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Corrections to the nuclear Goldberger-Treiman relation and the pionic nuclear form factor are investigated
using the b J = 0 transition with parity change as an example of forbidden transitions. It is shown
that (1) the corrections are as large as the main term, implying that the original Goldberger-Treiman
relation with pion-pole dominance is no longer valid, {2) the pionic form factor f;f(q ) is a very
rapidly varying function of q' for ~q'~ g rn ', and {3) the ratio [f,I{0) /f, g m')]—is essentiaBy
zero.

I. INTRODUCTION

It is well known that the assumption of pion-pole
dominance in the dispersion relation for the ma-
trix element of the divergence of the axial-vector
current holds reasonably well for the nucleon
case. In fact, the pion-pole term represents
more than 9(P%%d of the total contribution at q' =0.
In other words, the correction to the original
Goldberger-Treiman relation' is less than 10%
and the pion-nucleon form factor is a smooth func-
tion of q', at least, for ~qs [s m', .

In a recent paper' it has been demonstrated that
a similar but slightly larger deviation from pion-
pole dominance is present in nuclear cases where
transitions are allowed (i.e. , 47= 0, 1 and no
parity change) than is present in the nucleons.
The difference arises from the contribution of
anomalous thresholds to the dispersion integral.
This deviation can also be characterized by the
departure of the pion-nucleus form factor, K„f(0)
=f „;r(0)/f;r(-m, ), from unity, where f, ,r(0)
and f„r(-m,') are, respectively, the ttN, Nr
nuclear form factors evaluated at q' =0 and —m, ',
f„r( m, s) being the p-hysical coupling constant.
For example, it was found that K„&(0)=—0.8 for
'He-'H and K„r(0}=—0.6 for "C-"B,whereas
K,„s(0)=0.92. This shows that for very light nu-
clei, the pion may still be treated as soft, as is
done in the nucleon case; i.e., pion-pole domin-
ance is still reasonably good. On the other hand,
even in the region of A =12, one expects a large
deviation from pion-pole dominance.

In this paper, we extend the work of Ref. 2 to
the case of forbidden transitions, using the 0 -0'
transition as an example. We present an answer
to the question as to what extent pion-pole domin-

II. FORMULATION

From general invariance arguments, the most
general matrix elements for the 0 -0' transition
are given by

&f ll'„"(0)I t)=o,

&fl&"'(0)Ii) =
2M

F„(q')0„+, F (q')q

q =(Pr-P;), Q =(P;+Pr).

where M is the nuclear mass [M= s(M;+Mr) j and
+M M' Aff p t and pz are, respective ly, the
momenta for the initial and final nuclei ~ Also
F„(qs) and Et, (qs) are the axial-vector and in-
duced pseudoscalar form factors.

Using the Gell-Mann-Levy PCAC (partial con-
servation of axial-vector current) relation'

(2)

where a„=0.94+ 0.01 and Q~,"(x) is the pion field,
we obtain from Etl. (1)

(3)

In deriving Etl. (3}, we have used

(D' —m, )y,' (x) = —j{,' (x),

&f I j". (0)I t ) =- „, f.;r(q') . (5)

ance (or the nuclear Goldberger-Treiman relation)
is valid when the transitions are forbidden ones.
In this connection we obtain the value of K„r(0)
and the q' dependence of f „r(qs) explicitly for the
0 -0' transition.
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Rewriting Eq. (3) for f„z(q'), we have

f „;~(x)= (1+x) 1+xF„(x) Fp(x)
a, Ax-

where

X 2
n2r

Setting x =0 in Eq. (6) gives the modified Gold-
berger- Treiman relation

E~(0) = a.f.;g(0)

f.ig(0)=a,f„q( n;„') -",',
)-J ffu~

(6)

-0', 2' -0+, . . . , the ratio (E~/E„) is, as in the
case of allowed transition, of order of unity' for
~q'~«m, '. Thus, f „~(q') and E„(q') will have a
similar q' dependence.

In the case of the unnatural-parity transitions
I 1 +

such as 0 -0', & -2, . . . , as we shall see
below, the ratio (EI,/E„) is no longer of order of
unity for )q ~«m, , but instead is significantly
larger than unity. This leads to a drastic change
of q' dependence of f „~(q') from that of E„(q')

III. 0 ~ O' TRANSITION

We note that Eqs. (3), (6), and ('I) hold for nu-
clear states of arbitrary spin and parity in the
nonrelativistic limit of nuclei. That is, they take
the same forms for both allowed and forbidden
transitions so long as E„and E& are properly de-
fined.

In the case of allowed transitions, we have, to
a very good approximation,

F~(x) 1

F„(x} 1+x '

so that, when Eq. (8) is substituted into Eq. (6),

f„z(x)—= —F„(x) for lxl &I,=1

(8)

(9)

implying that the q' dependence of f „&(q') and

E„(q ) is very similar for ~q'~sm„2. Also, as
shown in Ref. 2, this approximate equality of the
q' dependence of f „;~(q') and F„(q') leads to the
result that K„&(0) is not very different from unity.
This implies that the correction to the original
Goldberger-Treiman relation due to the non-pion-
pole contribution is small. Moreover, the cor-
rection to Eq. (8) due to the modification of the
pion propagator in nuclear matter does not change
Eq. (9) to any significant extent. ' In summary,
for allowed transitions, both f„z(q') and E„(q')
are given by

In this section we generalize the previous anal-
ysis carried out for allowed transitions to the case
of the unnatural-parity forbidden transitions using
the 0 -0' transition as an example. We wish to
investigate the q' dependence of f„.~(q') and to
estimate K„z(0). To this end we start by esti-
mating the ratio (F~/F„} in the impulse approxi-
mation.

The matrix element of the axial-vector current
in the impulse approximation is

&f I A "(0)li) =g~(-& «" ' '), i(y,e" ' '))

A„-=(A, iA, ), (12)

~(a)
&eeiq ~ r ) q +6(a) T(ajeirr ~

(13)

and g~ is the nucleon-induced pseudoscalar form
factor with the pion pole taken out, andg„=-gp
for small q'. For the 0--0' transition, we have

& o e" '
) =&a )+&a(i q r)&+ ~ ~ ~

2 ~2,g,'—„,.','.&y, y,e" '&(q, i'q. ),
{11)

where we have used the definitions

f „g(q') =f.;y(0)(I-~aR'q'+

F„(q')= E„(0)(1-&bR'q'+ ~ ~ ~ },
(10)

= ar q(ior)+ ~ ~ ~,'

(y,e'" ' '
&=&y, )+ ~ ~,

(14)

where R =—(1/m, )A' ' is the nuclear radius and
a = b are of order of unity. The approximate equality
a =b implies that when pions interact with nuclei,
the pions actually "see" the size of the nuclei as
high-energy electrons would do and the form fac-
tors fall off accordingly as q' increases. Further-
more, if the transition radii in the form factors
are not very different from the radius of the stable
nucleus, then a and b are of order of unity.

For the natural-parity transitions such as 1

&y y e ' )=&y y )+ ~ ~ ~

and hence, Eq. (11) becomes

&f IAa" (0)i i)=g~(--,'&io ' r& q, i&y, ) )

2W
m, +q.gp&yay, )(q, 'q.}.

On the other hand, Eq. (1) can be rewritten as,
neglecting

~ q}/1Vi terms,
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(f I&"(0)li&—= E„(q')(0, i)+, Fr(q')(4, iq,)=~; q, i F„(q')- F,(q')
~

W - ~ AM . . «MF~(q') - . '

(16)

where we have set q, =——AM. Comparing Eqs. (16)
and (16), we obtain the following relations:

and

1
(y y &= (c& q+"4 5

Fp(q') . -=- lZ&(io r& - .,' ~ g~(y. y, &

(17)

F~(q ) — Fp(q ) —gg(ys&
&M

mr
2 Alp+ a 2 ZJ ™(y4y5).

m„ +q

Since we have

All the observed 0--0' transitions' occur for the
nuclear systems with A =144-206 (with a range of
~M= 0.83-3.5 MeV), with an exception of the 0-
-0' transition in the A =16 system' ["N('(0 )
-(60(0')], and they are all P decay. For heavy-
nuclei cases, the values of A. range from 5.8 to
48, using A =1 for the minimum value and A =2
for the maximum value. Then, the values of the
ratio (Er/E„) range from 127 to 1200. In the case
of the 0 -0' transition in the A =16 system,
(F~/F„) =90-120, depending on A=i or 2, using
4M=—10 MeV. It is clear then that the ratio
(E&/E„) for the 0 -0' transition is considerably
larger than the value for the allowed and natural-
parity forbidden ones, which is of order of unity.

Substitution of Eq. (22) into Eq. (6) gives

the gJ, terms in Eq. (17) are always negligible com-
pared to the first terms for &M «m„and thus,
from Eq. (17), we have

f. (q(') = —E (q') 1+

2

E~(q') =———,'g„"- (i(( ~ r)+ small ~q terms,

(19)
F„(q'}~g„(y,&--', g„AM(ic r)+small P terms.

E„(o)

(23)
Taking the ratio of Fp(q') and F„(q') in Eq. (19),
we finally obtain

Er(q') m, '
F„(q'} &M 1-(3(y,&/&M(i(r ~ r)) '

The ratio (y, &/(ia r) can be estimated using the
well-known Ahrens-Feenberg approximation. ' It
is given by'

for P' decay,(y, ) AaZ
iG r (21)

where A =1 to 2 depending on the detailed models
used. %'hen the energy difference between states
differing by a neutron-proton substitution is dom-
inated by the Coulomb energy difference (Pursey's
estimate'), A =2 is expected. On the other hand,

a partial cancellation of the electrostatic force by
the nuclear force effects based on the semiempiri-
cal formula for the stable nuclear masses (Ahrens-
Feenberg estimate'} yields A =1.

Substituting Eq. (21) into Eq. (20), we obtain

where we have assumed that E„(q') has the be-
havior given by Eq. (10), which is quite reason-
able and is also supported by the impulse approx-
imation. As shown in Eq. (23), the form factor
f„«(q') can no longer be treated as a constant even
for P decay, where ~q'~-m, ', while it is always
a good approximation to assume E„(q')=—E„(0)for
P decay; it is then clear that f„z(q') is a rapidly
varying function of q' even for

~

q' ~«m„' in con-
trast to F„(q'}.

In order to interpret the result of Eq. (23), we
look at the once-subtracted dispersion relation
for f„z(q'):

f.(g(q') =f.(g( m:)-
m„q

Imf„(q( m'}(fm2-
2 m'(m' —m„')(1+ q'/m')

(24)
E~(q') m, ' 1
E„(q') &M 1+a '

3 AaZ
2 Z(«

(22)

where m ' is the anomalous threshold due to nu-
cleon break-up mechanism. For the single nu-
cleon-nucleus break-up mechanism, the value of
m,„' is given by
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8A If.„(o)I
= —' IF„(o) I

-=(1.7m, )', (25) -=~ l(r, &l

where A is the mass number and e =—8 MeV is the
binding energy of a nucleon to the nucleus. Since
m,„' is in general greater than m, ', the integral
in Eq. (24) cannot be a rapidly varying function of
q'. As shown in Ref. (2), Eq. (24} may be re-
written as

f.«(q') =f.«(—m. ')-

+f„, (-m, ')[K„«(0)—I]

1+, 1-P

-10 '

On the other hand, we have

f.«(o)If.«( m. -) I-
K (0)

a„mp bM 1+ A, 1 —P

=- 10-100 .

(3o}

(31)

for I
q'I & 2m. ', (26)

where K„«(q') is, as previously mentioned in Sec.
I,

f.«(q')
Kr«(q ) = fsf/ ™~

and

ps ps-,' .

The value of K,«(0) may be used as a measure of
the deviation of the soft-pion value of the coupling
constant from the physical value. Deviation of

K„t(0) from unity is also a direct measure of the
extent of variation from the pion-pole dominance.

A direct comparison of Eqs. (23) and (26} (i.e.,
coefficients of the q' terms) gives

1 „' K„, (0)-1'
( )1+X bM K„)t (0)

or

(m. /n. }tf)' -'
(1+&)(I —P) J

(26)

Since the magnitude of the second term in the
denominator is, as shown previously, considerably
large compared to unity, we have

hM
IK„,(o)I= I I~ ~I(I - p)«1, (29)

which is, of course, consistent with the result that

f jf(q') is a very rapidly varying function of q'. In

fact, f„«(0) is now very small compared to the
physical value f,«(-m„'), smaller by one or two

orders of magnitude. More explicitly, we find,
from Eqs. (7) and (19), an order-of-magnitude
estimate of f„,t(0):

Since I K„&(0) I«1, the first and second terms
in Eq. (26) have about the same magnitude with
opposite sign for I

q'I& m„'. This is the reason
why f„,t(q') is such a rapidly varying function of
q', in spite of the fact that the anomalous integral
itself is not a rapidly varying function of q . Sim-
ilarly, in the dispersion relation for the matrix
element of the divergence of the axial-vector
current, the pion-pole term and the remaining
integral, whose lower limit is the anomalous
threshold, have about the same magnitude with

opposite sign for Iq'I&m„'. In other words, in
the case of the 0 -0' transition, the non-pion-
pole term is as large as the pion-pole term and
the original Goldberger-Treiman relation, F„(0)
=a,f„t(-m„'), is completely inaccurate.

We have also carried out a similar analysis for
the case of the —,

' --,' transition with the same
results. In general, for the ~J & ~=0 transition
(unnatural-parity transitions), when the matrix
element of the axial-vector current is written in
terms of the nuclear form factors using general
invariance argument alone, the kinematical sup-
pression is absent for the leading I'„ term as in
the case of the ~& term. However, since experi-
ments always indicate a general suppression of
the F„ term (large ft-values}, the value of F„
should be small, which would then lead to a large
value of the ratio &~/+„. Therefore, the various
results discussed so far are general ones for the
~J=O with parity change. In other unnatural-
parity transitions such as ~J & f=2, 3', . . . , the
kinematical suppression always exists and the
result is the same as that of natural-parity trans-
itions.

IV. SUMMARY

Before we summarize our results for the
~J & I =0 transition, we first recall that in other
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transitions such as allowed and natural-parity
transitions, f„,z(q') is a very smooth function of
q' for Iq'I&m, ' and the q' dependence of f„,&(q')

is about the same as that of F„(q'). Also, the
deviation of Kg(f(0)=f„,i(0)/f„gf( mg ) from unity
is not too large, e.g. , K„~(0)=0.8 and 0.6 for
'He-'H and "C-"8, respectively,

The results for the 4J ~ ~=0 transition are as
follows:

(1) The magnitude of K„z(0) is considerably
smaller than unity,

IK„„(0)I
«1.

(2) As a consequence of (1), f„f(q') is a very
rapidly varying function of q for I q2I& m„'. Even
in the region Iq'I&m, ',

where X is of order of 10. Recall that AM-O(m, ).
On the other hand, F„(q') is still a smooth function
of q

(2) The pion-pole dominance is no longer valid.
In fact the pion-pole term and the remaining con-
tribution are about the same in magnitude but
opposite in sign, making (f I

s„A~„'i(0)Ii) a rapidly
varying function of q' for

I
q'I&m, '. The correc

tion to the original Goldberger-Treiman relation,
F„(0)=a,f„ff( m, '), is as large as the leading
term.

In conclusion we remark that the above results
are the consequences of the validity of the Gell-
Mann-Ldvy version of PCAC applied directly to
the 4J & ~=0 transitions.
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