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Gravitation and positive-energy wave equations
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Relativistic equations that describe massive particles with only positive-energy eigenvalues are generalized to
include gravitational interactions. The method developed, using a vierbein field, is applied specifically to
Staunton's spin--' equation. All consistency conditions are satisfied. A second-rank symmetric tensor whose
covariant divergence is zero is found.

I. INTRODUCTION

Notable progress has been made in generalizing
and in interpreting Dirac's' new relativistic equa-
tion. This equation describes a massive spin-
zero positive-energy particle. It is linear in the
momentum operators and involves a scalar field
that depends on two internal harmonic-oscillator
coordinates. The equation is interesting both be-
cause it exhibits a new method, using commuta-
tion relations, of reducing the Klein-Gordon equa-
tion and because it has the unusual property,
despite the existence of a conserved current, of
not permitting the minimal coupling of the particle
to the electromagnetic field.

The first generalization of Dirac's equation was
due to Biedenharn, Han, and van Dam. ' They
considered equations of higher order in the mo-
mentum operators that described particles of in-
teger and half-odd-integer spin. More importantly
they showed that all generalized Dirac equations
could be viewed (within the framework of a quan-
tum-front subdynamics) as describing a composite
of two relativistic subparticles bound by harmonic-
oscillator forces.

The theory has since been reformulated as a
complete Poincare algebra' and multiplet struc-
tures have been incorporated. " Connections be-
tween the quantum-front models and the dual-
resonance model have been explored. ' More re-
cently, Staunton' has exhibited a spin-& general-
ization of Dirac's equation that permits minimal
coupling of the particle to the electromagnetic
f ield.

The form of the interaction between particles,
described by the above theories, and gravitation
has not been previously elucidated. It is not ap-
parent in what manner the consistency conditions,
which often prevent a minimal electromagnetic
coupling, ' ' ' allow a gravitational generalization
of the equations.

The purpose of this paper is to show how to
write equations of the Dirac type using a Riemann-
ian metric. For illustration a specific example

is used, but the methods are general and readily
applicable to other cases.

In Sec. II, for completeness and to fix notation,
the logic and procedures of Staunton's spin- & equa-
tion' are briefly reviewed. Section III details the
procedure used to transform Staunton's equation
from Minkowski to Riemannian space-time. The
equations remain consistent. In Sec. IV, a second-
rank symmetric tensor is found whose covariant
divergence is zero. A brief summary and a short
discussion comprise Sec. V.

e' '"S qS ~-—0

S,' S,b
= 2 (q, b

—V, Vb + 3Vb V,).

The equation to be investigated is

T, (=0,
where T, is taken to be

T, = (-q,b+aS, b)II +mV, .

(2)

(3)

(4)

Here II, =P, +eA, =ib, +eA, , while a and the mass
m are constants. Equation (3) may not be a self-
consistent set of equations. ' In particular, Staun-
ton' showed that self-consistency and the existence
of a nontrivial solution imply that a could only take

II. STAUNTON SPIN- 2 THEORY

Consider a single-component wave function
g(x', q„q, ) depending upon Minkowski space-time
coordinates x', and two internal dimensionless
commuting harmonic-oscillator coordinates q, and

q, . Also consider operators' V, and S„, defined
on the space of functions of q, and q„ that generate
the Lie algebra of SO(3,2):

[v„v,] =is„,
[v. ,s„]= i(q.,v, —q., v,),

[Sab&Scd] (qacSbd qadSbc+qbdSac qbcSad)

Useful relations, given in Ref. 6, include

3V, V' =S,~S' = —~,
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(IP —M')g --,'iaeS„F"g =0.

Here we have introduced I', b by

(6)

on the value i. We shall repeat only a portion of
his demonstration below.

Contracting (3) with V, and using (2) we obtain

(2+3ia)V, II'g+mP =0.

This has the form of an interacting Majorana equa-
tion. ' We shall restrict our attention to cases of
massive particles. Accordingly the coefficient of
V, II', the Majorana operator, is nonzero. We
define a "Majorana mass" of the particle as
-m(2+3ia) '. Next, contracting (3) with Il' and
using (2), we obtain

nate frames at each space-time point. The pre-
scription (using a viexbein field h„')" is, for ex-
ample, V, - V& =h&'V, . Second, the derivative
must be generalized" to allow the possibility of
different internal transformations at each space-
time point. Particular caution must be taken to
ensure that execution of this program does not lead
to g =0 when the consistency conditions are applied.

We proceed by considering the infinitesimal
transformation properties of (. Under a coordinate
transformation, x"-x'" =x" + (" (where $" are the
space-time-dependent descriptors of the trans-
formation), and simultaneously under an internal
Lorentz transformation (with space-time-dependent
parameters e"), we have

[II, , 11«] = i eF,«
= i e(A«, A, —«),

and defined a "Klein-Gordon mass" M by

(7) g- (' = g+ ie'"S„g,

(6)M' =-m'(2+3ia) '

Finally, on contraction of (3) with Il«S" we get

[(2 + 3ia)alP —(6 i —7a}M' ——,
' i e(2 + 3ia)'S, b

F"]p = 0.

(9)

When (6) and (9) are compared, a restriction on
the constant a is obtained. It is a = i, or a =2i.
The possibility a =0 is excluded since this implies
that the particle's mass is zero. It is interesting
to note that the "Majorana mass, " m, and M are
identical only for the case a =i.

The remaining cons istenc y condition,

6( = -lf) „$"+ «E "Sab (.
We define a generalized covariant derivative by

D„g =(.„—iA.„"S„(. (16)

The resemblance between ~„"and the Fock-
Ivanenko coefficient is purely formal: No matrices
are present. The transformation properties of
~„"are determined by the requirement that under
a space-time transformation D„g transforms like
a space-time covariant vector while under an in-
ternal transformation D„g transforms similarly to

We obtain

[T, , Tb]( =0, (10)
+i~'d C

bP cd ef

was shown by Staunton' to exclude the a =2i possi-
bility. This was accomplished by showing that
(10}gave no new conditions on g for the a = i case.
However, in the a =2i case, (10) implied an addi-
tional equation equivalent to

F,b'S' P = 0 (a = 2i only).

The spin of the particle when a = i was found by
Staunton to be 2. He computed the action of the
square of the Pauli-Lubanski operator W, on g,
when A, =O, and obtained

(17)

The structure constants used here are defined by

[Sab ~ ca] ab caSef (16)

With the exception of the gauge term &'

transforms like a space-time vector and like an
internal Lorentz vector.

The derivative defined by (16) is noncommuta-
tive. We find that

(19)

W'g—= -ms(s+ I)( =-am'g (a = i only),

where

(12)
where

W'=--,'C'"d S, II, . (13)

III. EQUATION IN RIEMANNIAN SPACE

The conversion of the spin-& equation of Sec. II
to its analog in Riemannian space-time requires
two steps. First the operators V, and S„must be
converted to their curved-space versions. This is
accomplished by the well-known method' of intro-
ducing a tetrad relating local and general coordi-

D,v„=v„., —i~,"[s.„v„]=0.

Direct evaluation of (21) yields

(21}

(22)

We relate ~&" and B»" to the vierbein field by
requiring that the generalized covariant derivative
of V„ is zero. This is important. It ensures that
the consistency conditions may be satisfied non-
trivially and also it uniquely fixes ~„'b:
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W'e also evaluate

(D,D„-D„D,)V. =V..„,—V. , „„+ia„,"[S.„V.] =O,

(23)

and obtain a relation between &»z, and the
niemann- Christoff el tensor ~&,z, . It is

Using the fact that the covariant derivative of the
metric is zero, the first two terms in (33) may be
combined. Then using (1) to replace S„, in the last
two terms in (33) and si.nplifying with Majorana's
equation, we get

i($*6„'g) „-. (iv'V„D, g)*$+ i)*(v "V„D„))=0. (34)

Since D„commutes with V„we may rewrite (34) as
Since S~, is constructed from the commutator of
two V„operators,

7QP 0 (35)

DpS»=0, (25)
where

The formalism above is sufficient for general-
izing the material in Sec. II. We take

T""=~P*(g-"+ V"V'+ V "V")P

and where ~ is a constant,

(36)

TqP =0, (26) T =T„"=3ag*g. (37)

where

Tq
—(-gp, + iSq, )II'+mv~, (27)

In the case of Minkowski space-time Staunton'
gives the solution of (26) for a stationary particle
as

and

II& ——iD& + eA&. (28)

Note that the principle of equivalence implies
that consistency, if it exists at all, can only apply
to the case a = i. Equations (21) and (25) ensure
that much of the analysis in Sec. II may imme-
diately be carried over with minor changes in in-
dex labeling if a»«&«+ affinity ~„"S„is intro-
duced. " We obtain as the analog of (5)

g = (Aq, +Bq,) exp[- imt ——,'(q, '+q, ')]. (38)

V = —,'(q, '+q, '+rl, '+q, '),

V, =-,'(-q, q, +q, q, )1

V2 ———,'(q, q2+q2&z), (39)

A and B are arbitrary constants. It is interesting
to evaluate (36) for this case. Using the specific
flat-space representation' of V„

2V" T„q =(V "11 —m)q =O. (29)

The Majorana equation holds in an arbitrary ref-
erence frame.

The saturation of (26) with either II& or S~,II'
gives

q,. =-zB, , z =1,2

we obtain

(40)

[rl' —m' ~-'S (eF"'+ 2R"""S,.)]-y =0. (3o) All other components of T„, are zero.

IV. DIVERGENCE-FREE TENSOR

Consider the expression

(T„4)*4-4*T„4=o, (32)

which follows immediately from (26). In all equa-
tions in this section where both g* and g appear
an integration over q space is understood. Ex-
pansion of (32) using (27) yields

-(iD~()*g + i /*DIP+ (iS„'li,g)*g —Q*iS&"II„)= 0.

(33)

For the commutation relation we find no new
condition. Using (26) to eliminate some terms,
and after some straightforward algebra, we obtain

[Tq, T~]g = —iS q, [IP —m2 + ~S p, (eFP + 2RP S ~,)]g = 0.

(31)

This is clearly only a restatement of (30).

V. CONCLUSION

W'e have shown that it is possible to generalize
Staunton's spin-2 equation to curved space-time
and have explicitly found a symmetric tensor
whose covariant divergence is zero. This tensor
is a possible candidate for the gravitational stress-
energy tensor of the particle. Many interesting
questions remain that are currently being inves-
tigated.

What are the properties of &,„„for moving
particles both in flat: and in curved space-time~

2. Can a Lagrangian density be found that upon
variation uniquely yields Staunton's equation~ Its
variation with respect to the metric would im-
mediately give the gravitational stress-energy
tensor.

3. Do solutions of the coupled Einstein-Staunton
equations exist for cases of high metric symme-
try~ If so, what are their properties~
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