there are selection
rules, superselection rules, or conservation laws,
"even-oddness conservation laws" in axiomatic
language, ' which conceivably may be of physical
interest. " The possible physical relevance of
the selection rules inherent in a regular locality,
as distinguished from a normal locality, would be
of more compelling interest if from first principles
it would be possible to derive a set of fields for
which the locality is not normal. In other words,
it is of interest to consider second-quantization
schemes which specify the bilinear equal-time
commutation relations between distinct fields,
as well as the commutation relations of fields with
themselves. In this connection the "algebra of
causality" defined by the following trilinear equal-

(la)

has been studied. ' ' The following representations
of "generalized fields" (operators satisfying the
algebra of causality) have been considered:

4, (x) =.A; x((x); 4, (x) =AI xq(x)

4, (x) = B,xy(x)-. ; .11,.(x) = B,' xII( )x.

(2a)

(2b)

For any representation the bilinear equal-time
commutation relations between the various "com-
ponent fields" P and Q are determined by the
space-time independent matrices 4, or B& with
which they respectively are associated, using
Eqs. (1) for the determination and other consider-
ations that may be necessary. The notation em-
ployed in Eqs. (1) and (2) and the meahing of the
symbols used have repeatedly been discussed. ' '
For t:he representation considered, all the "un-
determined multipliers" M, M', N, and Ã', which
depend upon the generalized fields in whose tri-
linear commutation relations they occur, commute
with each other, but these multipliers do not nec-
essarily satisfy bilinear commutation relations
with all the generalized fields of the representa-
tion. In spite of this the trilinear commutation
relations (1) can still be derived from the action
principle' '" provided the generalized variations,
generall. zed fl.elds, multlpll. ers, and symmetrl. zed

time commutation relations

[~., ~(x), [x 8,, (y), xI ..(z) ~-I-

=- 5 (x —y) (y, ) „a~'x,' „(z) —& (x —z)(y,),Mx 8,, (y)
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and antisymmetrized generators of the infinitesi-
mal transformations G(C'&) and G(4&) satisfy rela-
tions of the form

[C'„;(x),Il„;(y)J = ~5„,6(x y)B, J3,'x . 5(C „11,.),
(6a)

and

[C, ,G(4,)] =ic,'6, ,6C „

(3a)

(3b)

(3c)

(3d)

[a, , a,'] =o. (6b)

The bilinear equal-time commutation relations
of the component bosons with all component fields
associated with generalized fields of any repre-
sentation of the type considered [i.e., subject to
Eq. (4)J are thus specified by Eqs. (4)—(6).

Even if the 4', are "generalized fermions, "
[~. ;(x),+8,;(y)],=~26(x —y)h'. ) s&;&lx6(~~, ~')

where all the numerical matrices c& and c& com-
mute with each other and with all the generalized
fields of the representation. The various multi-
pliers M, M', N, and N' are symmetric in the
canonically conjugate fields being contracted, and
they are assumed to vanish if the fields being
contracted are not related by eanonieal conjuga-
tion. ' Each c& and c& depends on a pair of pertinent
canonically conjugate field variables, whereas
each M and N depends in addition also on X. For
the representations to be considered the conditions
(3) are satisfied.

In Eqs. (la) and (lb) any two field variables may
be kinematically related or unrelated, each field
operator independently of the other fields denotes
either a field variable or its canonical conjugate,
and the "ordered Kroneeker delta" 6„, is antisym-
metric in its subscripts, i.e., ~„,=+6&, , depending
on whether p. refers to a field variable or its ca-
nonical conjugate. ' The + and 4 fields differ in the
symmetrization of their generators of the infini-
tesimal transformations [cf. Eqs. (3a) and (3c)],
the generators being antisymmetrized in the
former and symmetrized in the latter case.
Moreover, the generalized fields X& and X,

' can
independently of each other and of the other gen-
eralized fields refer either to a @ or to a 4 field.

BILINEAR COMMUTATION RELATIONS
BETVfEEN THE COMPONENT FERMIONS

[~„A,. ] =o,
(Va)

(vt)

and it is assumed that distinct component fermion
fields satisfy bilinear equal-time commutation
relations with each other, Eqs. (1) [and (4)] do not
uniquely specify these bilinear commutation rela-
tions, unless another reasonable requirement is
introduced, e.g. , that there should be a one-to-one
correspondence between the matrices and the bi-
linear equal-time commutation relations between
the component fields (cf. below). The assumption
that the 4; are (generalized) fermions is not as
restrictive as might appear, because Eqs. (1)
imply that any generalized half -integral-spin
field which anticommutes for equal times with at
least one other half-integral-spin field belonging
to the same representation must be a fermion.
The trilinear commutation relations (1) interrelate
the commutation relations between distinct gen-
eralized fields to the commutation relations of a
generalized field with itself.

The operator Kronecker deltas 5(C';, II;) and
5(4';, 4';) respectively occurring in Eqs. (6a) and
(7a) by definition" have the sa, me commutation be-
havior with respect to other component fields as
the product of the component fields associated with
the generalized fields being contracted.

It is expedient to consider a particular represen-
tation based on the generators"

In connection with possible physical applications
it is expedient to consider representations for
which at least one +& equal-time commutes with
one 4&'.

C,=,C~=, C3=, 8

and to divide the matrices obtained from these
generators into four sets:

[C„,(x), C„,(y)] =O, C'~II, , (6)

[@„,(x), 4„y(y)] =0.
As has been shown, ' Eqs. (1) and (4) imply that
for the representations considered all +& commute
for equal times with a,ll 4&, and that

S, = (I, i C,C,C,C„iC, C„C,C,C,C,),
S, =((C,C, + C,C,), (C,C, + C,C,)),

S, = (C„C„C,C,C„C,C, C.,),
S4 = (C~, iCiC2C3 CiC~C„ iC,CSC~) ~

(9a)

(9b)

(9c)

(9d)

and furthermore that all the 4
&

are "generalized
bosons":

No matrix in set 8, satisfies a bilinear commuta-
tion relation with a matrix in S~. However, any
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[4 „,. (x),48,.(y)], =0, (10)

provided the matrices associated wi. th ~'; and 4",
both belong either to S, or to S4. All bilinear corn-

other two of the matrices (9) either commute or
anticommute. Since distinct component fields are
assumed to satisfy bilinear equal-time commuta-
tion relations with each other, one can infer that
the matrices in sets S, and S~ must either all be
associated with generalized fermions or all with
generalized bosons. The a priori ambiguity of
dividing the matrices (9) between fermions and
bosons is thus reduced but not eliminated. For the
correspondence between fields and particles to be
considered the matrices in S, and S, will be as-
sociated with bosons, and those in S, and S4 with
fermions.

The bilinear equal-time commutation relations
between the component fermions are determined
by the following relation:

mutation relations between component fermions,
whose respective matrices do not belong to the
same set, are then determined from the require-
ment that the component fields respectively as-
sociated with the generalized fields C, &g and

C, xg, for example, anticommute for equal times.
The bilinear equal-time commutation relations

between all the component fields of the represen-
tation considered are then determined in a manner
consistent with Eqs. (1), and the resulting regular
locality is summarized in Table I.

The component fields associated with the gen-
eralized fields C, && g and C, && / could equally well
be assumed to commute for equal times. Subject
to the condition (10) the effect would be that in the
fermion-fermion part of Table I all the signs in

the upper left- and lower right-hand quadrants are
reversed. This effectively implies that in the
fermion-fermion part of the table rows (and col-
umns) are interchanged pairwise, e.g. , the rows

TABLE I. Bilinear equal-time commutation relations between the component fieMs for the
representation of the algebra of causality considered in this discussion. The commutation re-
lations are obtained from Eqs. (1), (4), (5), (10), and the assumption that the component fields
associated with C& x P and C3 xP anticommute for equal times. Other representations, for
which the locality may be different, can, of course, be considered. In the shorthand notation
employed, 1313 (written vertically or horizontally), for example, refers to the component
field associated with the generalized field C&C3CJC3 x Q.

132

131

23 —32 — +

23+ 32 +

13-31 +

13+31 — +

1313

1 2 313 323 123 131 132 3 1 12 1 1 1 2 2
3 3 3 3 3 3
1 + — +
3 3 3 3 3 3

1 1 2 2
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(and columns) corresponding to C, and C,C,C, .
However, these rows and columns differ in their
commutation behavior with respect to the compo-
nent boson fields. Yet an inspection shows that
the symmetry of Table I is of such a nature that
effectively the same regular localities are obtained
regardless of whether the component fields as-
sociated with C,x g and C, x |jP are assumed to com-
mute or anticommute for equal times.

If the bilinear commutation relations between the
component fields are determined as outlined, the
generalized fermions of the representation con-
sidered also satisfy the following equal-time com-
mutation relation:

[+,;(x),@'8.;(y)+y, k(z)]- =o, +~ ~+/, @;~@k',

provided the matrices associated with 4,' and +~
both belong to S, or both belong to S4. Further-
more, for the representation considered, the
right-hand sides of all the bilinear commutation
relations (6a) and (7a), though not, strictly speak-
ing, c numbers, commute with each other and
with all the generalized fields of the representa-
tion. This is true even if the two matrices as-
sociated with canonically conjugate generalized
field variables are not equal, though they are re-
quired to commute. Except for a factor
~i5„,6(x —y) or 25(x —y)(y~) 8 the right-hand sides
of Eqs. (6a) and (7a) are respectively equal to the
factors c& and c& occurring in Eqs. (3).

Subject to Eq. (4) and the division of the ma-
trices (9) between the generalized fermions and
bosons, the bilinear equal-time commutation rela-
tions of the component bosons with all the com-
ponent fields of the representation considered are
uniquely determined by Eqs. (1). However, Eqs.
(10) and (11) are consistent with but not implied
by Eqs. (1) [and (4)]. The question therefore arises
whether the bilinear equal-time commutation rela-
tions between the component fermion fields can be
determined in some other manner to yield a regu-
lar locality essentially different from Table I. If
the bilinear equal-time commutation relations be-
tween the component fermion fields whose as-
sociated matrices are in the same set, S, or S4
[Eqs. (9)], are not determined by Eq. (10), but by
some combination of commutation and anticommu-
tation relations [consistent with Eqs. (1)] for dis-
tinct generalized fermions whose associated ma-
trices are in the same set, it is, in fact, possible
to obtain regular localities which essentially differ
from Table I in the fermion-fermion part, and
which in some cases are degenerate. In a "de-
generate locality" component fields associated
with different matrices have the same bilinear

—(C, xp + C,C,C, xg'),1

2
(13a)

—(C,C, C, xg+ C,C,C, xg") .
2

(13b)

For the degenerate locality under discussion g
and g' in each case anticommute with each other
and have the same bilinear equal-time commuta-
tion relations with respect to all the other compo-
nent fields of the representation. Hence, in each
case one may set

equal-time commutation behavior with respect to
all the component fields of the representation. As
a consequence the table corresponding to such a
degenerate locality contains two (or more) identi-
cal columns (rows).

A regular locality, consistent with Eqs. (1) and

(4), essentially different from Table I results if,
for example, the bilinear equal-time commutation
relations between the component fields are de-
termined as before, except that any two general-
ized fermions associated with distinct matrices in
set S~ [Eq. (9d)] are assumed to commute for
equal times.

If couplings are to be suitably symmetrized,
e.g. , antisymmetrized in generalized fermion
pairs, as is indicated by Eqs. (1), it appears im-
possible to couple two commuting generalized
fermions to a boson, for example, This difficulty
may conceivably be circumvented by the introduc-
tion of a Hermitian matrix, e.g. , iCyC3CyC, into
the generalized interaction.

As an example of a degenerate locality con-
sistent with Eqs. (1) and (4) the commutation rela-
tions between component fermions associated with
distinct matrices in set S4 are determined as
follows:

[C,x g(x), iC, C, C, x g(y)],
= [C,C,C, xp(x}, iC,C,C, xg(y)],

=[C,xq(x), C,C,C, xtt(y)]

= [C, xg(x), iC,C,C, x p(y)]

= [iC,C,C, x g(x), C,C,C, x $(y)]

= [iC,C,C, x $(x), iC,C,C, xg(y)]
=0, (12)

all the other bilinear commutation relations being
determined as before. The resulting locality dif-
fers from Table I in the fermion-fermion part,
the columns corresponding to C, and C,C,C, being
equal, as are the columns corresponding to C,C, C,
and C,C,C, . This degenerate locality is contained
in Table I if only different columns are considered.

It is of interest to consider the following super-
positions:
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and cons ider the pairwis'e-degenerate generalized
fields

—(C3 + C,C3C, ) X g,
2

(15a)

—(C,C, C, + C,C, C,) xg .1

2
(15b)

C,C,C, ——(C, —C,C,C,),1

2

s, —s,' = —(c, + c,c,c,), —(c,c,c, + c,c,c,I) .

The factors 1 ' 2 in Eqs. (13) and (15)-(17) have
been introduced for normalization purposes.

Instead of the matrices in sets S]p S2p Ssp and

S„Eqs. (9), it is expedient to consider the sixteen
linearly independent matrices in sets S„S„S„
and S4, since in the latter four sets any two ma-
trices either commute or anticommute. Table I
is recovered if condition (10) is applied to any two

distinct generalized fermions with associated ma-
trices in the union of S3 and S,'. The anomalous
regular locality of Table I can therefore be ob-
tained from a normal locality for the generalized
fields [Eqs. (4), (5), (6a), (Va), and (10)]. If
physically relevant expressions are suitably sym-
metrized the implications of using the matrices
in S, and S, or in S, and S4 can be expected to be
identical.

The locality of Table I can also be obtained in a
manner consistent with Eqs. (1) if instead of Eq.
(4) it is required that one 4'; anticommutes for
equal times with one C &, assuming that Eqs. (5)
and (10) remain valid.

Although there is some latitude in choosing the
commutation relations of the generalized fields
consistent with Eqs. (1) and Table I, it is apparent-
ly not possible to make simultaneously a Klein
transformation of both the generalized and the

The degeneracy is removed if the bilinear equal-
time commutation relations are again determined
by Eq (10. ), and Table I is recovered if the follow-
ing correspondence is made:

C, ——(C, +C,C,C,),1

2

component fields to the normal case if only conven-
tional Klein transformations as applied to the
component fields are considered. Moreover, the
Klein-transformed fields in general will no longer
satisfy the algebra of causality, which has physical
content, e.g. , it contains statements about the
commutativity of physically relevant expressions
for spacelike separations of the arguments. Since
in any case Klein transformations should not affect.
the physical content of a theory, ' the above out-
lined procedure of determining the bilinear equal-
time commutation relations between the compo-
nent fields from the normal case for the general-
ized fields appears to be not only consistent with
but also indicated by Eqs. (1), the supplementary
condition (4) being postulated for physical applica-
tions.

Additional justification for this procedure derives
from a possibly signif icant mathematical distinc-'
tion between the locality of Table I and any other
essentially different locality consistent with Eqs.
(1) and (4) for the representation under considera-

tionn.

Sine e a minus s ign in Table I means commu-
tation and a plus sign means anticommutation
relations, the product of two columns (rows) can
be defined if the product of two equal signs equals
a minus, and the product of two unequal signs
equals a plus sign. Using this convention, the
square of each column or row is obviously propor-
tional to the unit column (row), and Table I can
be generated by suitable multiplication of, for
example, the four columns in the fermion-fermion
part of the table corresponding to Cy C2p C3CyC3,
and C, [- (I/v 2)(C, + C,C3C, )]. Alternatively,
Table I can be generated from the array of Table
II, for example, by repeatedly multiplying rows
and columns in this table until the resulting pro-
duct table is closed under multiplication. Four
column (row) generators are needed instead of
three matrix generators, Eq. (8), because column

TABLE II. Repeated multiplication (as defined in the
text) of rows and columns in this table, and subsequent
rearrangement of the product, yields the array of Table
I, which is closed under Inultiplication.

23 —32

13+31
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(row) multiplication is, by definition, commuta-
tive. For any locality of the representation con-
sidered [subject to Eq. (4)] essentially different
from Table I this one-to-one correspondence be-
tween matrices and columns (and rows) of signs
under multiplication can apparently not be estab-
lished. Therefore, in this sense, only the locality
of Table I is a faithful representation of the ma-
trices.

As will be discussed in the next section, there
is a possible phenomenological way of deriving
the locality of Table I for the matrix representa-
tion (9) being considered.

MULTIPLET STRUCTURE

Since the generalized fields of the representation
under consideration and the associated locality
(Table I) are obtained from first principles, " it
seems natural to try to exploit the selection rules
inherent in the locality in connection with the ob-
served internal symmetries of elementary parti-
cles.

The commutator or anticommutator of two ma-
trices, one from set S, [Eq. (9c)] and the other
from set S4 [Eq. (9d)] or S4 [Eq. (17)], is equal
(proportional) to a matrix in S, [Eq. (9b)]. Since
up to a possible numerical factor the square of
each matrix in sets (9) and (17) is equal to the
unit matrix, the generalized bosons with associ-
ated matrices in S, can mediate (trilinear) inter-
actions between two generalized fer mions, one
with matrix in S, and the other with matrix in S4
or S4, in such a manner that the matrix obtained
by multiplying together all the matrices associated
with the generalized fields entering any one of
these interactions ("interaction matrix") is pro-
portional to the unit matrix. Hence, for the local-
ity of Table I the product of the component fields
entering any such interaction commutes for space-
like separations with all the component fields of
the representation. These observations heuris-
tically suggest that in any attempt to establish a
correspondence between generalized fields of the
representation considered and physical particles,
the matrices in S, should be associated with gen-
eralized fermions (baryons) of even strangeness,
and those in S,(S,') with baryons of odd strangeness
or vice versa. Furthermore, the matrices in S,
should be associated with generalized bosons that
mediate transitions between baryon multiplets
which differ in strangeness by one unit, i.e., with
kaons, for example.

Making a judicious choice for the generalized
fields to represent one baryon singlet and the bo-
sons heuristically labeled K', K, K, W', S',
and IT" (Fig. 1), it is possible, using the consid-

erations outlined above, to obtain the supermul-
tiplet scheme of Fig. 1 by repeated (symmetrized)
matrix multiplication, as indicated in the figure.
The Yukawa-type couplings are supposed to be
antisymmetrized in the generalized fermions,
and the locality of Table I is used to obtain the
interaction matrices. Not only are the interaction
matrices, by construction, proportional to the
unit matrix, but the couplings are also Hermitian
in the matrices and in the component fields, and
local in the generalized as well as in the compo-
nent fields, since both the coupled generalized and
component fields have equal-time commutation
behavior consistent with locality. ' Starting from
the si.nglet at each stage only two baryon multiplets
with different matrix structure are obtained (Fig.
1). Any two distinct commuting matrices in S, or
S,(S,') can be selected for the baryon singlet. Dif-
ferent choices lead to physically equivalent
schemes. There similarly is some latitude in the
choice of the matrices for the generalized bosons
of Fig. 1. It is to be expected that the theory can
be developed in such a manner that this latitude
in the choice of the matrices will be physically
inc onsequent ial.

If a suitable selection of generalized fields from
Fig. 1 is made, it is heuristically possible to
obtain baryon octet and decimet structures (Table
III), though such problems as the 2 spin of the
decimet fields or the presumed spin 1 of the
intermediate bosons are left unsolved. Table III
is an expanded version. of Fig. 1 and contains a
tentative phenomenological correspondence between
generalized fields and particles. ' For each field
the canonically conjugate momentum can be ob-
tained from a suitably constructed generalized
(matrix) Lagrangian with suitable interactions,
each field being uniquely characterized by its
spin (parity), charge, and two commuting ma-
trices (A.;,A. ,') or (B,, B',). In Fig. 1 there are some
hypothetical generalized fermions for which there
appears to be no phenomenological correspondence
in the scheme considered. Such fields do not occur
in Table III, and as a consequence the generalized
field labeled A, for example, is a singlet and not
a member of a triplet. Furthermore, there are
no allowed minimal strangeness-nonconserving
electromagnetic transitions between the fields of
Table III.

Though Table III and Fig. 1 have been phenorne-
nologically constructed assuming trilinear baryonic
couplings to bosons, it is possible to regard the
fields in Table III as given a priori and subject
them to different interactions. If it is required
that all suitably symmetrized trilinear interactions
involving generalized fermions be Hermitian and

local, some such couplings will be allowed and
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cic3cixg
XC~G3C~x +

C~xg

-C3C&C3xp

0 x+

x

C3x+

iC&C&C3x V

C&C3C&x p

-ie~c3C~x+

C xg

i.c~c~c~x Y

&C&C3C&xp

C&C3C&xp

-iC~C~C~&9

C3x+

iC~C3c~xg

CIC3C&xp

-C3c&c&x+
C~xg

Cl"i
-C3C&C3x'f

C3x+

iQ t"~c3x+

C&C3C&xp

-iC C3C&xp

C xP

ic&C&C3xg

-i(CiC -C3Ci)x ]8 : K

(C&C3+C3C&)x pj : Yi

(C&C3+C3C&)x p . K

i(CiC3-C3Ci)x gf: K

(C&C3+C3C&)x )(i : V

-i(CZC -C3C&)x il( : W

i(C&C3 C3C2)x P~: &

(C&C3+C3C&)x i((: W

C3C&C3xg

C ~x'f

C ~x'P

C3c&C3x+

C3C&C3xp

C x'f

g xP

C3C&C3x Y

C&x+

C3C&C3xp

C3Cic3xp

C~xg

C~xg

C3CZC3x Y

C3C&C3x+

CzX7

FIG. l. A hypothetical supermultiplet scheme for generalized fields of the representation being considered. The
multiplets are generated from a generalized fermion singlet by generalized, Hermitian, local, properly syrnmetrized
Yukawa couplings, mediated by generalized integral-spin fields heuristically labeled E and W . All the interaction
matrices are proportional to the unit matrix. It is understood that the generalized fermions within the same isomulti-
plet are distinguished by their charges.

others will obviously be forbidden.
Not all strangeness- or isospin-nonconserving

Yukawa couplings for the baryons and bosons of
Table III can be ruled out on the basis of lack of
Hermiticity or locality. However, phenomenolog-
ically a strangeness quantum number can be as-
signed to all fields of Table III in a natural man-
ner. With such an assignment all ~S=+1 Yukawa-
type transitions between the fields of Table III are
ruled out either for lack of Hermiticity or lack
of locality or both. Some other considerations,
such as group-theoretical arguments, for example,
must be invoked to rule out the ~S=+2 and also

some isospin-nonconserving transitions (e.g. ,
from A to 6), which are consistent with both
Hermiticity and locality and presumably are not
realized physically. In a similar scheme presented
previously' an attempt was made to rule out all
strangeness-nonconserving Yukawa couplings on
the basis of non-Hermiticity or lack of locality.
However, the scheme of Table III appears to be
phenomenolog ically superior.

All strangeness-conserving trilinear, local, and
Hermitian transitions between the baryon multi-
plets of Table III are schematically represented
in Fig. 2. The relative magnitudes and phases of
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TABLE III. One of several a priori possible phenomenological correspondences between
generalized fields of the representation considered and particles. Although, with the exception
of the division of generalized fields into two sets, one containing integral and the other half-
integral spin fields, questions of spin have been disregarded, it is assumed that the same ma-
trices are associated with a field and all its recurrences. Spinor and vector indices and nor-
malization factors 1/v 2 have for simplicity been omitted.

Octet Decimet Leptons

C)xg M+
~ M

-C&C&C3 x g:
-C3C&C3 x (: ™

C, xy

C& C3C& x p:
iC&C3 C2 x p:

-C3C(Csx p:
C) xg

C& xg

-C3 C~C3 x p:

Mg+

M+0

C&xg

C( xP

-CSC&C3 x p

C3C&C& x g

C2x p

C2 xp

~ If

~ 11

~ 12

~ 13

C3xp ~ g+

iC(C2C) xg: Z

C&C&C& x ft):

-iC&C3C2 x g:

C3xg

iC&C2C3 x g: Z+

-iC&C2C3 x p: A

C3xg: A

C3 xg

iC&C&C3 xp: Z*

C&C3C& x g:
-iC&C&C2 x p:

C3 x$

iC&C&C& x g:

C( x$

C3C&C3 x p:

-CSC~C& x $

C3C&C3 x g

Bosons

-i (C& C3 —C3 C&) x p

(C)C3+ C3C() x p

(C(C3 + C3C() x p ~

i(C&C3 —C3C&) x ~II)

(C&C3+CSC&) xg~

14

Zp

C2xg n

C&C&C& x$:
C& xg gp

-i(C&C3 —C3C2) x g

i(C2C3 —C3C2) x ft) ~: Wp

CSC&C3 x g: n

CSC2C3 x g: p

C(x j)

C3C2C3 x p: Q+

(C2C3+ C3C&) x p

iC&C& x@

Wp

~ qt

C, xy ~ p C3C&C3 x p:
C2xp

Ixg
C C xy(f)

C& C3C2C3 x Q

C, C,C,C, ,~(~~

rl

7r'

pro

B,= (C,C, + C, C,) x Q/v 2,

B,=i(C,C, —C,C, ) x y/v 2,

B, = (C,C, + C, C,) x y/WZ,

B,=i(C,C, C,C, ) x y/W2.

(18a)

(18b)

(18c)

(18d)

the coupling constants remain to be determined.
Tables III and Fig. 2 are of interest also if it
should turn out that the intermediate bosons W

and W' are not physically realized.
In addition to the generalized fields listed in

Table III there are four more (Hermitian) integral
spin fields:

These fields can be directly (selectively) trilinear-
ly coupled to the generalized fields associated in
Table III with leptons, but not to baryons. The
generalized boson B„Eq. (18a), for example,
can be trilinearly and locally coupled to the gen-
eralized fermion labeled I, (Table III) or to I,.
Such couplings would, however, give rise to
neutral currents.

All the free-field and Yukawa-type interaction
matrices for allowed couplings of the generalized
fields listed in Table III turn out to be diagonal,
though they are not all proportional to the unit
matrix. Allowed trilinear couplings of the gen-
eralized bosons (18) to the generalized fermions
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associated in Table III with leptons would, for the
representation considered, give rise to nondiagon-
al interaction matrices. However, this may not
be objectionable as long as for ea, ch field the free
field and interaction matrices, associated with
allowed interactions into which the field enters,
can be diagonalized simultaneously. ' If this con-
dition is satisfied each component field commutes
for spacelike separations with the component
Hamiltonian density into which it enters. This is
presumably sufficient to insure the locality of the
equations of motion of the component field vari-
ables. In addition, by virtue of Eqs. (1), all the
generalized fields of the representation considered
satisfy the necessary causality requirements.

If the generalized fields associated with the gen-
eralized fermion singlet and the generalized bo-
sons are chosen as in Fig. 1, the bilinear equal-
time commutation relations between all the com-
ponent fermions of the representation considered
can phenomenologically be determined from the
requirement that certain observed transitions be-
tween particles occur locally in the generalized
and the component fields and are of the Yukawa

type, and that the corresponding interaction ma-
trices be proportional to the unit matrix. In this
manner the fermion-fermion part of the locality
of Table I can be obtained phenomenologically.

The method of construction of Fig. 1 can, in

principle, be used to extend Table III to include
positive-strangeness baryons. However, if this
is done the generalized fields begin to repeat
themselves, i.e., in some cases generalized
fermions are obta, ined which are associated with
matrices (A„A,') that have already occurred in
the table in this or reversed order (A.,', 2, ) in
connection with fields of the same charge, As a
consequence minimal strangeness -nonconserving
electromagnetic transitions could possibly occur
if positive-strangeness baryons were included in
Table III and Fig. 1.

VACUUM EXPECTATION VALUES AND S MATRIX

Since for the representation considered the gen-
eralized fields are 4&&4 matrices, state vectors
are (4x1) columns or (1x4) rows. With the ex-
ception of the unit matrix, all the matrices (9)
and (17) are traceless. Hence, to obtain meaning-
ful generalized va, cuum expectation values, it is
necessary to introduce a Hermitian operator into
the definition of va, cuum expectation values of
generalized fields. ' A priori this can be done in
a number of different ways, e.g. , the relevant
Hermitian operator can be defined as

q P,w', v

N 't, v', lf, (q)

A, = —,'(-1)o(I+iC,C,C,C, —C,C,C,C, —iC,C, )

1 0 0 0

q 0 —1 0 0= x(-I
0 0 1 0

0 0 0

(19a)

or

Jl, = —,'( I)'[I+iC,C,C, C, &«(4, C")

C,C,C,C, x 5(4,4') t!C,C, x 5(4",4")],

where Q is half the number of singly charged field
variables in the expectation value, and the opera-
tor Kronecker ~'s are those properly associated
with the respective matrices. Both ~, and ~,
are diagonal, and A, commutes with all the gen-
eralized fields in any generalized vacuum expec-
tation value.

For physically relevant expressions T of the
generalized fields of Table III, e.g. , for time-
ordered products of generalized fields occurring
in the 8-matrix expansion for allowed generalized
Yukawa interactions, the vacuum expectation
values are then defined by

&ol~,rl0& or &OI~.TIO),

which, for diagonal T (as is assumed), have to be

FIG. 2. Schematic representation of the allowed trans-
itions between different isomultiplets obtained when the
generalized fields of Table III are coupled by Hermitian,
local, strangeness-conserving Yukawa couplings. The
A-6 transitions (dashed line) are not consistent with iso-
spin conservation. The allowed transitions within each
multiplet can be ascertained in an analogous manner. The
symbols next to the rectangles indicate the generalized
bosons that can mediate trilinear interactions within the
same baryon isomultiplet.
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evaluated by taking the trace of the matrix ob-
tained by multiplying together all the matrices
associated with the generalized fields and with R
in any diagonal generalized vacuum expectation
value. Hence,

& 0~ B,T ~
0) = numerical factor

x&0I component fieMsIo), (21a)

generators (8), i.e., 5(}t;,}t]), whose squa, re is
proportional to unity, has the same commutation
behav ior with respect to other component fields
as the product of the component fields associated
with X& and g&. Two distinct operator Kronecker
&'s either commute or anticommute.

For the above defined operators R, and R,

&0I B,T I o& = &0I B,T I o& =
& o

I 0&

& 0) B,T ) 0) = numerical factor

~ operator Kronecker 5

x&0[component fields
~
0). (21b)

and

R '=R '=-'I (24)

The factor of (-I)~ in the definitions (19a) and

(19b) is necessary in order to preserve a positive
metric for the component fields. This factor oc-
curs because in the construction of Fig. 1 the
free -field matr ice s —iC,C,C,C, = -iC,C3C2C3 as-
sociated with the charged bosons are 180' out of
phase with the free-field matrices associated with

the neutral bosons. The generalized fields in

Fig. 1 representing the bosons could equally well
have been chosen in such a manner that their free-
field matrices would all be equal, including phase.
Then the factor (-1)o would not have been neces-
sary, and it is introduced in Eqs. (19) in order to
render the physical implications of the formalism
independent of this arbitrariness in the selection
of the generalized bosons of Fig. 1.

The above definition of vacuum expectation val-
ues permits the development of the S-matrix for-
malism for the generalized fields of Table III
along conventional lines.

Since for the generalized allowed interactions
considered

While the operators R, and R, are formally dif-
ferent, they can in connection with diagonal ex-
pressions T presumably be used interchangeably
and with the same consequences.

For more general manipulations it is expedient
to define vacuum expectation values also for ex-
pressions for which the resulting matrix is not
diagonal. Univalence requires that there must be
an even number of half-integral-spin field opera-
tors in a nonvanishing vacuum expectation value.
Hence, a nondiagonal product matrix of a mono-
mial T in generalized fields of the representation
considered, containing an even number of gen-
eralized half-integral-spin field operators, must
be proportional to one of the off-diagonal matrices
in set S, [Eq. (9b)].

In analogy to the operators R, and R, of Eqs.
(19) it is therefore possible to define two operators
R3 and R4, in w hi ch the off d iagonal matric es of
set S, [Eq. (9b)] are substituted for the diagonal
matrices of S, [Eq. (9a)], with a corresponding
change in the relevant operator Kronecker 5's.

Alternatively, the def inition

(22)

for generalized vacuum expectation values of the
fields of Table III and Eq. (18) can be generally
applicable to any monomial T in generalized fields,
regardless of whether the product matrix associ-
ated with T is diagonal or off diagonal.

Overall consistency demands that vacuum expec-
tation values of monomials in component fields,
such as occur on the right-hand side of Eq. (21),
be proportional to the appropriate operator
Kronecker 6. The conventional equality of vacuum
expectation values to simply c-number functions
d'or distributions actually presupposes the normal
case.

In this connection it is expedient to generalize
the notion of the operator Kronecker 6 to the case
where the arguments are two distinct generalized
fields X; and X& such that the product of the ma-
trices associated with the two fields is even in the

[B„S] =0, (25)

the unitarity of the S matrix appears not to be
affected by the matrix structure of the general-
ized fields, and by the definition (22) of general-
ized vacuum expectation values.

Formally the usual relation between the chrono-
logical and normal products in the interaction
representation is unchanged:

U V = T(UV) —N(UV), (26)

where U and V are generalized fields. The gen-
eralized contraction U V', if it does not vanish,
is defined by

' A,.A,'. x 5(UV) x invariant function

O'V' = or

B;B& x 5(UV) x invariant function .

Hence, with the above definition of vacuum expec-
tation values for generalized fields,
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(0( R,U'V'] 0) = (0( R,T(U(x), V(y))10&

= 0 or invariant function . (28)

Since, for the representation considered, the
generalized fields can be assumed to have normal
bilinear equal-time commutation behavior, the
signature obtained from the permutation of gen-
eralized fields is the same as in the conventional
theory.

If the matrices associated with the generalized
fields corresponding to the electron and muon, re-
spectively, are (C,C,C„-C,C,C, ) and

(C,C,C„-C,C,C,) (cf. Table III) or vice versa, and

only electromagnetic interactions of the electron
and muon are considered, quantum electrodynam-
ics is not affected by the matrix structure of these
generalized fields. %'ith the above definitions of
expectation values, the S-matrix expansion is
essentially unchanged in electron and muon elec-
trodynamics. The generalized fields correspond-
ing to the electron and muon differ in their pos-
sible interactions with the generalized bosons (18).

and particles summarized in Table III implies
that the lowest-order strong self-energy correc-
tions to, for example, the proton propagator due
to emission and reabsorption of pions are 180
out of phase with the loops obtained from emission
and absorption of strange particles. It is assumed
that the covariant character of the relevant
Yukawa couplings is the same in all cases under
discussion, e.g. , pseudoscalar. A similar phase
difference between loops consisting of relatively
strange and nonstrange hadrons occurs in connec-
tion with the corrections to other baryon propa-
gators.

If the various interactions modifying the propa-
gator add coherently, the phase difference between
the loops can be used to eliminate the logarithmic
divergences assoc iated with the lowest-order
strong self-energy corrections. " If other inter-
actions the proton may enter into are disregarded,
the coeff icients of the logar ithmic divergences
vanish in the proton case if the masses and cou-
pling constants satisfy the following regularization
conditions:

CONDITIONAL CANCELLATIONS
OF SOME DIVERGENCES

If the fields tabulated in Table III are subjected
to the substitution (16), the resulting generalized
fields satisfy normal equal-time commutation re-
lations. Hence, with the modifications suggested
in the previous section, the conventional S-matrix
formalism can be applied to these fields in a
straightforward manner. This application of the
S-matrix formalism can also be made, with
equivalent results, if the substitution (16) is not
made, but all relevant expressions are suitably
symmetr ized.

The matrix structure of the generalized fields
or, equivalently, the locality of Table I, has
implications which modify some results of the
conventional S-matrix formalism in a possibly
physically relevant manner. As has been noted
previously, " the matrix structure of the general-
ized fields for the correspondence between fields

G'(P, P, m') + G'(P, n, w')

=G'(p, Z', K')+G'(P, Z', K'), (29a)

G'(P, P, v )Mq+G (P, n, v')M„

=G (p, Z', K")M r++G'(p, Z lK')M~0. (29b)

The 180' phase difference between the loops, of
course, also affects the cutoff-independent con-
tributions to the self-energy corrections.

The conditions (29) insure that the logarithmic
divergences vanish regardless of whether the
proton line [Fig. 3(a)] is an external or an internal
line of a more complicated diagram, i.e., the co-
efficients of the cutoff-dependent logarithms vanish
both for the case of mass and wave-function re-
normalization.

The origin of the phase difference between the
pionic and kaonic loops can be understood from
the multiplication (Table IV) of the diagonal ma-
trices contained in set S, [Eq. (9a)], the product

TABLE IV. Multiplication table for the Hermitian diagonal matrices contained in S& [Eq.
{Ba)].

C(C3C2C3

i C)C)

i C)CSC( C3

C(C3C~C3

iC(C~

iC( C3C(C3

-iC(C2

—C&CSC&C3

iC(C3C( C3

iC, C3C, C

-iC(C3C(C3

—Ci C3C2C3

iC)C2

gC)C~

-i C(C3C)C3

-iC(C2

C(CSC2 C3

C(C3C2 C3
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matrices associated with the various loops being
equal to +C,C,C,C, . Since the interaction matrices
associated with the generalized pionic and kaonic
Yukawa vertices are equal to the unit matrix in

the case of the proton (as well as for some other
baryons) it is to be expected that the relative
phase difference between the loops should also
be explainable in terms of the bilinear equal-time
commutation behavior of the component fields
(Table I) in the relevant time-ordered products
of the 8-matrix expansion. Indeed, if the matrices
concerned are disregarded, the occurrence of the
180 phase difference between the pionic and kaonic
loops can also be inferred from the permutations
of the component fields which arise in the process
of contraction of the component fields in the time-
ordered products. Whether or not a permutation
of component fields gives rise to a factor of -1 is,
for the correspondence between fields and parti-
cles considered, determined by Tables I and III.
It is perhaps a satisfactory aspect of the formalism
that the 180' phase difference between the loops can
be understood from matrix multiplication of ma-
trices associated with generalized fields satisfying
normal bilinear equal-time commutation relations,
or from the signatures obtained from the necessary
permutations of component fields whose bilinear
equal-time commutation behavior is specified by
Table I. This phase difference also demonstrates
that in the context of the formalism presented the
(anomalous) bilinear equal-time commutation re-
lations between distinct (component) fields do
affect the S matrix in a possibly physically sig-
nif icant manner.

Although the regularization conditions (29) are
suggestive of similar (though not identical) condi-
tions obtained by Pauli and Villars, "the cancella-
tion mechanism presented in this discussion is
quite different from their method and from that
of other authors. " The Hamiltonian considered
in the present context is not only local and Her-
mitian, but the coupling constants are real, the
relative phase difference of the lowest-order self-
energy corrections being obtained from the equal-
time commutation behavior of the component fields
whose metric is positive definite. Therefore, the
fields considered, instead of being "auxiliary" or
"shadow" fields, can presumably refer to physical
particles with finite (bare) masses.

A similar phase difference occurs between the
loops arising from trilinear couplings of baryons
to strange (W) and nonstrange (W') "intermediate
bosons" (cf. Table III and Fig. 2). The electromag-
netic field can heuristically be regarded as the
neutral member of a nonstrange (spin 1) W' triplet.

Numerous attempts have been made in different
contexts to eliminate the leading divergences as-

sociated with the lowest-order weak transition
amplitudes and weak self-mass corrections of
baryons and leptons due to emission and reabsorp-
tion of virtual spin-1 intermediate bosons. "

In the present context it is possible to derive
regularization conditions for some baryons anal-
ogous to Eqs. (29) to eliminate the leading (quad-
ratic) divergence arising from the emission and

reabsorption of hypothetical virtual nonstrange
(W') and strange (W) intermediate bosons assumed
to have spin 1. The phase difference behveen
strange and nonstrange loops necessary for equat-
ing the coefficient of the divergence to zero is
again obtained from the equal-time commutation
behavior of the fields concerned. Considering
only trilinear vector couplings of spin-& octet
fields to intermediate spin-1 bosons in the context
of the scheme summarized in Tables I and III and

Fig. 2, the conditions for the vanishing of the co-
efficients of the terms quadratically dependent on
the cutoff in the case of the proton propagator,
for example, are

G~'(P, n, W") = G~'(P, A, W'), (30a)

M„G~'(P, n, W") =M~G~'(P, A, W') . (30b)

If the couplings are more generally assumed to
be parity nonconserving of the form

G~+,y& (I +Ky, )+„W„+H.c. , (31)

Eqs. (30) have to be modified by adding terms
dependent on the ratios of the relevant axial-vector
to vector currents [denoted by K in Eq. (31)j.

Any logarithmic divergences associated with the
lowest-order weak and electromagnetic self-mass
corrections can presumably likewise be eliminated
if the algebraic sum of the coefficients of a1.1 the
terms logarithmically dependent on the cutoff is
equated to zero. This means that Eqs. (29) have to
be modified to also include weak and electromag-
netic parameters. Equations (29), thus modified,
would then interrelate strong, electromagnetic,
and weak coupling constants and particle masses.
However, since weak and electromagnetic cou-
plings are presumably much weaker than strong
couplings, such a modification of Eqs. (29) can
be expected to be small.

In this connection it is of interest to observe that
the mass and coupling constant degeneracies im-
plied by Eqs. (29) and (30) can be attributed to
the fact that selected interactions have separately
been considered in lowest order for only some of
the fields of the scheme of Table III and Fig. 2.
These degeneracies will presumably be removed
if all allowed interactions of all the fields of the
scheme are considered simultaneously.
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Since only lowest-order effects have been dealt
with above, the question naturally arises as to
what happens in higher order.

Considering only generalized trilinear couplings
of octet baryons with pions and kaons (Table III
and Fig. 2) and disregarding other fields and pos-
sible allowed interactions, each Feynman diagram
of Figs. 3 and 4 actually stands for several graphs,
as the internal lines may correspond to strange
or nonstrange fields. Table III 2nd Fig. 2 serve
as a guide as to which generalized fields of the
scheme under consideration can be trilinearly
coupled in a local, Hermitian, and strangeness-
conserving manner. Abstracting from the con-
siderations outlined above in connection with Fig.
3(a), a diagram is called "subtractive" if some
graphs associated with that diagram are, by virtue
of the matrix structure of the generalized fields
or the bilinear equal-time commutation relations
between the component fields, 180 out of phase
with respect to other graphs associated with the
same diagram. A diagram is "additive" if no
such phase difference occurs between the graphs
associated with that diagram. Obviously the prop-
erty of a diagram being "additive" or "subtractive"
is relative to the set of fields and interactions
being considered, and an additive diagram may
become subtractive if the number of fields (and
interactions) under consideration is increased,
and vice versa. Phase differences between graphs
introduced by other arguments, such as SU(2) sym-
metry, for example, have to be examined sep-
arately.

For the representation under consideration the
additive or subtractive character of any particular
diagram can simply be ascertained by comparing
the quantities

(-I) &&product of the matrices associated with
the propagators of the internal lines

for the various graphs making up the diagram
(Q =half the number of singly charged field vari-
ables associated with the internal lines of any
graph). For the graphs of the diagrams of Fig. 3,

i.e., the corrections to the proton propagator due
to the (strong) trilinear pionic and kaonic cou-
plings under discussion, the quantities (32) are
proportional to the matrix C,C,C,C, . In general
the matrices corresponding to the different graphs
of a diagram may be different. If the matrices
are all diagonal, for example, the additive or
subtractive character of the corresponding graphs
is determined by comparison of the relevant
quantities (32) with the phase relationships be-
tween the diagonal matrices implied by the def-
inition of the Hermitian operators R, or It, [Eqs.
(») I

As is shown in Fig. 3, there may be both addi-
tive and subtractive diagrams in the same order
of the S-matrix expansion. The diagram of Fig.
3(b) would become subtractive if mesons corre-
sponding to the field labeled g in Table III were
also to be included in the discussion. As indicated
in Fig. 4, the insertion of a self-energy loop may
cause an additive diagram to become subtractive.

Instead of outright subtraction of infinite quan-
tities the subtractive character of the lowest-
order self-energy corrections has been used above
to equate the algebraic sum of the coefficients of
the cutoff-dependent terms to zero, and to yield
the relations (29) and (30) between the relevant
coupling constants and masses. Whether this pro-
cedure can similarly be applied to the elimination
of divergences occurring in connection with higher-
order diagrams is a question that is presently
being studied. Since not all diagrams are sub-
tractive it may be possible to algebraically relate
different diagrams of the same order or even dia-
grams of different orders, e.g. , the leading di-
vergence of an additive diagram may be completely
or partially canceled by divergences of the same
order occurring in connection with diagrams of
the same or higher order, or it may be possible
to sum all the terms of the same degree of di-
vergence in a perturbative expansion. "

It is not known at the present time whether this
program can be carried out in a self-consistent
manner and in a manner consistent also with
unitarity requirements, since with an increasing
number of fields and interactions the elimination
of divergences associated with higher-order cor-

gg 4\ /
g I

\

(a)
subtract ive

(b)

additive

(c)
subtractive

(d)

(a) (b)
FIG. 3. Lowest-order and fourth-order strong cor-

rections to the proton propagator mediated by pions and
kaons. The meaning of the labels "additive" and "sub-
tractive" is explained in the text.

addit ive subtract ive

FIG. 4. Lowest-order strong corrections to a meson
(pion or kaon) propagator, and a self-energy insertion.
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rections may lead to a complicated set of rela-
tions between an increasing number of parameters
(masses and coupling constants). Conceivably a
trend may appear and consistency may possibly be
guaranteed only under certain conditions, e.g. ,
that strong interactions possess SU(2) symmetry.

These quantitative questions and related prob-
lems are presently being studied.
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