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Vacuum fluctuations of a quantized scalar field in a Robertson-Walker universe*
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The vacuum expectation value of the energy-momentum tensor of a quantized scalar field is calculated
in a Robertson-Walker universe. The resulting divergences are regularized by averaging over an

appropriate mass spectrum, which fulfills the same regularization conditions as needed for regularization
of the vacuum energy-momentum tensor in Minkowski space. Up to higher orders in time derivatives

and inverse radius of universe, there result three contributions to the vacuum energy-momentum

density: a cosmological term, a term proportional to the Einstein tensor, and a term derivable by
variation of a gravitational Lagrangian containing quadratic expressions of the curvature quantities R,
R „„R„~ . These contributions are estimated with the following result: There is no direct evidence

that the collapse of a Robertson-Walker universe is averted at some realistic dimensions of the universe,

or that gravitation is described in a natural way by the elastic properties of the vacuum of some

particles. On the other hand, there is given some evidence that quantum corrections of the type shown

must be taken into account in general relativity and are important at least for highly collapsed states
of the early universe.

I. INTRODUCTION

Since the very beginning of quantum electro-
dynamics, it has been known that the concept of
particle vacua (like the Dirac sea) leads to phys-
ically observable effects of quantization. The
pure presence of the electron vacuum in an un-
quantized electromagnetic background causes
higher-order corrections to the classical Lagran-
gian of the free electromagnetic field. Well-known
effects such as Delbruck scattering of light by
light are manifestations of the nonlinear proper-
ties characterizing the electron vacuum. Its in-
fluence on an unquantized electromagnetic field is
most easily depicted by writing down an effective
Lagrangian which can be deduced, as shown by
Weisskopf, ' in a highly transparent manner from
the shifted energy of the Dirac sea in the presence
ot' an electromagnetic background. The same re-
sult was obtained by Schwinger' by a somewhat
more formal method, calculating the vacuum cur-
rent induced by the electromagnetic field by
means of a Green's-function procedure. Both
procedures include renormalization and lead to
finite, nonlinear vacuum polarization effects,
which are important in strong electromagnetic
fields.

The influence of particle vacua on classical field
equations is not restricted to electrodynamics,
but also has to be discussed for the other classi-
cal field, namely the gravitational field. Apart
from the general interest in this question, there
are two aspects accentuating its discussion: On
the one hand it was suggested by Sakharov' that
gravitation is an effect of "metric elasticity, " in
analogy to the elasticity of solids, which is based

on the properties of its microscopic constituents;
the gravitational constant is assumed to be an
elasticity constant describing the resistance of
particle vacua against deformations of space-time.
On the other hand, there are several powerful
theorems showing that under very general condi-
tions the occurrence of a collapsed initial or final
state is an inevitable consequence of the Einstein
equations of general relativity. If Einstein's
equations are modified because of the presence of
particle vacua' we have to investigate whether and
how these modifications are able to prevent the
development of singular states of matter and the
universe. '

But if we now look for the direct influence of
particle vacua on general relativity, we have first
of all to study the vacuum expectation value of the
particles' energy-momentum tensor. This vacu-
um expectation value, now coupled to the gravita-
tional field by Einstein's equations, is thrown away
by the usual normal-ordering procedure of quan-
tum field theory, renormalizing the zero point of
energy by a divergent and "unobservable" con-
stant. In general relativity, however, we have to
calculate the full vacuum expectation value of the
energy-momentum tensor of the quantized fields
describing the particles, and as a second step
this divergent quantity has to be regularized in a
manner consistent with the corresponding pro-
cedure in Minkowski space-time.

Before doing so, we follow up the history of cal-
culating the vacuum energy-momentum tensor of a
quantized field in presence of gravitational interac-
tion. The first investigation on this subject was
done by Utiyama and DeWitt, ' who studied the en-
ergy-momentum tensor of a quantized scalar field
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in the presence of the corresponding gravitational
background. Here —and also in an appropriate
generalization of Schwinger's calculations' of the
vacuum quantities given by DeWitt' —space-time
is assumed to be asymptotically flat at large
spacelike and timelike distances.

To avoid this assumption, which seems foreign
to the spirit of general relativity, we have to
solve the field equations in the background of the
given, not necessarily asymptotically flat metric.
These solutions are used to calculate the vacuum
expectation value of the field's energy-momentum
tensor. The resulting formally divergent quantities
are renormalized by Parker and Fulling' using a
momentum-cutoff method. The divergences are,
as also shown by Utiyama and DeWitt' and by
DeWitt, ' of three types:

(a) a cosmological term proportional to g„„
(b) an Einstein term proportional to the Einstein

tensor G&„, and

(c) terms which are proportional to a tensor
G&„obtained by variation from a Lagrangian quad-
ratic in the curvature quantities R, R„,, and

+pup a

Some finite terms in the vacuum energy-momen-
tum density are not identified by Parker and
Fulling' as tensor quantities, and owing to the
cutoff procedure there also some troubles in iden-
tifying the covariant behavior of the different di-
vergences (a), (b), and (c).

In this paper the vacuum energy-momentum
tensor of a minimally coupled massive quantized
scalar field on the background of a given metric
is calculated using the solutions of the scalar field
equations (Sec. II). The resulting energy-momen-
tum density is regularized by means of an ap-
propriate mass spectrum for an Einstein universe
(static and closed Robertson-Walker metric) (Sec.
III). The finite regularized energy-momentum
tensor shows all terms of the types (a), (b), and
(c) discussed before. Also, finite terms of higher
order in the curvature are present and can be
given in a closed form for the static case. The
r egularization conditions for the mass spectrum
are the same as those used by Zel'dovich" to
regularize vacuum energy and pressure for flat
space. In this manner our regularization pro-
cedure separates the pure curvature effects acting
on the. vacuum. The magnitude of the vacuum en-
ergy-momentum tensor obtained depends on the
regulator mass spectrum p(m'), which is not
determined by the regularization procedure but
only restricted to fulfil the given regularization
conditions. These regulator conditions also imply
that the regulator mass spectrum p(m') must be
negative for some values of m', which is not the

case for realistic bosons but could be expected
for a theory containing fermions and bosons (in
flat space the vacuum energy of free fermions be-
comes negative infinite"). Our results are gen-
eralized then to a closed nonstatic Robertson-
Walker metric using the same regularization con-
ditions for the mass spectrum as in flat space and
in the Einstein case (Sec. 1V). The field equations
are now solved by a refined WEB procedure" ex-
panding the eigenfunctions up to fourth-order time
derivatives of the nonstatic metric. Once more
we obtain at least a cosmological, an Einstein,
and a quadratic-curvature term for the vacuum
expectation value of the energy-momentum den-
sity. The results allow an estimate of the rela-
tive order of magnitude of this vacuum correc-
tions to general relativity (Sec. V).

II. VACUUM EXPECTATION VALUE OF THE
ENERGY-MOMENTUM TENSOR

4+384 —8 2A4+m~4 =0, (2.4)

where 8 means the three-dimensional covariant
Laplacian. Now we separate the scalar field op-
erator into its time-dependent and space-depen-
dent parts by setting

C (x, t) = g [&,.„F,.„(x)y,(t)+H.c.] .
gmn

(2.5)

Y, „are four-dimensional spherical harmonics,
eigenfunctions of h. A, „and 4, „are particle
creation and destruction operators acting on the
vacuum, which is assumed to be stable. The
l(I+I)-fold eigenfunctions I', „of 6 correspond to
the degenerate eigenvalues -t(I+2), which lead to
time-dependent field equations of the form

8, 'y, (r) +S'(~)(o, '(r )g, (7) = 0,
where &u,

' = t(t +2)S '+ m' and s, =S'8, , s, = so.

(2.6)

Starting from the Lagrangian of a massive
scalar field which is minimally coupled to a given
metric g„„by

(2.1)

the energy-momentum tensor for the field gets
the form

g-g T „=—,'g —g(B„C9,4 B+„CB„C)g g-g„-,g .

(2.2)

We investigate its vacuum expectation value for
a closed Robertson-Walker universe with a metric

ds'=g„„dx"dx'=dt' —S'(t)(1+-,'~') 'dx' .

(2.3)

The equation of motion of the scalar field 4 reads
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The vacuum expectation value of the energy-mo-
mentum tensor (2.2) can be rewritten in terms of
the eigenfunctions (l), as

& =&T',),

=(2w'S')-' g (l+1)'E,
—0

&T',).= g (1+1)'[I&.(I, l'+ ~, 'IO, I'],
1=0

2 =0

&T'„) =0, iak .

(2.7)

(2.8)

(2.9)

=(2v'S') ' Q (l+1)'[l(l+2)S '+m'j' ' (3 4)
1 =0

and

p =-&T';),

,'(2n-'S') ' Q (l+1)'(E ' —m')S '/E
l =0

III. EINSTEIN UNIVERSE

(l+ 1) l(l+2)S~ Il(l+2)S-'+m'j' ' (3.5)

which is solved by the ansatz

4,„„~(2S'E,) '~'exp( —iE, t)Y, „(x) .

The energy eigenvalues E, are given by

(3 2)

L I+2 (3.3)

Inserting the time-dependent part of solution (3.2)
into expressions (2.7)—(2.9) for the vacuum ener-
gy-momentum density, we obtain

For a closed and static Robertson-Walker metric
the field equation (2.4) reduces to

4 —S 244+yn'4 =0, (3.1)

&T'„),=0, i~ k .

Substitution of k= i+1 in (3.4) gives

(3.6)

v =mS (3.8)

is the ratio of radius of universe: Compton wave-
length of field, and

p2 1 v 2 (3 9)
Assuming that the Compton wavelength is smaller
than S or v =mS&1, the energy density (3.'l) can
be rewritten by means of the Euler-Maclaurin
formula introducing a cutoff k „,=N as

e(S, m) =(2))'S) 'm'g ( k/ v)'[( k/v)'+O'P ',
0=0

(3.7)
where

1 X p. ' N' p,
'

p,
' p4

e (S, m, N) = (2))'S) ' m'v —— + —— + ———ln2N+ —lnv'p, '
4 v 2 v 16 8 16

+gag — — + —— + ~ V —+ —+ ~V +0 (3.10)

p (m') p,
"dm' = 0, n = 0, 2, 4 (3.11)

or, equivalently,

p (m2)m" dm 2 = 0, n = 0, 2, 4 . (3.12)

By conditions (3.11) all divergences are elimi-
nated from

e (S) =lim p(m')e (S, m, N)dm', (3.13)

here B„are the Bernoulli numbers. The vacuum
energy density (3.10) is regularized by integrating
over a mass spectrum p(m') under the conditions

e (S) = (32))') ' m')L(, 'ln(v'p, ')p(m')dm'

1=(44rr') ' I dm'rr(m')m' (1—

x)n (mS)' 1 —,, ) . (4.14)
1
S

This expression for the vacuum energy density is
exact, if we assume the validity of the regulariza-
tion conditions (3.12). The effects of curvature
are all exactly contained via p. =1 -rn S, de-
pending only on the ratio Compton wavelength: ra-
dius of universe. As easily seen for Minkowski
space, the same procedure leads us to

which reduces (3.10) to e(S) =(32))' )
' dm p(m )m lnm (3.15)
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Now e(S) given by (3.14) can be expanded in powers
of (mS) ', leading to

G =-3S G o=-18S

G', =-S ', G' =6S 4 (itk) .
(3.20)

—2S '
p (m')m'In(m'S2)dm'

+S ' p(m')ln(m'S')dm'+0(m '2 '))

= (32m') '(L, 2S 'L-, + L-P-'), (3.16)

e(S)=(22e') '( )p(m')m ln(m S')dm' The vacuum energy density (3.16) can therefore
be written as

&(S) =(T'', ),= (32m')-'(L, g', + ', I.,G',-,', I.,G——', ) .
(3.21)

The same regularization procedure leads us from
the pressure equation (3.5) to

—p(S) =(T ', )0
= (32m 2) '(L4 g'; + 2 L2G'; —

~2 I, G ' . ) .

where in the last step we introduced

I„= p (m ')m "In(S'm')dm', (3.1'7)

(3.22)

Thus equations (3.21) and (3.22) can be sum-
marized in covariant form as

g =2t-g (AD+A, R+A,R'+A, R„,R"")+2 „„,,

(3.18)

gives us the following equations of motion for the
gravitational field:

(3.19)CogI v+ CiG~ v+C2G„u~ &~ v ~

where G&„ is the Einstein tensor and G„„is ob-
tained by variation of A2R'+A, R„,R[" in (3.18).

In the case of a static Robertson-Walker uni-
verse the tensors G„, and G„„are

which is independent of S as can be seen from con-
ditions (3.12) for n=0, 2, 4.

Variation of the most general gravitational La-
grangian containing terms of second order in the
curvature,

(T[' ) =(32~')-'(L g~„+sL„G~,-~L„C~„).

(3.23)

From the general expression (3.14) and (3.16) we
learn that also terms of higher order in (mS) '
will be present. These terms are to be expected
also from the results of DeWitt but are too com-
plicated to be given explicitly in tensorial form
by calculation of the coincidence limits of covari-
ant derivatives of the world function, as done by
DeWitt up to the ' quadratic curvature" terms.

In the following section we will generalize our
method to nonstatic Robertson-Walker cosmol-
ogies. This generalization is important because
the discussion of collapse behavior includes all
aspects of a dynamical metric in its extreme de-
velopme nt.

IV. ROBERTSON-WALKER COSMOLOGY

For our present considerations we have first of all to solve the time-dependent equation (2.6) for the
scalar field. This is done starting from the ansatz

t

2, (t)=[2S'W(t)] 't'exp{-t W(t')dl') (4.1)

For time-dependent &u, (t) the function W, (t) can be approximated by a refined WKB procedure. " The en-
ergy function W, (t) is given explicitly by Parker and Fulling' and takes the form

W, (t) =a), (1+E l)(1+e[ ]) (4.2)

where et2'l and e, '] contain time derivatives of the radius S(t) up to second and fourth order, respectively.
From W, (t) one finds straightforwardly using the energy-momentum vacuum expectation value (2."I)

1 S 3 2 2(2,),= (2n*d') ' Q (l+1)'Ite, + —— te, ' l(l+2)S *+
2

~ ~ ~ ~ I ~ ~ ~ ~

+ —3 —,—2 —,—2, + —, e, " l l+2 ''+Ol'l+2'I'S ' . 43

This approximation for the vacuum energy density is correct up to fourth order in the time derivatives of
S(t). Now the same regularization as in the static case is performed: We start using the Euler-Maclaurin
formula to transform the sum in (4.3) into an integral and regularize the resulting expression choosing a
regularizing mass spectrum which again obeys conditions (3.12). One obtains
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(7', ),=(2a') ' dm p(m)
m

i in' ~
-' m, +'-& in, ,

16 S 8 4

SS' S S
S

3 2 2 + l jS3 S2 S2 j.e (4 4)

where v and p,
~ are given by Eqs. (3.8) and (3.9). Expansion in orders of S ' yields finally

We also need the

(T';),=
32, ,

corresponding expression for the vacuum

2I,, 2S S' 1I 4 3 S2 s2 S2

~I 1 2S2 4S 38 1282S
18 S' S4 S~ S4 S

32w' ' 3 S' S' 18 S' S'

3S' 4SS 2 S
S*2 S2 S

(4 6)

3S4 2S2S 2SS S2' S4 S' S' S' (4.5)

pressure, which by Eq. (2.8) now becomes

To join Eqs. (4.5) and (4.6) in one covariant form
we establish the agreement of the square-brack-
eted expressions in Eqs. (4.5) and (4.6) with the
time-time and space-space components, respec-
tively. of the Einstein tensor G"„and the tensor
6"„, which is obtained by variation of the "curva-
ture-quadratic" Lagrangian in (3.18). One obtains

(7'"„)= (32m') '(I,,g",+ ,'I.,G"„—,—'-, G"„) .

(4.7)

Therefore, up to fourth order in ~, and S ' the
vacuum expectation value of the quantized scalar
field in a Robertson-Walker universe again con-
tains three terms:

(a) a cosmological term proportional to g„„
(b) an Einstein term proportional to G„„and
(c) "quadratic curvature" terms proportional to

G~„.

In general, also terms of higher order in 8, and
S ' will be present, but they are too complicated
to show their tensor cha.racter explicitly. (In this
connection see also Ref. 8.)

V. ORDERS OF MAGNITUDE

From (4.5) and (4.6) and the form of I „we can
easily see that the contributions (a), (b), and (c)
are of equal order of magnitude if the universe
attains the size of the dominating Compton wave-
length of the regularizing mass spectrum or if
the universe's time development shows a charac-
teristic time of the order Compton wavelength/
velocity of light. Such situations are to be ex-
pected for highly collapsed states of the universe.

If, on the other hand, gravitation is a pure
"metric elasticity" effect of the vacuum, ' we have
to set I;= I~ = 0, implying further conditions on

the mass spectrum, and the dominating mass rn

of the spectrum becomes m -K '
(K is the gravita-

tional constant, 5 = c = 1), i.e., m = 10 '
g, which

is the Planck mass. Without supposing I.4 -—0 by
further cancellations, we would obtain a cosmo-
logical density of p„-10"g/cm'.

Starting from the astrophysically founded upper
limit of the cosmological density, 10 "g/cm'
we estimate m =10 "

g, a quantity showing no
connection to known masses of elementary par-
ticle physics.

Finally, if we neglect the cosmological term,
I,4 —=0, and put in the gravitational constant by
hand, the "quadratic" terms G„, will take the
same order of magnitude as the Einstein term
K G~p in a domain where K S -S ~, K -S ', or
S is of the order of Planck length, namely 10 "
cm. If the universe collapses to the Planck length,
the quadratic corrections to the Einstein equation
will become equally important as the classical
Einstein terms themselves.

Vl. SUMMARY

We have carried out a calculation of the vacuum
expectation value of the energy-momentum tensor
of a massive scalar field coupled minimally to a
closed nonstatic Robertson-Walker metric. The
occurring divergences were regularized by aver-
aging over a mass spectrum which fulfills certain
regularization conditions. These conditions are
the same as needed for regularization of the vacu-
um energy-momentum density in a Minkowski
metric. Up to higher orders in ~, and S ' three
types of contributions to the energy and pressure
of the vacuum are obtained: First a cosmological
term present also in the case of flat space, sec-
ondly a term of Einstein type renormalizing the
gravitational constant, and finally terms resulting
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from a gravitational Lagrangian quadratic in the
curvature quantities. The orders of magnitude of
all these terms were estimated, with the following
results: The "quadratic term" will dominate the
classical gravitational Lagrangian if the universe
collapses to the Planck length; to obtain gravita-
tion as a pure "metric elasticity" effect we need
particle vacua corresponding to particles with
Planck's mass in our universe; the cosmological
term has to be dropped in this case (or it domi-
nates all); all three corrections induced by the
vacuum energy-momentum tensor on a classical
Robertson-Walker universe are of the same or-
der of magnitude if the universe attains the size
of the dominating Compton wavelength or if its
time development shows a characteristic time of
order Compton wavelength/velocity of light.

Our calculations do not provide evidence that
gravitational collapse of the universe is averted
at some physically realistic distance or that
gravitation is described in a natural way by the
elastic properties of the vacuum of some particles.
But on the other hand there is given some evidence
that quantum corrections of the type shown must
be taken into account in general relativity and are
important at least for highly collapsed states of
the early universe.
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