
P HYSICAL H, E VIEW D VOLUME 11, NUMBEH, 12 15 JUNE 1975

Equivalence between time-dependent and time-independent formulations of time delay*

D. Bolle~~

Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742

T. A. Osborn
Department of Physics, Brooklyn College, City University of New York, Brooklyn, ¹wYork 11210

(Received 6 November 1974; revised manuscript received 26 March 1975)

The time-dependent and time-independent treatments of time delay in two-body scattering are discussed and
shown to be completely equivalent. Further, we provide a careful discussion of the definition of time delay in

both approaches. We are able to establish that the customary method of using an average limiting process is
unnecessary if the time delay is evaluated between normalizable wave packets.

I. INTRODUCTION

There exist in the literature two fundamental
approaches to the notion of time delay for two-
particle scattering. One is based upon the time-
dependent description of scattering theory, the
other on the time-independent formalism. It is
the purpose of this paper to carefully discuss
these two definitions of time delay and to establish,
an exact equivalence between them.

The time-independent approach to time delay
was developed by Smith. ' Using the steady-state
solution of the time-independent Schrodinger
equation for a singl. e energy E, Smith- calculates
the excess number of particles near the scattering
center after subtracting the number that would
have been present in the absence of the interaction.
Time delay is then determined to be this excess
number divided by the incoming (or outgoing) flux
at a large distance 8 from the scattering center.

Time-dependent approaches to aspects of time
delay date back to the early work of Wigner and
Eisenbud. ' However, the time-dependent version
we employ in this paper is that found in the work
of Jauch and Marchand. ' The method developed
by Jauch and Marchand (JM) possesses a number
of advantages not found in prior work on this
problem. First, by utilizing a definition proposed
by Goldberger and Watson4 they are able to as-
sociate a Hermitian operator Q with the observ-
able time delay. The derivation of time delay by
JM uses only simple abstract operator identities,
the relationship of the Mgiller operators to the
S matrix, the intertwining property, and the
singularity structure of the momentum-space rep-
resentation of the My(lier operators. Thus one
learns that associated with time delay there are
certain universal operator identities commom to
all scattering problems. In fact, in other works"
we have extended this operator approach to define
time delay for the three-body problem. A further

advantage of the abstract JM method of analysis
is that it proves that the time-delay formalism is
valid for all types of wave packets. No restric-
tions, such that the wave packet is a sharply
peaked function about some central momentum,
are needed.

A commom technical. problem besets both ap-
proaches described above. In both one computes
the delay of the wave packet for a finite region
of space, generally a sphere of radius A, and then
one takes 8-~. This gives one a time delay for
the entire wave packet in all of the three-dimen-
sional space. However, in both approaches the
plane-wave matrix elements that arise have
oscillatory terms involving sin2kR. Normally
these terms do not lead to a well-defined limit as
R -~. The remedy of both Smith and JM was to
first average the definition of time delay over an
interval (R, 2R) and then let R become infinite.
This ad koc averaging procedure makes the
troubl. esome terms zero.

Because of its arbitrary character and a lack
of physical foundation, this averaging process is
undesirable. However, we show in Sec. II that
one may define the time delay in the JM sense
without this averaging process and still obtain
the fundamental. result. Our variation of the JM
proof is based on the Riemann-Lebesgue lemma
and the fact that one is always evaluating the time-
delay operator between normalized square-in-
tegrable wave packets. Our results allow one to
understand that the averaging process introduced
by Smith permits him to compute the matrix
elements of non-normalized states and still get
the same answer as one obtains for normalized
matrix elements. An alternate average-free
approach is found in the work of Jauch, Sinha,
and Misra. ' However, they only prove that the
trace of Eg. (2.9) is valid. This is a weaker
statement than Eq. (2.9) itself. Specifically if
one computes the time delay for an arbitrary
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wave packet one needs the nondiagonal matrix
elements of Q.

In Sec. III we describe Smith's approach and
establ. ish the equival. ence of the two different
definitions of time delay. We also discuss the
role of the oscillatory terms. Finally, the Appen-

dix contains the proofs of the mathematical prop-
erties of the projection operators needed in the
modified JM method presented in Sec. II.

We close this introduction with the observation
that the time delay discussed in this paper is a
global property of the entire scattering process.
This "global time del.ay" is not the only concept
of time delay found in the l.iterature. A distinct
and contrasting form of time delay is found in the
work of Brenig and Haag, ' and its extensions are
studied by Froissart, Gol.dberger, and Watson. '
In these later works the time delay is an angle-
dependent quantity. It seems obvious that these
different kinds of time delay must be interrelated.
In fact, an explicit connection between the two
may be found in a paper by Nussenzveig. "

II. THE MODIFIED JAUCH-MARCHAND METHOD

On the basis of the definition given in the Intro-
duction, we can write down the following formula
for the matrix elements of the time delay Q of an
incident wave packet Q:

e+
=— lim — d R

oo
«[(t», Pze») (4», Ps—d»)1.

y(x) for IxI ~ft
(Ps»[)))(x) =

0 for Ixl~ft.
(2 2)

The vector coordinate x denotes the separation
between the incident and target particles. We see
that the first scalar product in Eq. (2.1) represents
the probability of finding the particle described
by the wave function P» inside the above-mentioned
sphere at time t. This gives, integrated over
all times, the average total time spent by the
particle in that sphere during the scattering proc-
ess described by P. The second integral in Eq.
(2.1) represents the same quantity for the free
particle described by the associated asymptotic
wave function P.

To find the time delay itself, we then have to

(2.1)

The operator I'R is defined as the projection
operator associated with the particle being inside
a sphere of radius R around the scattering center,
VlZ. ~

take the limit R of this time difference. That
limit in Eq. (2.1) is clearly taken in the average
sense in order to get rid of oscillatory terms'
in R. In the fol. lowing we shall denote this average
limit by (lim&»»

Introducing now the well-known time evolution
properties of P» and»t)» and using the properties
of the M[|(lier wave operators Ql'~ involved, ' we
can define a time-delay operator from Eq. (2.1)
in a straightforward way:

&kI slk') =
k &&I s(E) I k'&, (2.4)

where the reduced s(E) matrix is given in terms
of the two-particl. e t matrix by

(kI s(E) I k') =5(k - k') - 2»»il»k(k)»I i (E) I kk')

(2.5)

and where p. is the reduced mass. This definition
of s(E) is constructed such that the important
algebraic properties of S (e.g. , unitarity) are
preserved.

Looking then at expression (2.3) we can easily
derive that the time-delay operator Q is also an
on-shell operator, viz. ,

(2.6)

where

&kI e(E)l k') = (»m& 2vWk&kkl &'"P,&"—P, I kk'&.

(2.7)

Using these reduced expressions we can quote the
JM result, which they get by calculating
(kI s(E)q(E)I k'& starting from Eq. (2.3), in the
following way. Let the kernels (kI PzI k') be
distributions on a test-function space containing
at least the integral kernels (kI t[' Ik') and

(kI tl )tI k'& considered as functions of k' (for
fixed k) or as functions of k (for fixed k') and
suppose that the following assumptions hold for the
distributions:

(a) &kIP, Ik'& = 5(k-k'),

(2.8)

(c) (lim) (kkI Ps I
kk') =0.

(2.3)

We next recall that the S operator is an on-shell
operator so that we can write
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Then the following relation holds:

&kl ~(E) I
k'&

dk

dk" &k"
I s(&)l k)* &k" le(&)l k').

have

(d~ Si)(d') =lim Jdkdk'd(k) 2kil(E —E')

&&&kl &' "I Ps, I)'"]
I
k'& y' (k').

(2.11)

(2.9)

Let us remark immediately that these three as-
sumptions in (2.8), particularly (c), are not all
physically transparent. ' Fortunately, we can
just discard them by using instead explicit cal-
culations and the Riemann-Lebesgue lemma. "
At the same time we will show that the average
limiting process in E(I. (2.3) is not needed. To
prove these last statements, we follow different
steps similar to the original JM derivation.

We first calculate the product SQ starting from
Eq. (2.3) with a nonaveraged limit. Using standard
results of scattering theory' we arrive at

Since this expression (2.11) holds for a dense
set of functions Q and (t)', defined in the Appendix,
we can associate it with the following equality
between the kernels:

& kl Sql k'& = »m»5(E —E') &k I
&' "IPs,~"] I

k'&.

(2.12)

Effectively Eq. (2.12) is a shorthand notation for
Eq. (2.11) in the sense that the limiting process
A-~ is always executed after the matrix el.ements
are sandwiched between wave packets. Introducing
then the known relations

St2)= lim 'i dt e'"0'0 [P„,Q ')]e '"0'

(2.10)

Taking matrix elements of this expression (2.10)
between incoming and outgoing wave packets we

&kltl" Ik'& =5(k-k') -&kl T"Ik'&

where

&klT" Ik'& = ' '
Z-Z'~io

we easily get for E&l. (2.12)

(2.13a)

(2.13b)

&k I st2) I
k'

&
= lim 2m5(E -8') (&k I [T +, Ps] I

k') +& kl T ) [Ps, T '
] I

k'
& }. (2.14)

We next calculate the first part on the right-hand side of this expression by working out the commutator
and expressing the singular denominators in terms of their 6-function and principal-value parts. The
principal value part reads then

»m 4~ 5(~-E') dk" 't(k, k", Z")' "' ' -' "',' t(k", k, Z )I,
R~ (2.15)

where we have systematically suppressed the +i0 in the energy argument of the t matrix. Now, for non-
pathological potentials, we may assume that the t matrix is a smooth function of k" and is differentiable
with respect to k" so that we can apply the first property of the projection operator P~ proved in the
Appendix, viz. ,

~ ~II ~ ~pi It k P~ k Cf k t ky k k E"
k' —k" dk" k' k" k'+

(2.18)

We get then for the expression (2.15), after some algebra,

4m', 5(E 8') — + —t(k, k', E') —— „ t(k, k" k', E') t(k" k, k', E') (2.17)

To finish the calculation of the first part of expression (2.14) we still have to consider the terms containing
the 6-function parts, namely,

lim 2kil(E-E ) fdk Ii(k k, E")~So(E-E")&2 IE, Ik ) -&klE Ik ) i(k, k, E')(ks(E"-E')I (2.18)
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We then apply the second property of P~ proved in the Appendix, viz. ,

~ ~

k'~ k"3
dt's't(k k, 'k", E")& ( — (k"I 'Ilk )', t(ll'%, k', E') —

~, , t(k k, -'k', 8') (21.9)

We get then for expression (2.18) the following form:

—i 2m26(E —E'), , [t (k' k, —k', E') —t ( —k' 5, k', E')] . (2.20)

So, if the interaction which produces the scattering conserves parity, i.e., v(k, k') =v(-k, -k') then this
term is exactly zero because of the cancellation of the t matrices. But this term disappears even in a
more general scattering situation. Namely, if we recall that formula (2.20) is part of expression (2.12),
which is the kernel equivalent of Eq. (2.11), we see that we have to evaluate the following:

lim —i mpk' sin 2k'R[t (k' k, —k', E') —t ( —k' k, k', E')] P(k' k)*Q(k')dk' dk dk' . (2.21)

And the integral in k' is zero in the limit R-~, again because of the Riemann-Lebesgue lemma.
Finally, we have to examine the second part on the right-hand side of Eq. (2.14). For this term, we can

easil. y prove that

lim 2x6(E -E')(k~ T [Ps, T '
] ~

k') =0. (2.22)

To do this we follow the argument of JM." We expand this term in principal-value and 5-function parts.
A straightforward calculation shows that the terms containing at least one 6 function exactly cancel each
other. The remaining terms containing the two principal-value parts can be shown to give zero in the
limit R-~ by using the first property of the projection operators and the symmetry features of the inte-
grand. We also note that JM do not use the averaging procedure for this portion of the derivation. Com-
bining now the foregoing calculation and arguments allows us to write for Eq. (2.12)

(kiSQik') =4mp6(E-E') — „, t(k, k', E)-—„ t(kk, kk', E)2k2 (2.23)

Introducing then the reduced matrix elements for S and Q [cf. Eqs. (2.4) and (2.6)], and forming the energy
derivative of the reduced s(E) matrix defined by Eq. (2.5), it is easy to see that Eq. (2.23) becomes

dk" ass 0" k" qs k' =-~ ksZ k (2.24)

And this equation is equivalent to Eq. (2.9) because of the unitarity property of the reduced s(E) matrix.
So we have proved the original JM result without making the assumptions (2.8) and without using an

averaging procedure. This also means that the time-delay-operator definition (2.3) is valid without aver-
aging the limit.

In the next section we shall compare this time-dependent treatment of time delay with the time-indepen-
dent method of Smith.

III. RELATION WITH SMITH'S APPROACH

In this section we want to establish the equivalence between the time-dependent formulation of time
delay discussed so far and the time-independent treatment of Smith.

Since Smith originally defined time delay in the context of elastic scattering for a spinless particle in a
certain partial wave, we first have to specialize the foregoing modified JM formulation to this case. As
usual, we choose the complete set of commuting observables for this scattering to be (2ld'f, ), L', and
L, with spectral variables k, I, and m. So, the relevant time-delay matrix elements are [cf. Eq. (2.V)]

(t~l q(E) I
&' m') = {lim) 2wpk(ktm) 0 "PsQ "—P„~ kl'm'). (3.1)R~
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It is straightforward to see that the first term on the right-hand side of this expression (3.1) can be written
as

&kl m( 0 ' tPsQ +
(
kl' m') = j" r 'dr d r Y(„(r)Y, „(r')&kl m~ 0 ' ~

) rl m& &rl' m'
( 0 '

)
kl' m')

0
(3.2)

=&~~ ~m~
0

(3 3)

), p, sin2kR
I k

(3.4)

The first term on the right-hand side of Eq. (3.4)
is then the transit time of a free particle with
velocity v=k/p, (in a certain angular momentum
state) through a sphere of radius B. The second
oscillating term" wi11 be discussed at the end of
this section.

Combining then the foregoing calculations, we
get for the time-dependent formulation of time
delay

where we suppressed the index m on the radial
wave function because this is independent of m
for the scattering we are talking about. The sec-
ond term of that expression (3.1) can be calcu-
lated using the second property of the Appendix
or can be taken over from the JM paper. " It is
equal to

2vqk& kf m) P„(kl' m'&

time delay and the 8 matrix as we had before in
Eg. (2.9) by using just the SchrMinger equation
for P* and Sg/SE. In that calculation, which we
do not need to repeat here, there appear some
oscillating terms of the form'

——,sin(2kB+ 25, ).

The statement we wantto makeagain is that if we
calculate the time-delay operator between smooth
incoming and outgoing wave packets Q'(k') and

Q(k), the oscillating terms do not contribute in
the limit R-. To demonstrate this we write
down the following straightforward steps:

&qIql y'& = Jty*(l)&l lqll'& q'(I')dl dl' (3.6)

k'd kd kd k' Q*(k)

xQ q, (E)Y,„(k)Y,*„(k')Q' (kk').

q, „(E)=
& lim& r dr 4w —[gi, '~(r, k)[

0

(3.5)
The oscillating terms now give contributions
proportional. to

(3.9)

To show that this formula is the same as Smith's
stationary definition, we have to keep in mind
that the wave functions used by Smith are normal-
ized to unit inward and outward flux through the
surface of a sphere at large R. We can easily
calculate this flux to get

2F111C (3.6)

Then Eq. (3.5) becomes

q, „(E)= &lim& t dr I k% "(r,k)I'-
"0 F,„, ' ' 4m' '

(3.7)

And this is indeed Smith's formula except for the
factor I/4w in the second term on the right-hand
side. This factor is obviously forgotten in Smith's
paper and is corrected for example in the paper
by Ohmura. "

Starting from this definition (3.7), then, we can
derive, following Smith, the same relation between

(3.10)

and this integral vanishes in the limit R-~ be-
cause of the Riemann-Lebesgue lemma.

The conclusion is then that both formulations of
time delay are completely equivalent. This is
very useful to know when studying d.ifferent re-
sults and applications available in the literature. "'"

A Last, important point we want to make is that
these oscillating terms and their disappearance
when R -~ have a simple physical interpretation.
As Nussenzveig has observed, "these oscillating
terms arise from the fact that the wave packet
has an uncertainty in position 6r - I/hk. For
small 0 and fixed R, this may be an important
effect. However, after one takes R = and one
computes the time delay for a normal. ized wave
packet in the whole space, these localization
effects vanish. And this is independent of whether
one has calculated the time delay in coordinate
space, as Smith does, or in momentum space, as
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Jauch and Marchand do. 'k' * ' F / k'dzdk', (A6)

ACKNOWLEDGMENT where F,~„ is the fol. l.owing average:

One of the authors (D. B.) wants to thank the
members of the Nuclear Theory group of the
University of Maryland for their warm hospitality.

APPENDIX

~+ j.

Fz/z=
2 "-1

z z
dcos0 — —+ 2k' cos6

x f,y s(k', cos8),

This appendix studies some properties of the
projection operators (k'

~ P„~k) when R -~. It is
the detailed results proved here which allow us
to discard the technical assumptions and the
averaging in R used in the work of Jauch and

Mar chand.
We assume that our operators act on the follow-

ing denseset of functions: the functions of compact
support having at least three derivatives belonging
to L'(R'). A subset of this set is the Schwarz
test-function space.

We first note, then, that

2r
f,~„(k', cos8}= —

J dy f (k' +z/R).
7T o

(A8)

It is clear that in domains excluding z =0, E,~„(k')
is integrable with respect to d z because
f(k'+z/R) is. Furthermore, we shall show that
E,~s(k') is continuous in z/R in the neighborhood
of 0, so that we can use Eq. (Al) to conclude that

lim f'(k')* "
&, E,~s(k')d zdk'

B-~ 2 ~ s

»m (f', Psf) =(f', f),R~ (Al)

where f' and f are any functions in the above
dense set. This is of course an immediate con-
sequence of the strong convergence of P„ to the
identity. Furthermore, the kernel. for P~ in mo-
mentum space can be written as

' k' *F0 k ' d k'. A9

z z2
x = —cos6 + (A10)

Let us then examine the behavior of E,gs(k'} as
z/R-0. If we define

(k'~P )k) = ' d'x e'l"
(2w)'

A straightforward computation of the integral
gives

:3/2

Z,k(j k' —«(R),
2m k' -k

(A2) then Eq. (A'7) becomes

8/R+ z /20 'B

E,g„=—, f(k', x) . (Al 1)z z/g+z 2/2y i&2 x

This principal-value integral is of the general
for m

where J,/, is a Bessel function of the first kind.
The first property we want to prove is then

,

t' g(x)-g(0) d„b+a ~, x b+a ~', x

g(0)
&+a (A12)

where g is a differentiabl. e function. Now, we may
use the mean-value theorem to write (A12) as

where this integral has a well. -defined meaning
as a principal-value integral. Introducing the
variable z =R(k —k') we have

R~(k -k'2) =z(z+2Rk'cos6), (A5)

where we took the z axis of the coordinate system
describing the vector z/R parallel to k'. Using
Eq. (AS) we can write the integral on the left-hand
side of Eq. (A4) as

1 d x g(x, ) —g(0) g(0) b
g(x) —= ' — ln-,b+a ~, x x, 6+a a'

(A1S)

where x,e( —a, b). When a, b -0, the first factor
on the right-hand side becomes the derivative of
g at x =0, while the second factor is then a con-
stant multiplied with g(0). Applying the formula
(A13) to (All) gives
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Eo(k') = „f (k') +, —f (kk') (A14)
where f is the following average:

Finally, if we substitute this result (A14) into Eq.
(A9) we obtain our first property, Eq. (A4).

The second property we want to show is

k'2
' d k' f (k') 5 —— (k' I &„I k)

k f (k) — —f ( - k). (A15)

We first note that the integral on the left-hand
side of Eq. (A15) can be written as

—(f =f—
~

k, arccos 1 — +, ~=
—

~ dy f(kk').2kA2 ) 2m ~0

(A19)

We next do a partial integration with respect to
z on the integral (A18) and apply the Riemann-
Lebesgue lemma to the integral term. The terms
that survive in the limit A-~ are

&2 ~
— z=2A g

z ~'J~(z)f
~

k, arccos 1—2v' k l2k'R'
p

(A20)

p.k dk' kk' kk' P~ k Finally, with our special choice of coordinate
system, this result can be written as

Introducing again a variable ~,

z =
~

kk' —k~R =W2kR(1 —cos6)+, (A17) Rp f(k)
sin2kR p,

2k nk
(A21)

2kR
d z

( ),@~ z ~'Z,
g, (z)2~f, (A18)

where we took the ~ axis of the k' ~y~te~ paiallel
to k, and using furthermore Eq. (A3), we get for
expression (A16)

and this proves our second property.
We still remark that, if we multiply Eq. (A15)

with the function f *(k) and integrate over k, then
the second oscillating term does not contribute
any more because of the Riemann-Lebesgue
lemma.
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