
P. HYSICAL H, E VIE W D VOLUM E 11, NU MBE R, 12 15 JUNE 1975

Particle spectrum in model field theories from semiclassical functional integral techniques*

Roger F. Dashen, Brosl Hasslacher, and Andre Neveu
Institute for Advanced Study, Princeton, ¹wJersey 08540

(Received 27 January 1975)

We have used a semiclassical method developed earlier to compute the particle spectrum of a field theory in
two-dimensional sPace-time defined by the (sine-Gordon) Lagrangian s (g y)s + (in '/X)(cos[(Jy(rn)]j —l j. For
weak coupling we find a heavy particle, the soliton, corresponding to a peculiar classical field configuration
and an antisoliton. Below the soliton-antisoliton threshold there are a large number of further states. They can
be viewed either as soliton-antisoliton bound states or as bound states of n of the usual quanta of the theory.
The "elementary particle" $ is the lowest of these. As the coupling increases, the higher states successively
unbind, decaying into soliton-antisoliton pairs. At A,/m = 4', the "elementary particle" unbinds leaving only
solitons and antisolitons for X/m 2 & 4m. Comparing our semiclassical results with recent exact results of
Coleman and with perturbation theory, we find that the semiclassical calculations are exact. This field theory
seems similar to the hydrogen atom for which the Bohr-Sommerfeld quantization rules give the energy levels
exactly. We also treat a $ theory in weak coupling and carry out a number of calculations which provide
nontrivial illustrations of the semiclassical method.

I. INTRODUCTION

In an earlier paper, ' which we will refer to as I,
we developed a semiclassical WEB method which can
be applied to problems in quantum field theory.
The method is based on the ideas of Keller, ' Gutz-
willer, ' and Maslov and requires as input a know-
ledge of the solutions of the classical field equa-
tions. Since already at a classical level the field
equations are difficult to handle, one generally
has to resort to further approximations. For weak
coupling, it was found that time-independent clas-
sical solutions are interesting. Basically what
happens is that for weak coupling, a stable time-
independent solution plus the small oscillations
around it provide a list of classical solutions
which is sufficient for application of the semiclas-
sical quantization procedure. In another paper, '
which we will refer to as II, we studied a two-
dimensional Q' theory in this weak-coupling ap-
proximation. It was found, among other things,
that a certain static, particlelike solution (the
"kink") of the classical field equations turns into
a heavy quantum-mechanical particle. Several
other interesting static solutions are known.

In the weak-coupling limit our WKB quantization
of static solutions to classical field equations is
equivalent to a number of other schemes. ' ' The
difference comes when one contemplates classical
motions which cannot be reduced to a time-inde-
pendent field. That such solutions are interesting
should be obvious from the fact that the Bohr or-
bits of hydrogen are not time-independent solu-
tions to classical equations of motion but rather
are motions which are (multiply) periodic in time.
The real power of the %KB method is the quantiza-

tion of motions analogous to Bohr orbits.
To find an example of how the semiclassical

method would work in field theory we have studied
the sine-Gordon equation in one space and one
time dimension. 'o " It is defined by the I agran-
gian

and is completely solvable at the classical level:
There exists an algorithm"-~ from which &l~ solu-
tions to the Lagrange equations for P can be con-
structed. For this system we can therefore try
to apply the general methods developed in I. In
particular, we look for classical solutions which
will become particles when quantized. There are
two types of these. First there is the soliton
(and an antisoliton) which is a solution that is
time-independent in its rest frame. It is analog-
ous to the kink discussed in II. The other which
we call the doublet is, loosely speaking, a soliton-
antisoliton bound state. In its rest frame the doub-
let field oscillates periodically in time. Doublet
solutions exist for a continuous range of classical
energies. The WKB method will quantize the doub-
let energies yielding a discrete spectrum of par-
ticle masses.

For strong coupling there are some subtleties in
the calculations. They are discussed in context
in Secs. II and ID. However, if we take our semi-
classical calculations at face value, the results
are quite remarkable. It makes one wonder what
might happen in other more complicated field the-
ories if only one could solve them. Actually
Skyrme, "who worked extensively on the sine-
Gordon equation, had already noted that the quan-
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tized theory could have usual properties.
The particle spectrum of the sine-Gordon Ham-

iltonian turns out to be the following. The soliton
and antisoliton have a mass M=8m/y', where
y' = (A/m )(1 —A/8wm3) '. The doublet produces
the remaining series of states at masses

M„=, sin 1, n =1, 2, 3, . . .(8w/y'.16m . ny'
y' (1.2)

The original "elementary particle" of the theory
is the n=1 state in Eq. (1.2). As A, -O, y' vanishes
and one easily sees that M, approaches the weak-
coupling mass, m+O(A, '), of the "elementary" par-
ticle. Notice that according to Eq. (1.2) there is a
finite number of doublet states. As the coupling
y' increases the states disappear one by one.
What happens is that they decay into soliton-anti-
soliton pairs. This may be seen by observing that
when the nth state disappears M„ is just 16m/y'
or bvice the soliton mass. At y' = Sm, the n = 1 or
"elementary particle" state breaks up and disap-
pears' from the spectrum. Only solitons and
antis olitons remain.

The weak-coupling behavior of M„ is quite inter-
esting. Expanding, one finds

2

M =nM ——' (n' n)+O(A. '), —
6 16pt'

16m . y'
M = -sin—

A.= m 1 —— 1, +O(x'),
6 16m'

which corresponds to a nonrelativistic n-body
bound state made up of n particles with physical
mass M, . The binding energy is (M,/6)(A/16m')'
x (n' —n).

This is the same as that which one finds upon
solving the n-body Schrodinger equation with the
5-function potential obtained from the Q' term in
the interaction Lagrangian. Thus for weak-cou-
pling the doublet states can be thought of as bound
states of n "elementary particles. " Qf course n
cannot be too big. When y'n is greater than Bm,

the state breaks up into a soliton-antisoliton pair.
In fact for y'n large (but less than 8w) the states
are probably best thought of as soliton-antisoliton
bound states.

The semiclassical calculation suggests that all
states with y'n less than Sm are stable. The mass
ratios as given by Eq. (1.2) and the symmetry of
the Lagrangian under P- —P account for the
stability of the n=1, 2, and 3 states. It will take
further symmetry to keep the n =4 state from de-
caying into two n =1 states. At a classical level
the sine-Gordon equation has an infinite number

2M' -Me, 4g'
( 4)

Mf
(1.4)

Identifying M~ with M, and M& with the soliton mass
8m/y' we compare this to

2M(soliton) -M,
2 1 . y'

M(soliton) 16

8
+ O ((y' —8w)4}

3
g2 g +O(g4)

jr

of nontrivial conserved quantities. "" If these
survive in the quantum theory, they could provide
enough quantum numbers to stabilize the states
with n) 4. We have cheeked that the matrix ele-
ment for decay of the n=4 state does, in fact, van-
ish to leading order in A..

We have also extended our work on the p' theory
in two dimensions. This system is not exactly
solvable. For a small coupling, however, one
can find the analog of the sine-Gordon doublet
states. We obtain a formula like (1.3) with a dif-
ferent coefficient of n' —n. The interpretation is
the same except that we no longer know what hap-
pens for strong coupling. It is a reasonable specu-
lation, however, that for large An the states break
up into a kink-antikink pair. Although our results
for the P4 theory are neither as complete nor as
elegant as those for the sine-Gordon case, we re-
gard this calculation as important. It shows that
the method is not restricted to special, classically
solvable equations such as the sine-Gordon sys-
tem. Ultimately, of course, one would like to
work on realistic field theories in three space di-
mensions. This will require approximate meth-
ods for constructing time-dependerit solutions to
the classical field equations. The Q' calculation
is a step in this direction.

Coleman" has recently obtained the remarkable
result that the sine-Gordon system can be mapped
into the massive Thirring model. The relation-
ship bebveen the sine-Gordon coupling A, and the
four-fermion coupling g of the Thirring model is
p/4wm =1/(1+g/w) or y'=8w/(1+2g/w). What
are the fermions P They are almost certainly the
solitons. To see this, we observe that at y'=Sr
the Thirring model coupling g vanishes. This is
just the point where the n =1 state unbinds. For
y' slightly less than Bm, the four-fermion coupling
is weak and attractive. There will then be one
nonrelativistic fermion-antifermion bound state.
Summing diagrams in the Thirring model one
finds that through order g', the mass M& of the
bound state is given in terms of the fermion mass
Mg by
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where we have used Coleman's identification of
the coupling constants. It is remarkable that both
the g' and g' terms agree. We have not computed
beyond order g' in the Thirring model. For y'
& 8m, the four-fermion coupling is repulsive and
there is no bound state.

Do the solitons which appear in the classical
boson field Q really obey Fermi statistics P The
answer is presumably yes. Our formalism is cap-
able of giving a definite answer. We would have to
compute a sign associated with one of the exchange
orbits discussed in Sec. V of I. For technical rea-
sons this calculation is difficult and we have not
carried it through.

Coleman also finds that the theory is singular
at A/m' =8m. At this point y' goes to infinity and
it is evident that our semiclassical solution is
also singular.

The agreement between our approximation and
Coleman's precise results suggests to us that WKB
may be exact for the mass spectrum of the sine-
Gordon equation. This is not beyond the realm of
possibility. Recall that the Bohr-Sommerfeld
quantization conditions give the energy levels of
hydrogen exactly. To investigate this question,
we have gone to the weak-coupling regime and
carried out an exact calculation of +/M, through
order (X/m')'. This is done by summing Feynman
diagrams in a way which is equivalent to solving
the Bethe-Salpeter equation. The exact result is., -(...) —.(-...)

+O g5 y 6

One can easily calculate the same quantity using
Eq. (1.2) for M, and M, . Expanding, one finds that
the coefficients of A.', A,', and A4 are identical.
This is a highly nontrivial result: To get the ex-
act order-A4 term one has to keep two-loop dia-
grams in the kernel of the Bethe-Salpeter equa-
tion. We can show that the agreement in order
A. is special to the sine-Gordon equation and will
not occur in the generic case.

For the sine-Gordon equation our method ap-
pears to be giving exact results for both weak
and strong couplings. It may come as a surprise
to some readers that a semiclassical method can
give reliable, let alone exact, answers for strong
coupling. In the sine-Gordon Lagrangian the di-
mensionless coupling parameter is really SX/m'.
A straightforward expansion in powers of h is
therefore the same thing as the perturbation ex-
pansion in powers of A.. This is familiar from the
usual loop expansion. The WKB method is some-
thing else, the nature of which is best seen in ex-

amples. First we will take a typical case where
WKB is not exact. The anharmonic oscillator de-
fined by the Lagrangian I =x' —aPx' —Ax4 may be
thought of as a field theory in one time and no
space dimension. The dimensionless coupling
constant corresponding to RA/m' in the sine-Gor-
don Lagrangian is G =AX/&g'. On dimensional
grounds we know that the energy levels can be
written as Z„=R&uf„(G), n = 0, 1.. . . One sees
immediately that f„(0)= n+ 2, and a simple scal-
ing argument shows that f„-c„G'~s as G-~. The
WKB approximation to f„ is easily found to be the
solution of

where yp and pp are the turning points. It is
evident that WKB is not an expansion in powers of
G. Actually, the WKB energies are reasonably
good for any G. At G=O, f„""~ is equal ton+2
and for large t" it scales in the same way as the
exact f„, giving f""B-c""~G'~'as G-~. Compar-
ing the exact'6 (numerical) and approximate e's
one finds c~o~~/c, =1.223, c~~~/c, = 1.013, and
c,""'/c, =1.005. Evidently, WKB gives meaning-
ful results even in the extreme strong-coupling
limit C ~. As another example, we could con-
sider a Lagrangian of the form I.=x' —(uP/g')
&& (e '" —1)'. In this case WKB gives the bound-
state energies exactly, "for any value of the cou-
pling g. The sine-Gordon equation seems to be
one of these special systems where WKB is exact.

D; is amusing to find that WKB gives some exact
results for the sine-Gordon equation. However,
the real goal of our program is to develop an ap-
proximate method which can be used for physical-
ly interesting theories in four dimensions. As can
be seen from the above examples, the WKB meth-
od is reasonable for strong-coupling problems in
ordinary quantum mechanics. Here one does not
expect WKB to yield highly accurate numbers:
For a potential which is reasonably smooth one
expects errors of order 20%%uo. Still, an approxi-
mate method accurate to order 20%%uo would be most
useful in strong-coupling field theory. To go to
field theory, one has to convince oneself that a
semiclassical approximation continues to make
sense as the number of degrees of freedom be-
comes infinite. In view of the fact that our sine-
Gordon results are exact, it is hard to see how
there could be any unforeseen trouble here.

This paper is not meant to be self-contained.
The reader is expected to have some familiarity
with the contents of I and II. Also we do not dis-
cuss the classical mechanics of the sine-Gordon
equation in any detail. There exists an extensive
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literature on this subject. " '
The plan of this paper is as foll.ows. In Sec. II

we review those particular features of the sine-
Gordon equation which will be important to us. In
Sec. III we go through the quantization of the doub-
let. This is done in a fairly systematic way,
which we hope will clarify some of the assertions
made in I. We also take care to point out those
things which are peculiar to the sine-Gordon equa-
tion. This section should therefore serve a,s a,

guide to semiclassical quantization in general.
Some of the longer specialized calculations have
been placed in Appendixes A, B, and C. In Sec.
IV we discuss the interpretation of the particle
spectrum. Two Appendixes, D and E, deal with
the related problems of soliton-antisoliton scat-
tering and the derivation of Eqs. (1.4) and (1.6).
Finally, the calculations for the P4 theory are
done in Sec. V.

II. THE SINE - GORDON EQUATION

In this section we set down some properties of
the sine-Gordon system defined by the Lagrangian

$=,(8„$)'+ tms( P) —1

peg ——(s p)2 w + 1 + ~

P 2t 4f

(2.1)

(2.2)

As is obvious from Eq. (2.2) the system reduces
to an attractive Q' model in the limit of small cou-
pling A. . All of the following is understood to be in
two-dimensional space-time. It is extremely sug-
gestive that any insight we obtain in dealing with
the quantization of modes of the sine-Gordon equa-
tion would also be used as a strategic starting
point for investigating P, and we will do so.

The sine-Gordon system is remarkable on a
classical level for a variety of reasons which is
usually summarized by saying it is a perfect sys-
tem. By that one means the following: (a) It sup-
ports isolated wave modes which have the proper-
ty that in the scattering of two of them, not only
is the interaction available in exact analytic form,
but they emerge from the scattering region with
their shape and velocity unchanged. This is usual-
ly called the soliton condition. (b) Such a dynam-
ics must have powerful constraints built into it,
and this fact is reflected in the existence of two
equivalent schemes for generating all the solu-
tions to the sine-Gordon system. The first is the
reduction of the problem to an associated one
which involves a linear eigenvalue problem. This
goes under the name of the inverse scattering
method. The second is the existence of a nonlin-
ear superposition principle by which any two solu-
tions induce a third one. This is called the Ba,ck-

lund transformation and is a kind of crea.tion op-
eration for the system. (c) The sine-Gordon equa-
tion is completely separable in the Hamiltonian
sense; that is, the complete integral of the Ham-
ilton-Jacobi equations is exactly known. We will
use this fact to isolate and quantize the particle-
like modes of the sine-Gordon equation.

A. The soliton mode

Classically, it is well known tha, t

are exact solutions to the sine-Gordon equation.
The + sign refers to the soliton solution and the
—sign to the antisoliton solution. They look like
isolated particlelike states. For the soliton,
Q(x =+~)-P(x = —~) = 2@m j&A, ; for the antisoliton,
the corresponding quantity is —2mm/WA, .

If we go to the rest frame (v =0) the soliton solu-
tion is time-independent and we can quantize it by
using the methods of paper II. Proceeding exactly
as we did for the so-called "kink" mode of paper
II, we find that the soliton or antisoliton behaves
like a particle with mass

8 yn'
M(soliton) =

A. m
(2.4)

The first term on the right is the classical mass.
The second is the contribution of small oscilla-
tions around the static classical solution. Sub-
tractions appropriate to the vacuum energy and
mass counterterm 5m' have been done in exactly
the same way as in II. We can rewrite (2.4) in an
obvious way as

8'
M(soliton) = —,, y' = —, 1—

y' ' m' Bgm' (2.5)

which serves to define a dimensionless coupling
parameter y'. The significance of y' is discussed
in subsections D and E of Sec. III.

Since a.t the classical level all the solutions to
the sine-Gordon equation are available, we can
in particular generate all the time-dependent
ones, as well as the static ones discussed above.
We therefore look for further, nontrivial particle-
like solutions. For reasons that will become clear
as we progress we choose to quantize the doublet
or breather mode displayed below in Eq. (3.1). It
corresponds to a set of soliton-antisoliton bound
states, with periodic time dependence in the rest
frame. Quantizing it is a nontrivial application of
the semiclassical path-integral formalism. This
is done in the following section. It turns out that
there are no further particlelike solutions. Fin-
ally, we remark that for solutions bounded at
spatial infinity
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g(f, ) —P(t— , j =
(

—

) 2Nw, (2.6)

where the integer N is independent of time. The
conserved quantity N can be thought of as the num-
ber of solitons minus the number of antisolitons.
The doublet solution has N equal to zero.

&(4'(~)) d~+g I's(lr) +g f'D(4»~ R») ~

(2.7)

the variable q, is related to the position of the l th
soliton or antisoliton mode, and the variables Q»

and q~ describe the position and internal motion
of the 4th doublet in the model. The integral re-
presents the continuous background motion of the
field. This is the classic separated form. " The
importance of this form for the quantization of the
various modes lies in its extreme simplicity. The
soliton solution is gotten by solving the Lagrange
equations of motion for a particular q„setting all
the other variables to zero. This is consistent
with the equations of motion. In quantizing the
soliton mode we isolate the class of periodic or-
bit belonging to the linearized problem around that
mode, plus all the copies of that orbit as in paper
I. We never compute the absolute energy of a
soliton, but only the difference in energy between
a soliton and the vacuum. In a separable system
this is a rigorous application of the semiclassical
method. "

If we could perform all calculations so as to s
strictly maintain the separability structure of the
classical sine-Gordon system the soliton mass
would be exact within the WKB approximation. "
The same comment would be true for the doublet
mode considered in Sec. III. For the doublet we
solve the Lagrange equations for a particular Q»

and q~, setting all other coordinates to zero.
Then we proceed to compute the difference be-

B. Separation of variables'

In order to display the canonical structure of the
sine-Gordon equation, Faddeev and Takhtajan and
McLaughlin have shown" that if one writes the
nonlinear problem as a Hamiltonian system, one
can show that it is integrable. That is, the lin-
ear eigenvalue problem of the inverse scattering
method is interpreted as a canonical transforma-
tion which takes the original Hamiltonian system
to an "action-angle" form. The Hamiltonian is
then independent of the angle coordinates q and
the equations of motion trivially integrate. One
finds that the q's vary linearly with time and their
canonical momenta are constants of the motion.

In action-angle variables the Lagrangian has the
form

tween the energy of the doublet and that of the
vacuum and the argument goes through as before.

However, to make a well-defined calculation
we are forced to put the system in a finite box,
with ultraviolet cutoff. Both the size of the box
and the cutoff are sent to infinity at the end of
the calculation and all measurable quantities are
independent of them. Unfortunately, finite bound-
aries and ultraviolet cutoffs disturb the exact
separability of the sine-Gordon equation in a
presently unknown way. To do the problem cor-
rectly we would have to solve the inverse scatter-
ing problem for periodic boundary conditions,
which is at present unavailable. So, some mod-
ification of the above line of argument has to be
made. We will return to this point in Sec. IIIE.

III. QUANTIZING THE DOUBLET: AN EXAMPLE OF
THE SEMICLASSICAL METHOD

In this section we follow through, in outline, the
WEB quantization of the doublet solution to the
sine-Gordon equation. We hope that the basic
steps are stated reasonably clearly and that what
follows will serve as a concrete example of the
ideas put forward in I.

Unfortunately, there are some aspects of the
problem which require long, detailed calculations.
These calculations are rather special and it was
felt best to put them in a set of Appendixes A-G.

When a certain result is peculiar to the sine-
Gordon equation we mill state this and indicate
what can be expected in the general case. Thus,
we hope that this section will serve as a guide to
semiclassical quantization in general.

A. The periodic orbits

The semiclassical or WKB method developed in
I begins with a functional integral representation
for tre ~~ . To make the trace well behaved we
always imagine that T has a small negative imag-
inary part and take a finite volume with periodic
boundary conditions. For one space dimension,
periodic boundary conditions are equivalent to
imagining that the world is a large closed loop
with a perimeter of length I .

The functional integral for tre ' is evaluated
in a stationary-phase approximation. We are in-
tegrating over a function space and the stationary-
phase points are those functions which satisfy the
classical equations of motion and are periodic in
time with period T. They are the periodic solu-
tions or orbits of the classical field equations. In
the WKB approximation tre ' is a sum of terms,
one from each periodic orbit.

To quantize the doublet solution to the sine-
Gordon equation, we need to consider the class
of solutions
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'
a/2 sin[(2 H/T) ((t —vx)/(I —v') '/') j

cosh[((Tm/2 H)' —I)'/'(2w/T) ((x —v t)/(1 —v')' ') j
(T & 2H/m)

(3.1)

corresponding to the basic doublet boosted to velocity V. The parameter v is the period of the doublet in
its rest frame. In our closed-loop world, these solutions are periodic if

(3.2)

For each pair of integers l and n, Eq. (3.2) can be thought of as fixing v and T as functions of T. The clas-
sical action for these solutions is

[ (82(I) (, t)) V A.

( )

=tS(x)=t Icos '( )
—

( )
—1 I . (3.3)

The relevant stationary-phase points of the functional integral are thus labeled by pairs of integers
E and n. The WKB approximation to tre ' is explicitly

tre-iHT g eiis(t )~
1n &

ln

"1 m' VY
tt, „= st(t))sxo It dtdx —(ssd)' — d'eos

p oo

(3.4)

where, for each l and ~, we recognize the expo-
nential of i times the classical action multiplied
by a Gaussian functional integral around the clas-
sical orbit. The functional integral is over all
functions g(x, t) which are periodic, P(t+ T, x)
= $(t, x), in time. One should remember that T

andv dependon l, n, and TaccordingtoEq. (3.2).

B. The Gaussian integral

The functional integral in Eq. (3.4) is evaluated
in Appendixes A, B, and C. Appendix A works
out a general formalism while the latter two con-
tain the specific calculations.

If (I), „were time-independent in its rest frame
we could evaluate D in terms of the eigenfrequen-
cies u~ of a harmonic-oscillator system defined
by the linearized Lagrangian in (3.4). For a per-
iodic system, the analogs of the frequencies ~
are the stability angles v . They are defined in
terms of special solutions to the linear equations
for g following from the Lagrangian in (3.4). In

the rest frame of the doublet these special solu-
tions satisfy

g„(t+ T, x) = e '"~g„(t, x) . (3.5)

The precise analogy with harmonic-oscillator fre-
quencies is evidently v„-&~7. In a finite box, the
v 's are discrete. As the length of space I. tends

to infinity they form a continuum for
~ v„~ &mT

There are discrete ("bound-state"') angles at
v =0 corresponding to the symmetries of the sys-
tern. In general, there will be a further discrete
spectrum of v's in the interval 0&

~
v (&mT For.

the sine-Gordon doublet, however, there is no
discrete spectrum other than at v=0. This leads
to a considerable simplification. In Appendix A
it is shown that when there is no discrete spec-
trum other than at v = 0, then for the purpose of
finding the particle spectrum of the theory a
rather complicated factor can be dropped from D.
Dropping this factor yields the simple result de-
rived in Appendixes B and C,

i gK(T)] T d 2g 1/2 I dS/dT ~

1/2

ltt 2H l 1/2 j 2 T(1 2)2/2 t

I
g(V') = —2 &()t ~

(3.6)

It is shown in Appendixes A and B that, apart from the
factor e"~~'), the form of D is dictated by space and
time translation invariance. This form already, ap-
peared in Eq. (4.12) of I and was discussed there. The
factor e"~~') is clearly the analog of the factor
exp[- (i/2)g„(ti„T] involving harmonic-oscillator
frequencies which shows up when one computes
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around a time-independent classical solution.
The sum over stability angles in $ is divergent

and must be renormalized. This will be done be-
low. The rest of D is manifestly finite.

C. Renormalization

In Appendix C it is shown that $ can be written
as

fm'+ g(T),

(3.7)

where &E is quadratically divergent constant pro-
portional to the length of space L and is indepen-
dent of v', 5m' is a logarithmically divergent in-
tegral

The difference in actions is

S(m' —Cm')-S(m') =S(y(m' —am'), m' —Vm')

-S(y(m'), m'), (3.11)

S(m' —fm') —S(m')

=S(y(m'), m'- ~m') -S(y(m'), m')

, m'=-5m' cos p(m') —1 dx dt .
0 m

where we have noted that S depends on m' both ex-
plicitly because J depends on m' and implicitly be-
cause the classical orbit depends on m'. However,
since the action is stationary against small varia-
tions in the fields P, we have to lowest order in
5m'

(cutoff)
5m' =

4m

dk
(k'+m')'~' ' (3.8) (3.12)

and $ is finite. It is easy to dispose of the term
T&E. It is the vacuum bubble shown in Fig. 1 and
can be dropped if we agree to measure energies
relative to the vacuum.

The coefficient of 6m' in (3.7) is

]6p —1
2p

m2 T
oos 3„,(x, )) )—1 dxd).

0 oo m "T

(3.9)

With the aid of this formula, we can interpret
5m' as follows. The Lagrangian in the functional
integral that we started with really contained the
bare mass m, rather than a physical mass para-
meter m. Therefore, we should have actually been
computing our classical periodic orbits from

g = g(e~p) + cos Q —1
m' vY

m

, m'
—5m' cos—P —1

m s

(3.10)

Let Q(m' —5m') be a periodic orbit associated with
the Lagrangian (3.10) and (t)(m') be the correspond. -
ing orbit computed without the 5m' counterterm.

Therefore, if we had started the calculation using
the bare mass m, ' = m' —5m' and computed clas-
sical orbits and actions S(m, ') in terms of m, the
5m' term in E would have just combined with

S(m,') to give the classical action S(m') computed
with the physical parameter m'. Therefore, we
can also drop the second term in (3.7), leaving
only the finite piece $.

The above argument is correct to first order in
Gm'. Within the spirit of our %KB approximation
we are justified in working only to this order. The
counterterm 5m' is of order 5 relative to m'.
(This would be explicit had we not set 5 =1.)

The expression in (3.8) for 5m' is precisely the
one-loop normal-ordering graph shown in Fig. 2.
The sine-Gordon Lagrangian is super-renormal-
izable and all divergences are removed by setting

m,' -- -- cos —1

, m'
s* —:oos --—3) —1s:x, (3.13)

m

which is possible because [cos((WA/m)(t))- I] is an
overall factor times its normal-ordered counter-
part. To lowest order in A., m'-m, ' is given by
(3.8). This simple renormalization structure is
responsible for the simplicity of the divergence
in our sum over stability angles.

FIG. 1. The vacuum bubble corresponding to the T~E
term in Eq. (3.7).

FIG. 2. The mass-renormalization graph correspond-
ing to the S~P term in Eq. t,

'3.7).
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The parameter m is still not the mass of a pro-
, pagating particle. There are finite mass-renor-
malization graphs like that in Fig. 3 which have
not been taken into account. Within our WKB ap-
proximation, what we have to do is to compute
the mass spectrum of the theory and then see
how m' is related to the mass of a particle. When
we do this we will have made an approximate sum-
mation of all the finite mass-renormalization
graphs.

8—&(g)6g ~g
(3.14)

only the exPlicit dependence of J on g matters.
In a renormalizable theory the only divergences

that can appear in the sum over stability angles
are those which can be identified with replace-
ment of a parameter g in the Lagrangian byg —5g.
That this is true may be seen by noting that, ex-
cept for the periodicity condition on g, the func-
tional integral in (3.4) is the same a,s the function-
al integral for the usual loop functional. The per-
iodicity condition will not affect the ultraviolet di-
vergences for the same reason that in statistical
mechanics a finite temperature does not produce
new ultraviolet infinities.

Since every possible divergence will correspond
to a shiftg -g —5g in 2, one can always use (3.14)
and proceed exactly as we did for the mass re-
normalization in the sine-Gordon equation. After
removing the infinities in this way, it is consis-
tent with the WKB approximation to assume that
the classical orbits, the action, and the finite
part of the determinant D in (3.4) are all com-
puted with some set of finite parameters g. The
values of these parameters are then to be fixed
in terms of physical (Iuantities (e.g. , the mass

D. A digression on renormalization in other models

It is appropriate at this point to leave the sine-
Gordon equation for the moment and discuss re-
normalization in general. The above computation
of S(m' —5m2) -S(m2) is a special case of the fol-
lowing general result. Consider a Lagrangian
Z(g) which depends explicitly on some parame-
ter g which might be a mass or a coupling con-
stant. The periodic orbits obviously depend on

g, but the variational principle implies that for
the derivative of the action

spectrum), as computed in the WEB approxima-
tion.

E. Quantization of the doublet

The sine-Gordon Lagrangian has the remark-
able propert'y that the finite part $ of $ is just
(see Appendix C)

(3.15)

We can therefore write

s(s)+7(s(=,
I

sos '( —
)

—
(S )

—(

(3.16)

2 8

which clearly just amounts to a finite renormal-
ization of the dimensionless parameter X/m2.

This renormalized parameter y' has already ap-
peared in the equation (2.5) for the soliton mass.
We have called it y' to distinguish it from the un-
renormalized X/m2, which is sometimes called
y. If we use y' instead of A/m2, then the sum of
stability angles will disappear from the calcula-
tion. In what follows, it will be assumed that S
contains a factor of (y') ' rather than m'/A. . As
with m', the value of y' is to be fixed in terms of
physical quantities.

The energy levels are obtained from tre '~

through the formula

=2 tr exp[i(Z-If)rj dr. (3.17)

We insert into this expression the WKB sum
over orbits for tre '" in the form used in Sec.
IV of I,

FIG. 3. A finite mass-renormalization graph of order
A,2.

z/2

5 (I~ (sos 2 n2L2)1/2)ef (s(7 ) (3.18)

where v has been explicitly set e(lual to nL/T and the 5 function enforces the other constraint in (3.2). We
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now use the representation

OO

6(l2 —(T' —n'L') /')= — exp[iM[l2 —(T' -n 2L 2)' 2]] dM
27T

for the 6 function in (3.18) and insert the whole thing into (3.17). The result can be written as

G(z) = . G'(M, Z)G(M),
dM

(3.20)

with

M
T (1, (22L/T)')2/'

n

—X//2 ( nL, 2 - ~/'2~

exp T j
(3,21)

dS/dT 1/2 d 2S 1/2

7 d7 I'/', exp[i l(S + M2')] .d7. 2

We evaluate the integrals in (3.20) by the stationary-phase method. The one for Go was evaluated in I and
is equal to

G2(M E)
i BI(/2(M& E)

QQ

Wo(M, S)
iw (M, M) ~0(M E) =L(z' M )' (3.22)

if IE l&IMI there is no stationary-phase point for
v&1. The integral for 6 is of the type computed
in Sec. II of I. The stationary-phase point is at
dS(7(M))/d2 = M. As in I the result of the station-
ary-phase integration and sum over l can be ex-
pressed in terms of W(M) =S(2(M))+ M7'(M) as

dIT&(M) eiw(M)

I eiw(M)

W(M)= si» '(& )
0 &M &16m/y',

(3.23)

M
1

n
(3.24)

M„=, sin, 21=1, 2. . .&8m/y'.
&6~ . ny'
y' (3.25)

We now put (3.23) into (3.20) and do the M inte-
gration, picking up the poles in C to get

where we have used (3.16) to work out the explicit
form of 5. The restriction on the range of M
comes from the requirement that there be a sta-
tionary-phase point corresponding to a classical
orbit with a real period 2 & 221/rn as required by
(3.1).

Qne sees immediately that It has poles when
W(M) =2nx, i.e.,

G(z) =PG'(E, M„). (3.26)

It was pointed out in I that G'(E, M) poles at E
=(p„'+M')'/', p„=2mk/L, k=0, +1, . . . , so that
G(E) has poles at

z, „=(P,'+ M„')'/', (3.27)

corresponding to a particle of mass 1N„' whose mo-
menta come in units of 2w/L, as it should in our
periodic world.

The classical doublet solution has therefore
produced a finite set of particles with masses M„
which propagate and have the correct relation be-
tween energy and momentum. We will give an in-
terpretation of these states in Sec. IV.

F. Strong coupling and separability in sine-Gordon equation

In Sec. III 8 it was pointed out that if the sine-
Gordon equation was truly separable then our cal-
culation of the soliton mass and the mass spectrum
of the doublet would be exact within the WEB ap-
proximation. " However, we must now come to
terms with the fact that the sine-Gordon equation
is not separable in a finite box. In order to make
a sensible calculation we need to begin in a finite
box and let L, - 3.t the end. Also, the ultraviolet
cutoffs needed to implement renormalization de-
stroy the separation into action-angle variables.

The extent to which the sine-Gordon equation is



PARTICLE S PE C TRUM IN MODE L FIE LD THE QRIES. . .

G. Remarks on quantization in more general theories

In more general theories we can look for parti-
cle-like solutions which are analogous to the sine-
Gordon doublet. They will be solutions P to the
classical field equations which are periodic in a
rest frame, i.e.,

y(~+i, x) = y(t, x), (3.28)

and which have a behavior as (x)-~ which is con-
sistent with a particle interpretation. We assume
the classical solution to be stable in the sense that
all the stability angles are real. Given such a
solution we can boost it to obtain one moving with
any velocity [ v ~

& 1.
In Sec. V we will show how to find one of these

classical periodic fields in the two-dimensional
P' theory studied in II. This solution is valid only
for weak coupling, but serves to demonstrate that

not acting like a strictly separable system in our
calculation can be seen as folloms. Referring to I
and Appendix A of the present paper, one can con-
vince oneself that for a strictly separable system
the sum of the stability angles g{w) would have
been a constant times the period T. Such a term
mould have been completely canceled by the vac-
uum-energy subtraction T&E and the stability
angles would have played no role whatsoever.
The quantization condition would then have re-
duced to the usual Bohr-Sommerfeld rule )P dq
=2nw for separable systems. Of course, the vac-
uum-energy subtraction did not cancel all of $,
but after renormalization the finite part f was
proportional to 8 and simply represented a re-
normalization of the coupling constant from X/m2

to y'. The same renormalization appeared in both
the calculation of the soliton mass and the mass
spectrum of the doublet. Although we have not
proved it, we strongly suspect that this pattern
is general. That is, we suspect that for any solu-
tion of the sine-Gordon equation built out of inter-
acting solitions, antisolitons, and doublets, the
net effect of the stability angles will be to replace
X/m' by y'. If this is indeed what happens, then
in the WKB approximation the sine-Gordon equa-
tion will act like an exactly separable system but
with a new coupling constant y'. With this revived
separability, our quantization of the soliton and
doublet will be a rigorous result of the semiclas-
sical method.

When the semiclassical method can be rigorous-
ly and fully exploited, as we believe has been done
for the sine-Gordon equation, it is reasonable to
expect meaningful results for both weak and strong
couplings. As pointed out in the Introduction, it
appears that we are actually finding exact results.

the phenomena which we are discussing here are
not restricted to the solvable sine-Gordon equa-
tion.

If a periodic solution exists for a range of per-
iods 7 then at a classical level, there will be par-
ticles with a continuous mass spectrum. The WKB
method will quantize the mass spectrum.

The quantization will proceed in the same way
as for the sine-Gordon doublet. First, it is clear
that the center-of-mass motion can always be
taken care of just as me did above. Thus, me can
concentrate on G(M). With regard to the calcula-
tion of G(M), the sine-Gordon equation is a special
case for two reasons. The first is that in general
the finite piece f (v) of the sum over stability an-
gles will not be a constant times 5'(v). Second,
there will in general be a finite number of dis-
crete positive stability angles v„v„.. . , v„
(v; &0). When these discrete stability angles are
present, we have to add (See Appendix A) to the
right-hand side of (3.6) a factor

N

j [ (1 —e ""~) ' = P exp —i Ig q; v;

(3.29)

S(~)-S'(v)+((r) -gc;v;(v) (3.30)

in the exponential in the integrand. In what follows
we will assume a weak-coupling approximation,
where j and the v, are taken to be small relative
to S. With this approximation it is then straight-
forward to evaluate the stationary-phase integral
and find the poles in G(M). The quantization con-
dition turns out to be

W(M) =2nn —f(T(M))+ g q, v;(7(M)),

w(M) =5 (T(M))+MT{M),

where T(M) is the solution to

(3.31)

dZ(r(M))
dT

(3.32)

Taking account of the fact that f and the v, are as-
sumed to be small, we can solve (3.31) iteratively
using dW/dM=v(M) to obtain

where the sum is over sets of positive integers.
We can compute G(M) separately for each term
in the sum.

For a given term in (3.29) the analog of the in-
tegral in Eq. (3.21) for G(M) is then gotten by mak-
ing the replacement
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Z;q; ~;(~(M.))- f(~(M.))
M„(,)=M„+ ' ' ' ("

)

(3.33)

For weak or moderate coupling, M, is a conven-
ient "physical" scale of mass.

Expanding ~ in powers of A, gives

IT(~) =2m. 2 n3-n
(4.2)

Thus, we see that in this approximation, each
basic particle n =1, 2, . . . is accompanied by ex-
cited states labeled by sets of integers (qj. This
result appeared in I and has also been obtained by
Voros." Again, we see an analogy between the
stability angles and harmonic-oscillator frequen-
cies. In II we pointed out that the normal modes
of oscillation around the static kink contained one
nontrivial discrete freqnency. This produced a
set of states with the spectrum M=M k,.„„+q~„q
=0, 1, 2, . . . in analogy with (3.33). Finally, the
q-independent term f/v —on the right-hand side
of (3.33) is the analog of the quantum correction
to the mass of the kink computed in II.

In general, as was pointed out in I, Eq,. (3.33)
is valid only if the coupling of the basic orbit to
the "transverse" degrees of freedom represented
by the stability angles is weak. In our P calcu-
lations, we will work in the weak-coupling limit
and this condition will automatically be satisfied.
As was pointed out above, we have reason to be-
lieve that for the sine-Gordon equation, the sim-
pler quantization rule (3.25) is valid for strong as
well as weak coupling.

IV. INTERPRETATION OF THE MASS SPECTRUM

In the Introduction we have already sketched the
interpretation of the mass spectrum. Here we

give a few more details, operating under the as-
sumption that our results are valid for all y'.

It will turn out that there are two complemen-
tary ways in which the doublet states can be
viewed. The first is that they are ~-body bound
states made out of n of the usual quanta of the
theory. The second is that they are soliton-anti-
soliton bound states. Either view appears to be
physically sensible, the former being more natur-
al for weak coupling and the latter more natural
for strong coupling.

A. Weak coupling

As has been pointed out, in the weak-coupling
limit, the mass of the n =1 state becomes m+0(A'),
and it is to be identified with the "elementary" P
quanta of perturbation theory. It cannot be a new
state since for very weak coupling the particle
mass m+O(A') is surely a nondegenerate isolated
point in the mass spectrum. With A. W 0 the mass
of this state is

, —2 —g ll(x;-x, )) g„= —e„g„,
$&j

(4 3)

where k is a constant of order A, and e„ is to be
identified with nM| -1N„'. In the center-of-mass
system, the ground-state wave function is, up to
a normalization constant,

g„=exp -k g Ix; —x, I

t&g

which gives for e„

(4.4)

e = (n -n)—3
n 6 'm

(4 5)

The value of k is directly obtained by summing
the Feynman graphs shown in Fig. 4. The sum of
graphs has a pole below threshold and one can
identify

2
Q2

256m' ' (4.6)

The binding energy (4.5) as computed with the
Schrodinger equation then agrees with the WKB
formula.

The sine-Gordon equation is invariant under
Q- —P, leading to a conserved "parity" opera-
tionR. It is easy to see that the doublet states
are eigenstates of R with eigenvalue (-1)". This
means, for example, that the decay of the n =3
state to two n =1 states is forbidden. Using this
fact and the calculated mass ratios', one can easi-

+ 1 ~ ~

which was already discussed in the Introduction.
As long as An/m' is reasonably small, these
states can be interpreted as weakly bound n-par-
ticle systems. For such a system only two-body
interactions are important and only the P term in
(2.2) contributes. One easily sees that in the non-
relativistic limit this gives a 5-function potential.
The Schrodinger equation for the n-particle ground
state is

&6m . y'
M =

1 ]6sln— (4.1)

FIG. 4. The sum of bubble diagrams which corresponds
to the Schrodinger equation with a 5-function potential
in the nonrelativistic limit.
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ly convince oneself that the n=l, 2, and 3 states
are necessarily stable.

The first decay which could occur is the n =4
state going to two n =1 states. At a classical level,
this is forbidden by special conservation laws.
Classically, the sine-Gordon equation possesses
an infinite number of nontrivial conserved inte-
grals. " " We do not know whether or not these
conserved quantities will survive in the quantum
theory. If they do, they could provide enough quantum
numbers to stabilize a.ll the doublet states. As a
simple check we can calculate the matrix element
for (n=4)- 2(n=1) to leading order in A.. Using
the above interpretation of the n =4 state as a
loosely bound composite of four of the usual Q
quanta, this matrix element is easily seen to be
proportional to the ordinary Feynman amplitude
for 4Q-2P evaluated at the 4P threshold. In or-
der A.

' this amplitude contains a number of tree
graphs with two AP» interactions plus a single con-
tact term from the (A.'/m')Q' term in the sine-Gor-
don Lagrangian. At threshold the graphs cancel
among themselves and the amplitude vanishes.
The n =4 state is therefore stable to leading order
in A., suggesting that the conservation laws survive
quantiza, tion.

Finally, we remark that the expansion (4.2) of
the exact formula + = (16m/y') sin(ny'/16) is
mathematically remarkably good (10%) up to the
maximum allowed value of n. Physically, this
corresponds to the fact that the binding energy
per particle does not exceed --,' of its rest mass,
making the nonrelativistic result (4.5) quite ac-
curate. This point will be important in Sec. V.

B. "Nuclear democracy"

To use Chew's phrase, the sine-Gordon equation
is "democratic. " There is no fundamental distinc-
tion between the "elementary particle" n =1 state
and the higher-mass n &1 particles. They all come
from one basic particlelike mode of the sine-Gor-
don equation. Explicitly, the classical solution
corresponding to the nth quantum sta.te is, in the
rest frame,

4m, t
&y' sin[mt cos(ny'/16)]tan ' tan 16 cosh[mx sin(ny'/16)

(4 7)

which has no particularly distinguishing feature"
for n =1. The Q» theory discussed in the next sec-
tion is "democratic" in the same way. This may
be a rather general phenomenon in interacting
field theories.

n„=ns+ . [tr lnS(~) —tr lnS(0)]
1

2m' (4.8)

where n, & is the number of elementary particles
in the soliton-antisoliton channel, n~ is the number
of bound states, and S is the $ matrix. We com-
pute the right-hand side of Eq. (4.8) using the
semiclassical method, and following Jackiw and
Woo" we find n,~= 2n~. Of course this does not
mean that some of our states are elementary.
What it says is that on the average our states are
only 50%%uo solitons-antisolitons. The other 50%%uo of
the wave function is presumably composed of many
soliton-antisoliton pairs. "

From Appendix D we also learn that as y' in-
creases and a state unbinds, it does not appear as
a resonance in soliton-antisoliton scattering. It
acts like an unbound S-wave state which becomes
a virtual state rather than a resonance.

Finally, we remind the reader that for y'&8m
only solitons and antisolitons exist. By this time
the "elementary particle" has itself broken up into
a soliton-antis oliton pair.

D. Comparing with some exact results

In the Introduction we compared the mass of the
n = 2 state to an exact result obtained by summing
Feynman diagrams. The diagrammatic calculation
has nothing to do with the semicla. ssical method
and has been placed in Appenidx E. Specifically,
we find from the diagrams

(4M,
' —M,

)
i

1 X 1 X ' 11+ ——,+ —, —,+O(Z').16m' 87] m' 87t m' 6 16m'

(4.9)

C. Strong coupling

States with n &8m'/y' do not exist. As y' in-
creases the nth state will disappear when y'
= 8m/n .We have already mentioned in the Intro-
duction that what happens is that the state breaks
up into a soliton-antisoliton pair. A graphical way
to see this is to note that if we keep f/v„-t cos(ny'/16) finite as ny'/16 approaches m/2,
then the argument of the inverse tangent in (4.7)
will blow up and Q, , will approach 2am/WAR, e-
ferring to Eq. (2.3) one can easily see that

~ Q ~

= 2'/WA. is the classical signal for decay into a
soliton-antisoliton pair.

It is clear that one way to view doublet states is
as soliton-antisoliton bound states. With this in
mind, we study soliton-antisoliton scattering in
Appendix D with the goal of checking the one-di-
mensional analog of Levinson's theorem"
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The WKB approximation to 6 is easily shown to be

h=sin —,r'
16' (4.10)

which agrees with (4.9) through order A.'. Some
algebra converts (4.9) into Eq. (1.6). The order-A.
term in 4 was discussed above. The order-X'
term comes from relativistic corrections to the
Schrddinger equation and an order-A. ' potential
generated by the diagrams in Fig. 5. It is not too
surprising that WKB gives the order-A. ' term ex-
actly: WKB usually treats one-loop effects cor-
rectly. However, it is remarkable that the WKB
result is still exact in the next order, A.'. In this
order two-loop diagrams enter in an essential way.

One does not generally expect WKB to be exact
beyond one loop. In fact we can show that for a
Lagrangian

(4.11)

the semiclassical calculation will not be exact
except for the special case b=1 corresponding to
the sine-Gordon equation. ' In the outline, the
argument goes as follows. The order-A. term
in (2M, -M, )/M, (corresponding to the X' term in
6) contains a piece linear in b and one that is inde-
pendent of b. It is easy to find the WKB approxima-
tion to the coefficient of b. The stability angles
cannot produce a term of the form bA4. There-
fore, in order A. the dependence on b comes solely
from the classical action S. Using formulas

FIG. 5. Diagrams which if inserted in the chain of
Fig. 4 would add an additional. 0-function potential of
order ~2.

2
=g — +0(g ) (4.14)

where M& and M~ are the fermion and bound-state
masses. With the identifications

value' b = 1.
In the Introduction we also compared our results

with those of Coleman. " He finds the remarkable
fact that sine-Gordon systems can be mapped into
a massive Thirring model with coupling constant g.
The fermions are to be identified with solitons. As
pointed out in the Introduction, we can use Cole-
man's correspondence between the two theories to
check WKB against further exact results, this
time for y' near 8m. For y' near 8m, g is small
and we can find a bound state in the Thirring model
by summing diagrams. The calculation is done in
Appendix E. From the diagrams we find

(4M,
' I,'

j
'"—

d——W(M„(b), b) = r„"+
dM„a W

d= —(2nw)
db

=0 t

(4.12)

M~ =M, , Mz =M(soliton) = Sm

and Coleman's" relation

8m

I+2g/w '

the WKB formula for 6' is

(4.15)

dt dX 7- P,
6' = cos —= sin (4.17)

one then finds that the WKB approximation to
dM„/db is

dM„ dt $, ,6dx
db 61m 7„ ~on

~5 +O g5 (4.13)

where we have used the expression in (4-;7+for
Using (4.13) to compute d6/db one finds

dA/db = —'9 (X/16m ), whereas the diagrams (see
Appendix E) give da/db = —,'—(A/16m')'. There-
fore, the WKB result for 6 can be exact in order
A.
' only for one value of b, namely the sine-Gordon

which agrees with (4.14) through order g'. Equa-
tion (1.4) in the Introduction follows, after some
algebra, from (4.14).

Finally, we note the fact that the mass renor-
malization in the sine-Gordon equation is multi-
plicative. This means that the scale of mass is
a priori undetermined and can change arbitrarily
as the dimensionless coupling X/m' changes.
Consequently, one cannot give an absolute meaning
to M„say, as a function of X/m'. What is mean-
ingful is the ratio of two different masses at the
same value of X/m'. A formal way of saying this
is that the parameter m in Eqs. (1.2) and (3.25) is
ambiguous owing to the possibility of a y -depen-
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dent rescaling m- Z(y')m. Of course, this does
not affect any of our results for quantities such as
(2M, -M, )/M, . On the other hand, we can compare
our expression (4.1) for M, with the particle mass
as computed in perturbation theory starting with
a, normal-ordered Lagrangian. The two do not
agree in order A.'. Specifically, the X term ob-
tained from an expansion of (4.1) is exactly one
half of the finite self-energy graph shown in Fig.
3. Thus our semiclassical results differ from
those obtained from the standard perturbation
theory by a finite but nontrivial rescaling Z(y').

V. BOUND STATES IN 'A/4

From the existence and physical interpretation
of the bounded classical solution (3.1) of the sine-
Gordon equation, one can develop a scheme for
finding similar solutions in nonexactly soluble
field theories. In this section we shall consider
the Lagrangian

2

(5 1)

which after the usual rescaling becomes

(5.2)

z —z" +2z+ 3z'+z' = 0. (5.3)

We look for a solution similar to Eq. (3.1) for
small value of the parameter e =—[(mr/2m)' —1]'/'.
The strategy is to expand simultaneously in har-
monics of the fundamental frequency and in powers
of e. Using the variables

i' ex W2

(1 + ~2)1/2» ~ (1 ~ e2)1/2» (5 4)

one looks for a solution of the form

This Lagrangian exhibits kinklike solutions, which
we discussed at length in II. We now look for time-
dependent nontrivial solutions. We naturally ex-
pand around P = 1, which is one of the stable vacua
of the theory. Then, setting Q =1+z, the classical
equation of motion reads

z = & g, (g) g+[a'""f,„„($)sin(2n+1)r +e'""
g,„„(g)cos(2n+2)v].

n=0
(5.5)

g&=--'fi'» g'=-~fi'» fs=-~isfi »

g4 64J 1 & J5 256 Jl
(5.6)

Note that the occurrence of both odd and even
powers of z in Eq. (5.3) forces the existence of
both odd and even harmonics in (5.5), while the
sine-Gordon equation would accommodate odd

harmonics only. All functions f„g„g„.. . are
functions of g only (and e), to be determined. By
identification in Eq. (5.3), one finds in lowest order
ln E

1l6
cosh'$ ' 36 cosh'$

(5.10)

The classical energy and action along one period
for such a solut:ion are

(5.12)

and on the other hand

f" f+ ~of,'=0, - (5.7)
w = 2'dxdt

whose solution is

v 3 cosh(
(5.8)

%'e see that we already have achieved a bounded

classical solution. For our ultimate purpose,
however, it is necessary to push the calculation
to the next order. This is rather lengthy, but

otherwise quite straightforward. The result is

2 ga g 1 103 E'

f, = — 1+'—,'e' + o(~'),
cosh) 18 ~3 cosh'(

(5 9)

4 2

(2m+,'—,'e')+ O(e') . (5.13)

W 3W2 WE = m v 2 —— —,+ o(w') .
2m 32 2m m' (5.14)

Before turning to the quantization of the motion
(5.5), we wish to make a few more remarks on
the classical level; we have found that there exist
analytic solutions to the nonlinear Eq. (5.3),
which are periodic in time. It will also turn out

Since the quantization condition will be in terms
of W, it is convenient to eliminate e:
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that the solution (5.5) is stable, at least for small
enough e. This means that the classical Q' theory,
although not completely integrable like the sine-
Gordon Lagrangian, still displays interesting non-
ergodic behavior,

It is also amusing to remark that in Eq. (5.6),
g„f2,g„f, are the first few terms of a geometric
series. Although the form of solution (5.5) is
specifically designed for periodic solutions and
small values of c, one can, by analogy with sine-
Gordon, set & =i/v and sum all the terms of the
above-mentioned geometric series. One then
obtains for Q = I+2 and large

~
t~

—,
' WSv cosh[x/(1- v')"'] - cosh[vt/(1- v')'"]
—,'&3v cosh[x/(1- v')'"]+cosh[vt/(1- v')'"] '

(5.15)

This looks like two well-separated kinks, moving
with velocities au. Whether or not Eq. (5.15)
could form the starting point of an approximate
analytic solution for kink-antikink scattering is
unknown: There are no obvious small parameters
in which to expand.

Finally, we can gain further insight from the
analogy of Eq. (5.14) with the sine-Gordon result
when the latter is also expanded in lowest orders
in 8'. Since up to 8=2/2„sin8 is approximated
within 10/0 by 8-+ tP, we can con]ecture a similar
feature for p'. Taking (5.14) as it is up to the
maximum value of E, one finds that this maximum
is Pm, which is 7% lower than twice the classical
mass of the kink. This is so analogous to the sine-
Gordon result that one may conjecture a. very close
analogy between the qualitative behavior of the
two quantum-mechanical theories as a function of

FIG. 6. A one-particle exchange graph in the Q~

theory with broken symmetry.

the coupling constant.
We now turn to the quantization of our motion

(5.5). Except for finer details, such as renormal-
iza.tion effects, everything is contained in Eq.
(5.14). Up to stability angles, to be computed
later, one finds the quantum-mechanical energies
by setting R' equal to 2nm. This gives the energy
levels

(5.16)

5g —5z" + 25m+ 6z 5z + Sz'5z = 0, (5.17)

where 2 is given by Eq. (5.5). Unfortunately, we
have no trick analogous to that of Appendix C
which would allow for an easy solution of (5.17).
Instead, one must again resort to a power series
in e: By analogy with the corresponding problem
in the sine-Gordon equation, one would write

For moderate values of n, this is a nonrelativ-
istic bound state again, and the same interpretation
in terms of Feynman diagrams applies. In this
case, however, the P' interaction is repulsive,
but more than compensated by the scalar exchange
due to the cubic interaction, Fig. 6. The coeffi-
cient of n2 in (5.16) naturally agrees with what one
obtains by summing the Feynman diagrams.

We now turn to the calculation of the stability
angles. One has to solve the linear equation

J

t -eg t- gx6s =cos-cos»» v 2+ -6 +tanh2ex sin —— —

—, -„,v 2+—2 l» 2 1-v' '"
e . t-vx t&2 1. , t —vx t&2 1

cosh2ex (1 —v')'" (1+e2)'" 2 ~
(1, 2)'» (1, + 2)'~2

2 sinh2ex t —vx tW2 1 t - vx t&2 1
cosh22ex (1-v')'" (1+e') "2 2 (1 —v')'" (1+e2)'" 2

+ e ~ e
7 (5.18)

with o. , P, y, 6, q to be determined by consistency of
the expansion. We have performed the calculation
of 5 to leading order in c only, a,lthough the re-
sults of Eqs. (5.9)-(5.11) would allow for a deter-
mination up to order e'. The result is

21i2 8 8 2

e' only to the sum of stability angles. The renor-
malization is also straightforward: It exactly
cancels the second term in the right-hand side of
Eq. (5.19). Only the first' term survives, and the
new quantization condition is then found to be

(5.20)

The rest of the calculation of the stability angles
proceeds as in the sine-Gordon case. Note that
the solutions 5z -~ a,nd 5z-z contribute to order

In terms of energy levels, we thus see that to
order c the stability angles induce a mass renor-
malization of order A, . A direct calculation shows
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that it is identical to the finite mass renormalizs. -
tion induced by the diagram of Fig. 7. A more
complete calculation, which would include terms
of higher order in e, would also renormalize the
coupling constant.

Note added in proof. After this work was com-
pleted we learned of work done by L. D. Faddeev,
I. Arefieva, L. A. Takhtajan, V. E. Korepin, and

P. P. Kulish in which many of the above results
were derived by a somewhat different path-inte-
gral method. It is unfortunate that an English
translation of much of this work is not yet avail-
able, but a description of it and the original refer-
ences may be found in a recent IAS report by
L. D. Faddeev (unpublished).
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],/2
-tow/2 d

8 S(qi q) f8(e, e)

8q&q

The point q* is a stationary-phase point of the
integra, l if

(A2)

—(q*,q*) + —,(q*,q*) = P —P ' = 0,BS 8$
Bq eq

(AS)

i.e., if q is a point lying on a periodic orbit of
period T. Vfe expand the action around q=q*, q'
=q+ as

S(q, q') = S(q*,q*) +-,'(q, + q', —2q,*)(q, + q,
' —2q,*)G„

+ 4(q( —q&)(qg —qg)&o+" ,(A4)

APPENDIX A: STABILITY ANGLES

Although we are interested in field theories we
begin by studying a system with a finite number of
degrees of freedom. %'e then have coordinates
q„ i = I, 2, . . . , N and a Lagrangian L(q, q).

In the semielassica, l a.pproxima, tion one has

gag ~
1/2

(q[ e k~r~qg) constx -- "- e &f' M~2 +e" j8
8q8q

(Al)

where 8„ is the action for the nth trajectory q"

satisfying the classical equations of motion and the
end-point conditions q"(0) =q', q" (7) =q. The phase
e' & depends on the number of critical points along
the trajectory. ' ~ It will not be important in what
follows and will be suppressed from now on. The
tra, ce of e '~~ will then be a sum of terms of the
form

FIG. 7. A finite mass-renormalization graph in the Q
theory with broken symmetry.

where cross terms between q+q' and q -q' cannot
occur since S(q, q') = S(q', q) by time reversal. In
the stationary-phase approximation the integral in

(A2) is

e t,Nw/2

)-dq
~

L(G fi) [
1/8

x exp[iS(q*, q*)+i(q, q,')(q—, -q,*)G„],
(A5)

In this coordinate system

88 eS
+ i

= ~G~&(qs+q& —26)
Bq) 8q]

=0, $=1y2p e ~ ~ pM ~

The M canonical momenta P„ i = 1, 2, . . . , M a,re
therefore conserved, at least locally. It is easy to
see that the existence of any global conservation
law implies a. zero eigenva. lue of G. We will as-
sume that all zero eigenva. lues of G correspond to
a symmetry of the system and are therefore non-
aecidental.

Further information ean be extracted from the
fact that q* is a, point on a, periodic orbi:t. Let
q, (t) = q, (t+T) be a periodic solution to the equa-
tions of motion. %'e will be interested in nearby
solutions of the form q, =q, +5q„where 5q, is
small. Expanding I around q =q yields an action

S= L q, q dt+ & A&& t 5q&5q&+&&& t 5q&5q&

+ gC))(t)5qi5q)]dt+ Q((5q)'),

(AB)

A()(t) =
a=a

and I3 and C are corresponding matrices of deriv-
atives of t. with respect to q, q and q, q. The

where a sum over distinct stationary-phase points
is implied.

%'ere it not for the fact that G ea,n have zero
eigenvalues the integral in (A5) would be straight-
forwa, rd. Assume that G has M &N vanishing
eigenvalues. We can then make a local (around q*)
change of coordinates which brings G;& into a. block
diagonal form where

Q])=Gg]=0] 2=1)2).» )M] /=1)2)O Q Qp¹
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m=w(q, q)+ (q, q)5q;+ . (q, q)5q, . (A 11)

The coefficients of 5q and Bq in (A11) are periodic.
Any solution $„with v 10 will contribute a. non-
periodic term which must vanish if m is to be time-
independent. Therefore, only v = 0 modes con-
tribute to the right-hand side of (All). One can
convince himself that if there are M-independent
(in the sense that the Poisson bracket of any pair
vanishes) conserved quantities then there will be
M pairs of zero stability angles.

%'e can identify the zero eigenvalues of G with
pairs of zero stability angles. Let 6q;(0) = q'. —q,*.

and 5q;(T) =q; —q,*. In our coordinate system
where q;+q,' —2q,*, i =I, . . . ,M span the null space
of G, some thought shows that 5q(t) satisfying
5q, (0) =5q, (T) =0, i =M I,+. . . , N span the v=0
manifold of solutions. This allows us to show
easily that H is also block diagonal in this coor-
dinate system. The conserved momenta P, are

1 BS ~S
2 Bg;

(A12)

for i =1, . . . , M. For j&M the q& correspond to
solutions with v 40, which we know' cannot con-
tribute in first order to a conserved quantity.
Therefore,

Having concluded that both G and II can be block
diagonalized, let us define G and H as the (N —M)-
dimensional matrices obtained by ignoring the
first M rows and columns of G and H. Then
changing variables to q, —q,*. =X, for i =M

action in (AB) leads to a set of linear equations for
5q, in which the coefficients are periodic functions
of time. It is well known that from the 2¹indepen-
dent solutions to these equations one can form
linear combinations with the property that

(A10)

For a stable solution q, (t) all the v„'s are real.
Henceforth we will assume that we are dealing with
a stable orbit. The v '8 are called stability angles.
Since the equations of motion are real they come
in pairs v and -v. There are N-independent pairs
making 2N angles in all. The presence of a sym-
metry makes a pair of the v'8 vanish. For ex-
ample, time translation invariance says that
q(t+ ~) =q(t) +q(t)a + ~ ~ ~ is a solution to the equa-
tions of motion. Identifying 6q with qA one sees
that one pair of v'8 must vanish.

More generally, let v(q(t), q(t)) be a. time-inde-
pendent quantity. To first order in 6q

+1, . . . , N, (A5) reduces to

g2S 1/2
t S (q*.&) -tN~/2

CP X 2G —H e

(A 14)
where B'S/BqBq' is now an M by M matrix. We
have thus factored (A5) into a piece involving non-
zero stability angles and a piece which depends
on the symmetries of the system.

Our next task is to compute t:he last factor in
(A14) in terms of the nonzero stability angles.
One can do this by a straightforward manipulation
of classical quantities. ' %'e will use a heuristic
functional integral approach which relates more
directly to quantum field theory. In I we w'rote

(A5) as a known factor times

T

&{X(t))exp i . (X,-(t}X,.{t)A,(t)+X,.(t)X,(t}H,, (t)
0

(A15)

where the functional inr, egL-~«~, . all paths sat-
isfying X(0) =X(T). This is equivalent to the
integral in (A5). A Gaussian integral like that in
(A15) is proportional to the inverse square root
of the determinant of the operator in the exponen-
tial. It is a differential operator with periodic
boundary conditions. A zero stability angle im-
plies a zero eigenvalue and consequently makes
the inverse determinant singular. However, we
already know how to extract these singular pieces.
To compute (A15) it is easiest to pass to the equiv-
alent Hamiltonian functional integral

X) Jt exp

e(p(O, x(~))I ~t,
(A 16}

which is equal to (A15) if H is the quadratic Ham-
iltonian corresponding to the quadratic Lagrangian
in (A15). It is easy to find the eigenvalues of the
operator in the exponential of (A16). There are
solutions to Hamilton's equations of the form X(t)

(t), P(t) =7l„(t), where q„ like g satisfies
q„(t+T) = e ""

q (t). These are not eigenfunctions
since X is not periodic. However, since Hamilton's
equations are first order the periodic functions
X„„(t)= („(t)exp[i(t/T)(v„+ 2nm)] are eigenfunctions
with eigenvalue i(v„+2nm)T '. Taking account of
the fact that the v„'8 come in pairs with equal mag-
nitude and opposite sign and that n can range from

to + ~, one finds that the square ~oot of the
product of the eigenvalues is a constant times
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(e '"~'2sin &), (A17)
vol&O

where the subscript v )0 means the product over
the 1V-M positive v .

The last factor in (A14) is just the inverse of
the product in (A17) with any vanishing v„'s elim-
inated. For each factor on the right in (A17) we
can write

) m/2 -gv /2

e 2 sln —,
2 1 —e

Then collecting everything and supplying sup-
pressed constants yields

in general a discrete spectrum v~, k =1, . . . , n and

a continuous spectrum. The discrete spectrum was
discussed in the last subsection of Sec. III. The
continuous spectrum corresponds to scattering
states of the theory. To correctly interpret these
states one must keep the volume large but finite
and proceed along the lines of Sec. V of I. If we are
interested only in the discrete part of the mass
spectrum, these scattering states can be ignored.
Therefore, for the purposes of this paper the
factors of (1 —e'"") ' in 6, corresponding to v„'s
in the continuum can be set equal to unity. This
is why 6, does not appear in (3.6).

Finally, for a periodic motion which corresponds
to traversing a basic orbit l times the stability
angles are just l times the stability angles for
the basic orbit. This is why (3.6) contains e" ~

and (3.29) contains e "'~.

periodic orbits

ec(S+E)g g1 2 P (A18)
APPENDIX B: CALCULATION OF

g2 g 1/2
dN

Bqeq'
(A19)

l7 nLT= (. 2, ~(2 —,n, 1=0, 1, 2, . . . .
1 —V J V

(B1)

We wish to compute 6, defined in (A19) for a
particlelike solution (3.28) in one space dimension.
As in Sec. III we consider motions where the
internal and translational periods are related by

(1 8 (U~) 1
ls 4

v&&0

(A20)

This is our desired result. The factor 4, depends
only on the symmetries of the system. Note that the
integrand in (A19) is invariant under a transforma-
tion of coordinates q, -q, (q), i =1, . . . , M. Con-
versely, b., and $ contain only nonzero stability
angles about which symmetry has little to say.
We have not derived the normalization of (A18),
which would be a factor independent of the dynam-
ics. It can be checked by comparing to harmonic
oscillators a,nd separable systems.

As mentioned in Sec. III when we quantize, each
factor in 62 is expanded as

1 e-g vcr
] ~ -l vct

q=0

and each term in the resu1ting series produces a
distinct energy level. Thus for the purpose of
finding a given energy level, 42 can be thought of
as exp(-i P „q v„), where the q„'s are some
finite set of integers.

Letting the number of degrees of freedom N go
to infinity to make contact with field theory, one
sees that in practice all ultraviolet divergences
will be contained in $. The renormalization of $

was discussed in Sec. III.
In a finite box the v~'s are a discrete series. As

the length of the box goes to infinity there will be

d2 TL
(B2)

which is clea, rly the volume per period for spatial
and temporal translations.

The total action is

s = &s(7),

where 8 is the action for one period in the rest
frame. Ne then have

TL
2n'i6~ =

O'S(v)
BT

&'S(r)
BTBL

82S(T) 1/2

BT~L

8's(T)
g L2

(B4)

where according to (Bl)

T(T, L) = —1— (B5)

There are two symmetries corresponding to
space and time translation invariance so that

~
O'S/sq&q'~ is a two-by-two determinant. We can

use the fact that (A19) is invariant under coordinate
transformations to simplify the calculation. One
can choose any two coordinates which have the
effect of changing the period and spatial extent of
the classical motion. The simplest thing to do is
to let one of the coordinates be the length of space
L and the other be the period T. The integration
volume is
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It is easy enough to compute the determinant a,nd

one finds

d's(7)
1 ~1/2

-dS(~)/d~ '"
2) S/2

The second factor appeared in Eq. (4.12) of I. Its
interpretation is given there. The determinant
in (84) is negative and a factor of i has been can-
celed on both sides of (B6). The equations in Sec.
III are understood to contain the a.bsolute values
of d'S/dH a.nd dS/d~.

APPENDIX C: TIME-DEPENDENT CASE

1. Stability angles for the sine -Gordon equation

Essentially, one wants to find the eigenfrequen-
cies of the linearized sine-Gordon problem, where
one expands about a particular mode, namely the
doublet solution. This is the analog of finding the

eigenfrequencies of the linearized problem for the

static case, which are those induced by the shift

y = yo+ ny„where yo is a particular solution to the

static equation and n is some expansion param-
eter.

Since the solutions we are interested in here
are periodic in their rest frame, and one wants to
use only quantities characterizing the orbit as a
whole, then the appropriate pa.ra, meter to compute
is the angle by which the eigenfrequencies change
over one traverse of the orbit, for each frequency
mode. These are the stability angles.

First we will solve the linearized problem by an

indirect method which takes advantage of the fact
that the sine-Gordon equation is a perfect system.
We will use the Bhcklund recursion algorithm
which generates all of the solutions to the equation

to solve the linear problem in a particularly con-
venient form. The system is always taken to be in

a very large box of length I, with periodic bound-

ary conditions. This makes the spectrum discrete
so one can explicitly count modes. Additionally,
we put the system on a lattice which regulates the

ultraviolet behavi or.
After doing this we subtract out the effect of

vacuum excitations and show that in the limit
L,- ~, the sum of the stability angles is propor-
tional to an integral over the phase shift 5 of the

linearized problem.
This integral contains a logarithmically divergent

piece, absorbable into a mass renormalization.
The rest of the stability-angle sum is finite and

directly proportional to the classical action com-
puted around one period of the doublet orbit, and

so defines a renormalized action for the system.
This amounts to an overall rescaling of the cou-
pling constant.

2. The linearized problem

We set m =1 and rescale the fields according
to (X/m')'~'Q- Q so that the Iinearized problem
takes the form

(
82 82

5f =cos$5$ .
ex

(C 1)

To find 5P we examine a particular four-soliton
solution to the sine-Gordon equation, which con-
sists of our usual doublet with internal period 7
=2m(l + a')"' and another bound doublet, which we
will use as a probe, having internal period
2m(1+ q')'" and which has been boosted by a ve-
locity v. We will examine the behavior of this
system a.s g- 0. This corresponds to the g doublet
having vanishingly small amplitude. Working to
first order in g is precisely the linearized problem
and will give 5P in a very convenient form.

To define notation and show how to construct
such a, four-soliton solution algebraically, we
display a form of the Backlund transformation due

to Hirota. ,
' which is an algebraic algorithm for

creating the N-soliton mode of the sine-Gordon
equation. We emphasize that this is essentially
a trick available only because sine-Gordon is a
perfect system, which means that there are alge-
braic algorithms available for building new solu-'

tions from old ones. In a nonperfect system one
would have to resort to solving the linearized
problem in a less elegant and nonclosed form, but
the principle of finding stability angles is exactly
the sa.me, as is their role in the quantization of
periodic orbits.

We need four velocity parameters

P =4tan ' (C3)

where

4

f(x, t) = g "exp g a„.p, p., + Q y.,x, ,
1p,.= (O, 1)

(C4)
4 4

g(x, t) = g"exp P a, , tt, tt, + P p, ,x, ,
P,.= (o.1)

x;=k;x+P, t+y;, P,'=k; —1, k~ =(1 —v )
' '

and where y, are arbitrary constants which we fix
conveniently to

'L/7/+ v 'gv+ 2 'gv —i
1+ (i/q)v q+ iv ' '

7t —iv
'

(C2)

Hirota. 's form' is in terms of the generic function-
al solution
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e&3 e&& q 9

and the notation Q„. Io, ) implies summation over
all possible combinations of p. , = 0, 1, p., = 0, 1, . . . ,
p,4=0, 1 under the condition

g ') '~'i
i(, ; =(even) (odd) integer .

i=1

The functions B,~ are defined through

Now, considering the generic solution
((t) = 4 tan '(g/f) and its linearized form

(C5)

5P+$=4tan ' =4tan ' —+4, , [f5g-g5f]+5 +g
(C6)

we see

5A =4 ~, [f~g g—&fl, -1
(C7)

with

CX
g(x, 1) =pe exp —, „„,cos, ,)„),

6X 6X
f(x, c)=exp

(1 )
g

cecil
(1 ) j ),

(C6)

VX —t 2Ex VX —t
eg=gs cos (--,),~, +exp (,)„, cos (,),s +e)

&X 5 t VX- t 1

(1+ )
' g (1+s ) (1 — )

*
p (1+e') s (1 —o) s)

(C9)

where the phase shift 5 is given by 3. Computing the sum of stability angles

S —2@v -1 S —iev+I
exp i5 = S +iev + I &+2cv —1

If t is replaced by t+ v, 5(t) undergoes a phase
change of

and S—= [(1+e2)(I —v') J'". p is defined through
)p = g(I + k2) ~ = 2p(I+ f2)&& (I + k )&)'2 (C14)

p exp(i5/2) =—

X) +26'U+ 1
(C11)

k„L+5 (k„)= 2nw, n = + 1, a 2, . . . , (C15)

which is therefore the stability angle for a given k.
In a periodic box, the k's are discrete and satisfy

One can show directly that 5P satisfies Eq. (Cl)
and is the solution to the linearized problem. The
phase shift 5 can be written in a more convenient
form as

where we note that k, and k, both vanish and are
therefore not distinct modes. For n t 1, k = -k„
and the quantity $, of Appendix A and Sec. III can
be written as

6 = 4 tan (C12)

where k =v/(1 —v')'I', so that as

k-0, 5-2m,

4gk-~, k(1+ e 2)1/2 1

(CIS)

which are limits which will have immediate use.

7
-2 go

1+ ~ (k '+ 1)' '+ ~ (k '+ 1)"'
n n

(k 2+ I)'~'+ —.7

n= 1

(C16)
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The vacuum energy is

t2E = 2 + g (I + k„")'",
n=l

where

Lk„' = 2',

(C17)

4, xt(x+ (t+t /2)))P (] 2)1/2

4m, , m(x —u(t+ ~/2))tall exp
(

(D2)

while for t-+~ one finds

and the extra —,
' comes from the k'=0 mode. In the

limit of an infinite box, one finds

llm ($ + Tt2E)
J -moo

OO

= —1. lim Q ((I2„2+1)' ' —(k„"+1)'') —1
-L n= 1

4tx, xt(x+x(t 4/2)))
(1 —u')'"

4m, ' -m(x- u(t —a/2))+ 'ta11 eXp
( 2) I/2

(D3)

where the time delay 6 in the collision is

1 " k5
(y2 + 1)I/2 (C19) (1 u2)I/2

lnu .
m u

(D4)

Integrating by parts and using the limits in Eq.
(C13), one sees that

g+7t).E =4(2. —. tan 'e)

+4&
dk

(Q2 1)
1/2 (C20)

where A is a cutoff. The additive 21/ in (C20) can
be dropped since $ always appears in the form
e'~. Defining

From (D2) and (D3) one sees that p, can be in-
terpreted as an elastic collision between a soliton
and an antisoliton in which each "particle" suffers
a time delay A.

One can quantize these collision states following
the method of Sec. V of I. We will work in the
center-of-mass system and compute the density
of states dn/dM as a function of the invariant
mass

$ = 4(e —tall '6)

we then have

~&&litoA

(I — ')'" '(1 ')"' ' (D5)

dk
Tt2E +46 2 I/2 + g, (k +1j (C22)

To do this, all we have to do is use the quantiza-
tion condition

which with e = [(m2'/2l/)' —1]'/' becomes Eq. (3.7).
As explained in Sec. III, the divergent terms in (
get absorbed by renormalization counterterms.
Finally, evaluating some integrals shows that

$ = 4(6 - tan E')

and differentiate to get

= 2.(M) = 21/
dTt' dn

(D7)

or

1 A,
dx dt g((t/ doublet)

8@m

8mm

(C23)
where as before 1(M) is the period in the center-
of-mass system.

In our closed-loop world, the soliton-antisoliton
scattering orbits are periodic with period

which is Eq. (3.15). ~(M) = —+~,L
u

(DS)

APPENMX 0: SOLITON —ANTISOLITON SCATTERING

4m, sinh(umt/(1 —u')"')
u cosh(mx/(1 —u )'")

As t- —~, (Iw), approaches

(Dl)

The solution to the sine-Gordon equation which
corresponds to soliton-antisoliton scattering is,
in the cen.ter-of-mass system,

where the first term is just the time it takes a
free particle to circle the world and the second
term is the extra time required because of the
time delays in collisions. Following Sec. V of I
we now write (D7) as

dn dn dn L
dM dM „,„dM 2wu 2m

'
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8m
AN= —,+y'

4dM

6m/y'

8m 16 ' In(u~
y' y's, (1 —u')

where dn/dM~, „,„ is the density of states for two
free particles.

It is interesting to compute the total number of
states in the soliton-antisoliton channel less the
number of states that there would be for non-
interacting particles. Calling this difference ~
we note that it has two components. One is the
bound states, of which there are 81//y', provided
that y' is small enough that we do not have to
distinguish between 81//y' and the la, rgest integer
less than 8m/y'. The other is the difference in
continuum states. Their sum is

14(s(4m* —s))

Ws is the total energy in the center-of-mass sys-
tem. For small y there is a pole just below thresh-
old. This pole can be interpreted as a loosely
bound state made up of two nonrelativistic particles
interacting through the 5-function potential. If the
pole is at so we can identify 6 with (1 —s,/4n22)'/2,

and the equation for 6 is

1 8 (] /2)1/2 (] /2)1/2

and one finds easily that

4m
Iy' (D10)

~=n„=ns+ . [tris(~) —trlnS(0)], (Dll)1
2m'

where we note that to integrate over all states we
must let the velocity u run from —1 to +1.

In ordinary quantum mechanics, the time delay
is equal to twice the WEB approximation to the
energy derivative of the phase shift. Using this
fact, we can interpret (D10) as Levinson's theorem
in the familiar form

+ o(y') .
16 (E4)

To compute the order-y' term in b. we have to
do two things. First, we have to solve (E2) to
order y'. This amounts to including relativistic
corrections to the Schrodinger equation. Second,
in the two-to-two amplitude we have to include the
one-loop diagrams shown in Fig. 5. The latter
is an order-y' correction to the potential. Since
the bound state is very close to threshold we may
evaluate the diagrams in Fig. 5 at zero momen-
tum transfer. Adding these diagrams to the kernel
(which we then have to iterate) has the effect of
replacing y in (ES) by y(l+y/41/). Doing this
yields the equation

where n„ is the number of elementary particles
and n~ is the number of bound states. 1 8 47/ (] /2)l/2 (] /2)1/2

(E5)

and solving to order y' gives
APPENDIX E: MASS RATIOS FROM

PERTURBATION THEORY 1+ r +O(y').
16 8m

(E8)

(1) We compute the dimensionless quantity

(4M,
* 44,*)'"—

by summing Feynman diagrams. We will obtain
the first three terms in the expansion of 6 in pow-
ers of y =/(/m'. The expansion parameter y is
not renormalized and is related to y' by
r'=r(1 r/8 ) '-

To obtain the first approximation to 4, we sum
the chain of bubbles shown in Fig. 4. The bubbles
sum to give a two-to-two amplitude,

We now turn to the calculation of the order-y'
term in 4. We will proceed in analogy with the
order-y' calculation. First we compute, through
order y', a kernel which is to be iterated. This
gives a. modified version of (E5) which must then
be solved to order y'.

In order y', the kernel contains three new ef-
fects.

(1) We have to include the two-loop diagrams
shown in Fig. 8.

(2) The propagator modification coming from
the diagram in Fig. 3 has to be taken into account.

(8) We have to take into account the momentum-
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transfer dependence of the diagrams in Fig. 5.
Proceeding in analogy with the order-y' calcula-

tion, we write the corrected equation for 6 as

~16 Ll+ 4v
+y (a&+a, +a3)

2

(1 n2)1/2 g
t (E7)

where a„a„and a, come from the effects listed
as (1), (2), and (3) above. We will compute the
a's and then solve (E7) to order y'.

The coefficient a, is proportional to the threshold
value of the sum of two-particle irreducible dia-
grams shown in Fig. 8. The diagrams can be
computed by standard methods. %'e quote the re-
sult in terms of R'ipk-rotated Feynman integrals:

1 1
2 1 & 2 64/2 256' (E12)

1 1
64~' 256

' (E13)

Next we have to take account of the momentum-
transfer dependence of diagrams in Fig. 5. We do
this by computing the difference between the two
diagra, ms in Fig. 9 and the same diagrams with
the exchanged bubble set equal to its value at
zero momentum transfer. Since solving (E7)
iterates the diagrams in Fig. 5 with the diagrams
in Fig. 4 evaluated at zero momentum transfer,
it is this difference which gives a, . Evaluating the
difference at threshold yields

1 J (x' + y') —Z(0)
(2m)'

~

(m+ix)'-y' —m'('

(2v)' q (1+q)'+m', 2=: 64'

m' ~ J(q')
(2m)' q ((l+q)2+ m')', s s

(E8)
(E14)

Inserting this into (E7) and solving to order y'
then yields

Note that a, = -a„so that the effects (2) and (3)
cancel, and the final result is

1
16~' 384

Z(0) = —.1
4m'

Vfith this notation, a, is

a, = QZ(0))' ——',I, + 2I,

1 1
16m' 384 ' (E9)

which agrees with the%'KB result to order y'.
The ca.ncellation of a, and a, will occur in any

where the three terms come from the diagrams in
Figs. 8(a), 8(b), and 8(c), respectively.

The diagram in Fig. 3 modifies the propagator
according to

p'-m'- p'-m'+ — I, +(p'-m')y'(-, 'I, ~I,)6 l

+ O(( p'- m')') .
Off-shell terms of order (p' —m')' in the inverse
propagator do not contribute to 4 in order y'
and may be dropped. The effect of the (finite)
mass and wave-function renormalization in (E10)
will be to correct the lowest-order interaction,
A, , divided by the physical mass squared according
to

(a)

[i+y (-,'I, —+I,)]m m -6ymI~

=y[1 y'(I, kI.-)] 0(y-+'), (E»)

from which we see that

(c)

FIG. S. Two-particle irreducible two-loop graphs.
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FIG. 10. 'Vacuum polarization" in the massive
Thirring model. The directed lines are fermions. The
wiggly lines represent fictitious heavy vector mesons.

conservation to define it according to

FIG. 9. An iteration of the diagrams in Fig. 4 with the
four-point vertex.

Lagrangian of the form

2

x=2(s y) --,m y + —y — y + ~ ~ ~4 bX

4I 6 I~~

(E16)

where the sine-Gordon Lagrangian corresponds
to the special case b =1. The P' interaction in the
sine-Gordon Lagrangian yielded the term propor-
tional to I, in Eq. (E9) for s, . For the general
case a, will be

and 6 will be

As pointed out in the text, (E18) does not agree
with WEB for b41.

(2) The Lagrangian for the massive Thirring
model is

g( p') g(0), (E22)
p

where 8 is defined as in (E8), with nz' replaced
by M&'.

We mill have to make a mass renormalization
for the fermion. After subtracting a counterterm
5M& proportional to 1np, the diagram in Fig. 11
vanishes for large p. and the inverse fermion
propagator ls

&(P' -Mg) + 0(g ')

Since there is no mave-function renormalization
in order g, the Ward identity tells us that the
"vertex correction" shomn in Fig. 12 vanishes at
zero momentum transfer. One ean check that it
does.

%'e now turn to the ealeulation of the bound-state
ma. ss. The "exchange" a,nd "annihilation" dia, -
grams shown in Fig. 13 lead to the fermion-
ant;ifermion potential

V= -2gr(x),

which produces a, no»relativistic bound sta, te
with mass

Ms = 2M~ —g My+ 0(g') .

~ = ki&0 MPP -(-7r"()'.—
2

It is equivalent to

(E19) To go to a. higher order in g, it is convenient
to define

=r+ 0(g')
2 = Itkip g Mpg + —-(8')'

+ u ~i&.Fr"0 (E20)

The field B" has a propagator ig"'/p, '. We will
regulate the theory by making the replacement

Our goal is to compute the order-g' term in 5'.
To aeeomplish this we have to do tmo things.
First, we have to sum the diagra. ms shomn in
Fig. 14 and compute the position of the pole to
order g'. Second„we have to correct the coeffi-
cient of the 5-function potential in (E24) to include

ig "" ig""
P -P (E21)

and letting p. -~ at the end of the calculation.
%'ith this regulated propagator for 8" there is only
one divergent diagram. It is the "vacuum-polari-
zation" loop shown in Fig. 10. We use current

FIG. 11. The lowest-order correction to the fermion
propagator in the massive Thirring model.
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FIG. 12. The lowest-order vertex correction in the
massive Thirring model.

the diagram shown in Fig. 15. This is equivalent
to solving the Bethe-Salpeter equation with the
kernel correct to order g' and the propagator
correct to order g. There is no fermion propa-
gator modification in order g, so we can use the
free fermion propagator. The complete order-g'
Bethe-Salpeter kernel includes the diagrams
shown in Fig. 16, but since they vanish at zero
momentum transfer they do not affect 6' in order
g'. Vfe are looking for an odd-charge-conjugetion
state, so the diagrams shown in Fig. 17 do not
appear in the kernel.

(0) (b)
FIG. 13. The fermion-antifermion interaction in the

massive Thirring model. As in Figs. 10-12 the wiggly
line represents a fictitious heavy vector meson. This
fictitious particle indicates the ordering of p matrices
and regulates divergent diagrams.

The chain of diagrams in Fig. 14 can be summed
by standard means. The easiest thing to do is to
make a Fierz transformation of the "exchange"
diagram shown in Fig. 13(a) so that it becomes an
"annihilation" diagram with y, coupling in the
odd-charge-conjugation channel. The position of
the pole is then given by the vanishing of the de-
terminant

1 ——F(h') ——g 2

2 1T-

g (1 ~I2)1/2F(gt)
2 =0

where we have taken the limit of large p. and the equation for b, ' is

L'(1 —6")"' (1 —a")'")
1 2= ———+0(a') . (E28)

=0

and solving to order g' yields

(E29)

From (E27) and (E28) we find that to order g' 6' =g —-g ——1 —lnI 2 ~
8'

m 2m Mf
(E30)

As will be seen shortly, the lnp divergence in
(E30) is spurious.

It is straightforward to compute the diagram in

Fig. 15. One finds that it produces an attractive
5 -function potential

V= ——1-in fI(x).g
w M~

(E31)

Comparing with (E24) one sees that the effect on

FIG. 14. The diagrams summed to give part of the
order- g term in 6' as defined in the Appendix E.

FIG. 15. A bvo-particle irreducible diagram appearing
in the order-g~ Bethe-Salpeter kernel.
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FIG. 16. Diagrams in the Bethe-Salpeter kernel which
do not affect 4' in order g2.

FIG. 17. Diagrams which do not appear in the kernel
for the C-odd channel.

b, ' will be to make the replacement 2 ~a' =g ——g'+ 0(g ') .
71'

(E33)

g- g+ —1 —ln
2m My

in (E30). The final result is then

(E32) As pointed out in the text, this agrees with WEB
to the indicated order.
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