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The vacuum energy of a quantized field in a non-Minkowskian spacetime is discussed. The approach taken
emphasizes the analogy between this vacuum energy and the energy of the vacuum state of the quantized
electromagnetic field in the presence of a pair of parallel conducting plates, the Casimir energy, The energy of
the vacuum state of a quantized scalar field in a one-dimensional box of length L (the spacetime manifold
S'&(R) is shown to be —vrhc/6L. A massless, conformal scalar field in the Einstein universe (S'XR) also

possesses a nonzero vacuum energy. The vacuum energy density in this case is p = hc(480m'ao) ', where a is the
radius of the universe. The pressure P is 3 p, so the energy-momentum tensor associated with these zero-

point fluctuations is of the same form as that for classical radiation. It is shown that a closed Robertson-
Walker universe has the same vacuum energy density and pressure as a static universe of instantaneously

equal radius. The electromagnetic, neutrino, and minimally coupled scalar fields in the Einstein universe
cannot be treated successfully by these techniques, Finally, the vacuum energy of a scalar field in the presence
of a linearized plane gravitational wave is discussed. It is shown that for a certain choice of vacuum state,
which is an eigenstate of the Hamiltonian so no pair production occurs, the vacuum energy and pressure
vanish. This result holds for both the conformal and nonconformal energy-momentum tensors.

I. INTRODUCTION

One of the basic questions concerning the rela-
tionship of quantum field theory and gravitation is
that of the zero-point or vacuum energy. Does the
zero-point energy of a quantized field act as the
source of a gravitational field'? In other areas of
physics, the zero-point energy is usually dis-
pensed with on the grounds that only differences
in energy are measurable and the scale of energy
may be made to start wherever we wish. In gravi-
tational physics this luxury does not exist; the
actual value of the energy-momentum tensor of
matter determines the geometry of spacetime.

A number of authors have addressed themselves
to the question of determining the energy-momen-
tum tensor for a quantized field in a curved back-
ground spacetime. One of the earliest investiga-
tions was carried out by Utiyama and DeWitt, '

who gave a covariant prescription for removing
the divergent terms in the energy-momentum ten-
sor by means of an expansion in powers of the
gravitational constant. Further work was done by
Halpern. ' This technique promises to be a power-
ful tool, but has not yet been developed to the
point that it can be readily applied to specific
problems. One of the cases of particular interest
is that of the cosmological models. Here investi-
gations have been made by Zel'dovich and Staro-
binsky, ' Parker and Fulling, ' and by Fulling,
Parker, and Hu. ' They have shown that by making
appropriate subtractions, a. renormalized energy-
momentum tensor may be found which seems to be
unique. The question of uniqueness does not ap-
pear to be fully settled, however. It is hoped that
there exists only one generally covariant subtrac-

tion procedure so that all methods for performing
the subtractions will necessarily lead to the same
result. At the present time only a limited under-
standing of the physical aspects of the vacuum en-
ergy problem exists, so the theoretical basis of
all of the above techniques is still rather obscure.
A review of work in this subject has recently been
given by DeWitt. '

One may make some general remarks concern-
ing the origin of the vacuum energy. It is only
those modes whose wavelengths are of the order of
or longer than l, the local radius of curvature,
which are affected by the presence of spacetime
curvature. One may find a local inertial frame
which transforms the gravitational field away
over a region whose linear dimensions are of the
order of l, so much shorter wavelengths are not
essentially affected by the presence of the gravita-
tional field. Those modes of wavelength greater
than l have a zero-point energy density' of the
order of l ', so we might expect that the energy
density induced into the vacuum state of a quan-
tized field by the presence of an external gravita-
tional field will necessarily also be of the order of
l '. Hawking' has expressed this by noting that an
unambiguous definite. on of particle number in a
local inertial frame may only be given for modes
of wavelength much less than l. The uncertainty
in particle number of modes of longer wavelength
is associated with an energy density of the order
of l

An energy density of this magnitude will neces-
sarily cause a significant correction to the origi-
nal gravitational field when l approaches the Planek
length (A~ = 1, or 1.62 &&10 "cm in conventional
units). It is not clear at this time whether this
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energy density is necessarily positive, or whether
it always satisfies the various other assumptions
on the energy-momentum tensor which are used in
the proof of singularity theorems. In all of the
works cited above and in the present paper, the
gravitational field is unquantized and is assumed
to be precisely measurable. This is presumably
only a semiclassical approximation to a more
exact theory in which all fields in nature are
quantized. It is probably at least as good an ap-
proximation to the full theory as that obtained by
quantizing only the gravitational field and neglect-
ing the effects of other fields.

The creation of a nonzero vacuum energy by an
external gravitational field is analogous to the
Casimir effect. Casimir' demonstrated that the
vacuum fluctuations of the electromagnetic field
give rise to an attractive force between a pair of
parallel conducting plates. Quantize the electro-
magnetic field subject to the appropriate boundary
conditions at the plates and calculate the vacuum
energy with a wavelength cutoff. One finds that as
the separation between the plates changes, the
vacuum energy per unit area changes by a finite,
cutoff-independent amount. Thus, in spite of the
formal divergence of the vacuum energy, a change
in the configuration of the system causes a finite
shift in the energy of the vacuum state. If the
vacuum energy of the system for infinite separa-
tion is set equal to zero, then the energy per unit
area of the plates for any finite separation R is
—w'(720R') '. One may show that this energy is
uniformly distributed between the plates. " Thus
there is a constant negative energy density ~x:R ',
corresponding to the fact that it is primarily
modes whose wavelength is of the order of A

which contribute to the vacuum energy.
It is reasonable that the vacuum energy of a

free quantized field in Minkowski space be zero.
This corresponds to the infinitely separated plates
in the case of the Casimir effect. Poincard in-
variance rules out any nonzero vacuum expecta-
tion value of the energy-momentum tensor except
possibly a constant multiple of q„„, the Minkowski
metric. Takahashi and Shimodaira'" have shown

that in fact the vacuum expectation value must be
zero in order that the generators of the Poincard
group satisfy the correct commutation relations.
A further argument to this effect is that Minkowski
space will not be a solution of Einstein's equations
with zero cosmological constant unless the total
energy-momentum tensor for matter vanishes.
(On the other hand, if the cosmological constant
is nonzero, one is forced to assign a nonzero
energy-momentum tensor to Minkowski space. )
We thus will adopt the point of view that the physi-
cal vacuum energy of a free quantized field in

Minkowski space must be zero. This applies 'only

to the full manifold R, however. Other manifolds
may have a nonzero vacuum energy even though
the curvature tensor vanishes in part or all of the
spacetime. See Sec. II.

In this paper a particular approach to the prob-
lem of the vacuum energy will be discussed. The
Casimir effect suggests that we look for examples
where the presence of a gravitational field is a
perturbation which shifts the vacuum energy by a
finite amount from its Minkowski space value. If
we can then deform a given manifold into Minkow-
ski space, we can ask whether or not the deforma-
tion changes the vacuum energy density by a finite
amount; if so, this difference is the physical
vacuum energy density of the original manifold.
More precisely, define a. cutoff energy-momentum
tensor whose vacuum expectation value is always
finite. Vary some parameter which determines
the strength of the gravitational field. If the vacu-
um expectation value of the cutoff energy-momen-
tum tensor changes by a cutoff-independent quan-
tity, this is the change in the physical energy-
momentum tensor associated with the zero-point
fluctuations of the field in question.

This procedure has a number of limitations. The
least serious of these is that the actual calcula-
tions must be done in a noncovariant fashion.
This does not prevent the final result from being
covariant. As long as the quantity to be subtract-
ed can be identified unambiguously on physical
grounds, the need for manifest covariance is not

as great as in those techniques which have no

other basis for finding the correct subtraction.
Another question which arises is whether the final
result depends on the nature of the cutoff func-
tion which is used. This seems unlikely to be the

case, provided that a cutoff-independent result is
in fact obtained, but a proof of this is lacking.
The most serious limitation of the method is that
it usually does not work. It is only in special
cases that a cutoff -independent change in the vac-
uum energy can be identified. Two such examples
are a conformally invariant scalar field in a closed
Robertson-Walker metric and a scalar field in the
presence of a linearized gravitational wave. The
first example has been discussed recently by
Fulling, Parker, and Hu, ' who show that the re-
normalizations required to remove the diver-
gences of the energy-momentum tensor are es-
pecia. lly simple in this case. In most cases, such
as that of the minimally coupled scalar field in
the Robertson-Walker metric, more elaborate
renormalization is required. These authors do

not actually calculate the finite remainder after
subtractions have been made.

The second example has been discussed by
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Gibbons" who treats an exact plane wave which
is an exact solution of Einstein's equations. He
argues that the renormalized energy-momentum
tensor must be identically zero, which agrees
with the first-order result obtained in Sec. IV.
The analogous case of a plane electromagnetic
wave interacting with the Dirac field was investi-
gated by Schwinger, "who found that there are no
nonlinear vacuum effects due to a single plane
wave.

In Sec. II the example of a scalar field in a one-
dimensional box with periodic boundary conditions
is studied. It is shown that the energy of the vac-
uum state is nonzero if the box is finite. In Sec.
III the conformal scalar field in the Einstein uni-
verse and a general closed Robertson-Walker
metric is studied. Again it is shown that the vac-
uum state has associated with it a nonzero energy
density and pressure. In Sec. IV, a scalar field
in the background of a linearized gravitational
wave is examined. In this case the vacuum en-
ergy density and pressure vanish.

Then the physical zero-point energy in the finite
box is

E, = lim (E, —E,) = ——
0 0 0 6L

which is to be identified as the energy of the vac-
uum state of the quantized scalar field.

This is essentially a one-dimensional version of
the original Casimir effect. However, it is inter-
esting to note that we are dealing with a two-
dimensional spacetime with the topology S'&A. It
is the topological structure of this spacetime (the
fact that it is closed) which is responsible for the
nonzero energy of the vacuum state.

III. THE CONFORMAL SCALAR FIELD
IN A CLOSED UNIVERSE

A. The Einstein universe

We will now investigate the conformally invari-
ant scalar field in the Einstein universe, which
has the spatial geometry of a 3-sphere. The
metric may be expressed as

II. A SIMPLE EXAMPLE
ds = —dt + Qo do' (6)

The simplest example of a quantum field theory
in which the energy of the vacuum state is non-
zero is that of a massless scalar field in a one-
dimensional box subject to periodic boundary con-
ditions. If the length of the box is L, then the
eigenfrequencies are

ted=0 1 2
2mn

E,=2+ —,'~„e (2)

It is easy to show that

= —e -27ln/L(1 —2ra/l, )-2271 -e0

Each frequency is two-fold degenerate. The zero-
point energy, with a frequency cutoff, is

where

do'= dy'+ sin'y(d8'+ sin'9 dp') .
Here y and 8 run from 0 to w and Q runs from 0 to
2m. The radius of the universe, a„ is constant.
The conformally invariant Klein-Qordon equation
for a massless scalar field is

P ——,'A/=0,
where g=P ~.

z and A =6g, ' is the scalar curva-
ture" corresponding to Eq. (6).

Let /=A(y)PP(cos6)e' "e '"', where PP is the
associated Legendre function. Then Eq. (8) be-
comes

sin y —+ (&u ——,8) sin y X —l(t + 1)& = 0.d . , dX
dg

L m——+(terms in positive powers of o.).27t'o.f The solutions of this equation are

X~ sin'y C„",'(cosy), (10)
If one divides Eo by L and lets L-~, it is apparent
that the cutoff energy density in an infinite box is
(2m+ ) '. ' The Casimir prescription tells us to
subtract this energy density from that for a finite
box; if the result is a finite, cutoff-independent
quantity it may be identified as being the physical
zero-point energy density in the finite box. Let

where the C„",'(cosy) are Gegenbauer functions and
n = 0, 1,2, . . . . The eigenfrequencies are

n (n+ 2), '" n+ 1
40„= —'A

Oo ao

For fixed n, t takes on the values 0, 1, . . . , n. Thus,
the degeneracy of each eigenfrequency is

L
27T+ (4)

n

Q (21+1)= (n+ 1)'.
l=a

(12)
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0,'+36 'g"0 0 + '(0'-)'

where G =R —~6 R is the Einstein tensor.
In particular, for the metric Eq. (6), O'Q= —3ao '.

The Hamiltonian is

(13)

The solutions of the minimally coupled wave equa-
tion, /=0, in the Einstein universe were first
given by Schrodinger. ""The solutions of the
conformal equation are studied in Ref. 5.

The energy-momentum tensor for a conformally
invariant scalar field in a Riemannian spacetime
has been discussed by Parker. " It is, in our nota-
tion,

If this quantity is expanded in powers of n, one
finds that

0 4 240

+ (terms in positive powers of o/ao) . (20)

EQ = lim (Eo -E,) = 1
0.-0 240ap

(22)

The cutoff zero-point energy in an equal volume of
Minkowski space is just

3
0 (21)

Ck

so that the physical vacuum energy in the closed
Einstein universe is

T,'v'- g d'x.

It may be shown in our case that

(14) The spatial volume of the universe is 2m'ap', so
the energy density is

1
480m'ap'

'

H =-,',' — „v'-g d'x. (15)

If )I) is a Hermitian field operator, it may be ex-
pressed as

t)/= Q (a),F), +a),Fg), (16}

where A = Q), I, and 333. Here F„=f),e '"' is a solu-
tion of Eq. (8). The spatial functions f„may be
normalized so that

(17}

The Hamiltonian now takes the familiar form

H = 3 ~ Qo(a)a„'+a„a~). (18)

—0'(dEp= ~ 2')e

The formal quantization may be carried out in
the usual manner. ' The operator s a z and a

&
satis-

fy the usual commutation relations for creation
and annihilation operators and may be used to de-
fine a Fock space. The vacuum state is defined by

a& ~
0) =0 for all A.. In this particular spacetime,

the existence of a global timelike Killing vector
leads naturally to a unique choice for the vacuum
state.

We may now proceed as in Sec. II. The cutoff
zero-point energy is

The corresponding pressure may be obtained from
the requirement that the conformally invariant
energy-momentum tensor be traceless. Since our
renormalization procedure consists in subtracting
the Minkowski-space energy-momentum tensor
from the Einstein-univer se energy-momentum
tensor and both are traceless, the renormalized
energy-momentum tensor is also traceless.
Hence the pressure is

P = —3'P.

B. The closed expanding universe

g~, =Q 'gp, . (24)

Under such a transformation, Eq. (8) is invariant
provided that the field becomes /=0'. The ener-
gy-momentum tensor becomes'

(25}

The Hamiltonian is an invariant:

We now turn to the case of a closed Robertson-
Walker metric and show that the time dependence
of the metric has no effect upon the vacuum energy
and pressure. Since this metric may be obtained
from that of Eq. (6) by a conformal transforma-
tion, we first study the behavior of the Hamiltonian
under such a transformation. Let the metric g&,
be conformally related to g„,:

1
(~ + I)3e -(n+ z) a/ao

2ap n=0

1 (e3~/no +4eoo/ QyeQ/ Q)(eQ/no I)-&
2ap

(19)

K= T (-g)'/ d~x=H (26)

y=Q (a„F„+a'P„*„), (27)

since (-g)'"=II ')/-g . The new field operator
may be expanded as



where E~ =QE), are solutions of the transformed
Klein-Gordon equation. Since the creation and an-
nihilation operators are unchanged by the trans-
forrnation, states of definite particle number in

the metric g&, will also be states of definite par-
ticle number in g„,.

The second-quantized Hamiltonian, H, thus has
the same expression, Eq. (18), as H. The vacuum
state is an eigenstate of H, so there will be no
production of (conformal) scalar particles in a
Robertson-Walker metric, as was first pointed
out by Parker. "

If the time coordinate is rescaled, so that

f (t ) dq = dt defines a new time coordinate q, the
Hamiltonian is multiplied by a factor of f. This is
the case because T'o is invariant and v'-g is mul-
tiplied by f under such a rescaling. The Hamil-
tonian for a scalar field in the closed Robertson-
Walker metric,

ds'= -dt'+a'do', (28)

may be obtained from that in the Einstein uni-
verse as follows. Rescale the time coordinate in

Eq. (6) by n, dq =dt. Perform a conformal trans-
formation for which 0 =a, /a. Finally, rescale
the time coordinate again by dq =a '(f)dt. The
net effect on the Hamiltonian is to multiply it by a
factor of a, /a. The vacuum state of the theory is
unchanged by this transformation, so the vacuum
expectation value of the Hamiltonian is multiplied
by the same factor. The essential point is that
the time dependence of a does not affect the form
of the vacuum energy, which is now given by Eq.
(22) with a, replaced by a. Thus, the physical
vacuum energy in a closed Robertson-Walker
metric must be the same as that in an Einstein
universe of instantaneously equal radius.

Qne may infer that the vacuum energy density
vanishes in the flat and open Robertson-Walker
metrics. Pulling, Parker, and Hu' have shown
that in both eases the vacuum expectation value of
T'„may be expressed as the integral (4m') 'f &@'der,

which is also the expression appropriate to flat
space. Thus, their difference is zero and the
physical vacuum energy and pressure for a mass-
less conformal scalar field vanish in these cases.

We have seen that the energy-momentum tensor
associated with the vacuum fluctuations of the
massless conformal scalar field in a closed
Robertson-Walker metric is identical to that
corresponding to classical radiation; specifically,
P = 3p and p&0. In this case, there is no avoid-
ance of the singularity theorems. A universe in
which the vacuum fluctuations are the sole con-
tribution to T„, will behave just as does the radia-
tion-filled Friedmann universe. The maximum
radius of such a universe is given by

87t 4
IIIRx 3 P ]80 (29)

Thus, a closed universe filled only with vacuum
energy expands to a maximum radius of
(180w) '"Xz—- 10 "cm before recontracting.

One might hope that the electromagnetic and
neutrino fields, which also satisfy conformally
invariant equations, would also lead to a finite
vacuum energy and pressure in the same way that
the conformal scalar field does. Unfortunately,
this is not the case. In the metric Eq. (6), the
solution of Maxwell's equations leads to the eigen-
frequencies"

8M„=, +=2, 3, . . .
Qo

(30)

Each frequency is 2(n' —1)-fold degenerate. The
solution of the neutrino wave equation leads to the
eigenfrequencies"

2g+ 1
Q)g = ~ q

pl= 1~2~. o ~

20o
(31)

with a degeneracy of 2n(n+1). In either case, if
one repeats the calculation above, one finds that
the analog of Eq. (20) contains not only an o. '
term but also an o. ' term. (In the case of fer-
mions, each mode contributes an amount —2&v to
the va, cuum energy. ) This means that not all of
the divergences of the energy-momentum tensor
may be removed by subtracting the flat-space
energy momentum tensor.

We should also note that the minimally coupled
scalar field also cannot be treated successfully by
these techniques. In this case, the wave equation
is Eq. (8) except without the ——,'8 term. The re-
sulting e igenf reque nc ies are

(u„=—[n(n+ 2)]'", n = 0, 1, 2, . . .
Qo

(32)

IV. A LINEARIZED GRAVITATIONAL WAVE

In this section the interaction of a quantized
scalar field with a plane gravitational wave will

with a degeneracy of (n+1)'. This case has re-
cently been investigated by Streeruwitz who con-
siders the possibility of renormalizing the energy-
momentum tensor using a method proposed by

Eel�'dovich.

"
In light of the fact that the Casimir method fails

for the minimally coupled scalar field, it is in-
teresting that it still succeeds for a massive sca-
lar field which satisfies the equation P ——,Ag
—g'/=0. Although this equation is not conformally
invariant if p. 10, it still leads to a finite vacuum
energy. The details of this result will be dis-
cussed elsewhere.
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be considered. The wave will be assumed to be
weak and will be treated in the linearized approx-
imation. Such a wave can be described by the
metric g„,=q&, +h&, where

where the integration is taken over the volume of
the cube. In addition, the fact that j(d/dz)(f, f,)dz
= 0 for any two solutions of Eq. (36) leads to the
relations

It» = —h» =A cosK(z —t) (33) (38)
and all other components of h„, vanish. This is a
polarized wave propagating in the +z direction.
Qur results will be independent of this choice of
polarization. The other independent polarization
state is represented by the metric h']2 k2I
=AcosK(z —t), which may be related to that of Eq.
(33) by a coordinate transformation.

The Klein-Gordon equation for a massive scalar
field in this metric becomes

p-„F& cosK(z —t)d'x=5-„-„,(2~V) '

cosg z —t dx

The Lagrangian density for the scalar field is

& = - (Z "4,.4", 8+ t 'l0'), (40)

-A cosK(z —t)
9 ')C) 9 ')C)

Bx 8$

(34)

and the associated energy-momentum tensor is

5g M
'cpu= 6(, p )t', u + 6~t p)t), v

—gpv 2

The scalar curvature A vanishes in this space-
time, so there is no ambiguity in the choice of
Eq. (34). Let )I)=e't'"""')" "f(z). Then

, +[a,'+a(a„'-u„')cosK(z —t)]f(z)=0 (36)

jf &,2= (d2 g„2 —p, 2 —p, 2. A solution of this equa-
tion is

f z))=c eixpIt k, z — * ' HinK(z —i)

(36)

If p, = 0, and k„=k, = 0, the second term in the argu-
ment of the exponential is not present in Eq. (36).

We wish to define a set of solutions of Eq. (34)
which satisfy periodic boundary conditions at the
boundaries of a cube of edge I . This leads to a
discrete set of eigenvalues for k„k„and k, . The
eigenvalues for k„and k, have the usual form,
2m/i. times an integer. Those for k, are more
complicated; they are functions of k„, k„and t.
This is not an essential difficulty, however. For
sufficiently large L, k, is real and as I -~,
0, - 2mn/I where n is an integer. Thus, when the
infinite-volume limit is taken, the eigenvalues of
k are the usual ones in flat space and Z„becomes
(2w) ' Vf d'k. Here V = L,'.

Let (E),] be a. complete set of solutions of Eq.
(34). If we choose c), = (2~V) '", then the E-„t-sa
isfy the orthonormality relations

I'- I'- d+= —e-
kI k2 2~ k~, k

Since G, = 0 in this spacetime, T&, may be ex-
pressed as

T,.= 7„+-'[(0,,l.+4,.v', , ) , 2g, .(0'0—'.+ t '8'),
+ (0,.0'+ l0', ,.)] (43)

The canonical momentum is defined to be

5g
jr =

6p, , 0' (44)

The field operator )t) and its momentum are re-
quired to satisfy

[)t (x), ))(y)] = [)t' (x), w (y)] =t5(x, y) (45)

on a t-constant hypersurface, where 5(x,y) is the
usual 3-dimensional Dirac 5 function.

If il) is expanded in terms of the basis function
+k

0 = Z (~~&~+6» +-*„),
k

then the creation and annihilation operators satisfy
the usual commutation relations

(41)

This is the nonconformal tensor. Although the
minimally coupled and conformal Klein-Gordon
equations are identical here, the energy-momen-
tum tensors are not. The conformal tensor is
given by

T„=rp. +k [(04') p. -Zp. (04') -Gp. f&']

(42)

F- E- d'xkI -k2 r [a- a- ] = [t-, I - ] = 6- - .k lr k2 k I,
r k2

(47)
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The vacuum state of the system is defined by

a), I
0 &

= I) ), I 0 &
= 0 for all k.

The Hamiltonian operator is H= J T,'d'x. If one
inserts Eq. (46) in this expression using the rela-
tions Eqs. (37), (38), and (39) and then lets L-~,
the result is

tl= v(2m) ' I d'k —
( pai+rr Ia„+ („(„~b-„b„).

(48)

Thus the Hamiltonian is diagonal and the vacuum
is an eigenstate. There is no particle production
by a single plane gravitational wave.

It is important to note that a crucial assumption
in this work is this choice of vacuum state. It
seems to be a natural choice to make in this quan-
tization procedure and reduces to the usual Min-
kowski vacuum as A-0. It is equivalent to the
choice used by Gibbons" who defines an in and an
out vacuum on either side of an exact plane wave.
Since there is no particle creation, the two states
are identical and may be identified as being the
vacuum state for all time. Similarly, if the plane
gravitational wave considered here were to be
switched on in the distant past and off in the dis-
tant future, the vacuum state defined here would
also be the in and out vacua.

The vacuum expectation value of the energy-
momentum tensor is

&ol,.lo&=- g IF-*„F-„,+F-, , F-"„,
k

—gp, (g F((, F), 8+ p IF((I )]

= —Q (F-* F), ,+F(, pFq, ), (49)
k

which is infinite as usual. By use of Eq. (36), one
may show that g (F), „F& 8+p'IF-„I') vanishes.

We now introduce a frequency cutoff and define
the cutoff vacuum energy-momentum tensor by

&oIrp. lo&. = —E(Fk, ,F(, ,+F), ,F)...)e-
k

(50)

Let L-~. Then

1 1 A(k„' -k, ')

x e d'k

d'k,
(2w)'

(51)

where the term proportional to A' has been dropped
and the term proportional to A vanishes (as may be
seen by interchange of k„and k,). Similarly, one
finds that

&ol .„Io&,=&oI .„Io&.
=&ol ..Io&.

u„'
(2w)'

" e-~"d'x, (52)

and all other components of (0 I v„, I 0), vanish to
first order in A. These expressions for the cutoff
vacuum energy and pressure are, however, iden-
tical to those in Minkowski space (since they are
independent of A). Thus the physical vacuum ex-
pectation value of the energy-momentum tensor,
Eq. (41), is zero to first order in A. One may
also show that the conformal tensor, Eq. (43),
leads to the same result.

This is perhaps not a startling result. One might
have guessed at the beginning that the vacuum en-
ergy should be independent of the sign of A, which
may be changed by shifting the phase of the gravi-
tational wave by vr, and hence that there should be
no linear term in the final result. It is nonetheless
gratifying that this result follows from a success-
ful Casimir calculation. This calculation demon-
strates directly that the physical vacuum energy
and pressure must be zero to first order in A but
leaves the question of higher-order contributions
unanswered. That in fact there are no such high-
er-order contributions is indicated by the work
of Gibbons, which deals with an exact solution of
the Einstein equations.
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