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We calculate the renormalization constants describing nucleon and pion matrix elements of scalar,

pseudoscalar, and tensor (S, P, T) current densities. For certain of the constants, expressions can be
obtained using standard SU3 and chiral SU3SU, methods. To get the remaining constants, we employ
the quark model with spherically symmetric quark wave functions to relate the S, P, T
renormalization constants to known parameters of the usual vector and axial-vector (V, A) currents.
We also evaluate the renormalization constants using the MIT "bag" model quark wave functions. We
summarize our results in tabular form, compare the results of the various calculational methods used,
and attempt to estimate the accuracy of our predictions.

I. INTRODUCTION

A number of recent papers have examined the
possibility that neutral currents may involve sca-
lar, pseudoscalar, and tensor (S,P, T) weak cou-
plings in addition to or in place of the usually as-
sumed vector and axial-vector (V, /t) Lorentz
structures. In particular, expressions have been
given for deep inelastic neutrino nucleon scatter-
ing' (using the quark parton model) and for vari-
ous low-energy nuclear correlations, ' assuming
a completely general Lorentz structure for the
weak neutral current. In order to make phenomen-
ological studies of S, P, T weak neutral couplings
which simultaneously use deep-inelastic informa-
tion on the one hand, and exclusive channel or low-
energy nuclear results on the other, it is essen-
tial to know the renormalization constants describ-
ing the nucleon and pion matrix elements of the
S,P, T current densities. The purpose of this
paper is to estimate these renormalization con-
stants by using various dynamical models of had-
ron structure. Our results will be applied in a

subsequent publication to a detailed analysis, us-
ing current-algebra techniques, of soft-pion pro-
duction by a weak neutral current of arbitrary
Lorentz structure.

Within a general quark-model framework, the
currents which we study have the form
(for S, P, V, A, T structures, respectively)
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with ()) being the quark field, o "= (2~ t)[y, y"],
X, = (-', )'/', and with A, 2 being the usual SU2
matrices. For describing AS =0 neutral current
effects, only the j =0, 3, 8 components of the above
nonets are relevant. We write the nucleon matrix
elements of these components as'
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II. CALCULATIONAL METHODS

A SU3 and chiral SU3(3 SU3 predictions

We begin by discussing those renormalization
constants which can be determined within the
framework of the Gell-Mann-Oakes-Henner
(GMOR) model' for SU, and chiral SU, SU,
breakdown. In this model, the strong interaction
Hamiltonian has the form

BC =Xo+ K(FD+ cg'8), (5)

In the above expression, 7, is the nucleon Pauli
isospin matrix and the spinors u(p, ), u(p, } are
understood to include nucleon isospinors. The
vector and axial-vector form factors defined
above are related to the standard nucleon form
factors F, ,(k'},g„(k'},h„(k') by

E,",(k'}= E", ,(k'), g„"(k')=g„(k'),

(3)
F'i(k')=3F (k') h{' (k )=h (k ).

The nonvanishing pion matrix elements of the sca-
lar, pseudoscalar, and tensor currents are

{v'(P,)i 7, i v'(P, )) = X„F,",'(k'}5"I, , j = 0, 8

r('~~a2)
(&a(p )i ~Ra

i
&&(p )) 3t w ( &ab3(pkk 0 F aha)

N

(4}

~1231
t (2p 2p )1/2 !

Our analysis will give values at k2 =0 (and, in

certain cases, first derivatives at A'=0) for the
various form factors which appear in the above
expressions. Effectively, the A2 =0 values are
the strong interaction renormalization constants
describing scalar, pseudoscalar, and tensor den-
sity couplings to nucleons and pions.

Two principal calculational methods are used
in what follows. First, values for certain of the
renormalization constants can be obtained by us-
ing standard SU, and chiral SU3 SU, methods.
For the remaining constants, we use the quark
model with spherically symmetric quark wave
functions to relate the S,P, T renormalization
constants (and certain first derivatives at k' =0}
to known parameters of the usual V, A currents.
We also give a direct calculation in the quark
model using the specific quark wave functions
obtained in the MIT "bag" model. Our calcula-
tional procedures are further briefly described
in Sec. II below. Results of the computations are
tabulated in Sec. III, while in Sec. IV we compare
results obtained by the various calculational meth-
ods used and attempt t.o estimate the accuracy of
our predictions.

1= —[MK —p(MA+ Mr}]

giving

=173 MeV,

Ep'(0) 1 3o,„„/am

FP'(0) 2 v2 +c (Ba)

We remark that if go)(0) and Es"'(0) were equal,
as is predicted in the quark model, then Eq. (Sa)
would fix a',» to have the value

c,„„=&I (W2 + c)

=28 MeV . (8b)

Finally, we consider the pion scalar coupling
EP (0), which can be evaluated relative to EP (0}
by noting that

E~t',&(0) 2M„(v i Kcz, i ~)
Epi(0) (Ni Kc8:, iN)

—,'yi„'+ ~„')-~~,'
,'(M„+ Mr) MK—-
M„1

v'2+c 4n~ ' (9)

where the final equality is obtained by using Eq.
(7) and the GMOR relation M, '/M, ' = (W2 —c)/
(W2+ c).

To get relations for the pseudoscalar density re-

with Xo chiral SU3sSU3 symmetric and with

K(V, + cb', ) a symmetry-breaking term. ' The
parameter ~ has the dimension of mass, while
the parameter c is determined by the pseudo-
scalar meson masses to have the value c = —1.25.
Since z is not fixed in the GMOR model, ' we can
only determine values of the scalar and pseudo-
scalar renormalization constants relative to any
one of them, say, relative to Es~' (0).

We begin by getting relations for the scalar den-
sity renormalization constants. Within the scalar
octet, SU, symmetry relates FP'(0)/F~" (0) to
o~~= —0.44, the D/(D+ E) value of the baryon octet
semistrong mass splitting, giving

E~~"(0)/EP~(0) = l/(3 —4m~~) .

The ninth sca, lar renormalization constant EP'(0)
cannot be calculated by SU, symmetry, but can be
related to the experimentally measurable pion-
nucleon "a term" parameter" o,» and the nucleon
SU3 mass splitting parameter ~w defined respec-
tively by

~„„„=-,'(Wa+c)(Ni&2 Kp, +Kg, iN)

=45~20 MeV,
(7)
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normalization constants, we consider axial-vector
current divergences in the GMOR model. Taking
first the divergence of $3', we find

=- i[F,', x(6:,+c6:,)]

= 'E K+35 )

. v'2 +c
(10)

which when sandwiched between nucleon states im-
plies that

i,"„"(0)= 8 „(2—4o'„) (16)

()i2 c)F&»(P)+2cF&o)(0) =(2 4o, )
&g& PP)(0)

&~n

(17)

[where o.„=0.66 is the D/( D+E) value of the bary-
on octet axial-vector vertex] and dividing by Eq.
(12) gives the second relation

2M„g„= ~ xFp' (0),
&2+ c i3)

with@. A=gA"'{0). Rewriting Eq. (7) for &n~ as

~m= —~ F(')(0) (12)

A second independent relation for E]8)(0) and
EP(0) cannot be obtained in the GMOR model.
We note, however, that if F)"(0) and Fpi')(0) were
equal, as in the quark model, then Eq. (1 i} would
reduce to

and dividing Eq. (11) by Eq. (12) we get

FP, (0) k„3'
F(s)(0) V2 +c &m

Next we take the divergence of P,', giving

= —i[E'„K(6:,+ cF,)]
'V2 —c v2c$5+ p5

3 8+ ~3 o

which when sandwiched between nucleon states
gives

(13)

(14)

= (2 —4o.„)E],"(0), (18)

from which we get

an analog of the SU, relation of Eq. (16). We re-
mark finally that standard pion pole dominance
arguments give for the induced pseudoscalar form
factor h ~i3)(0') the expression

(3)(y2) 2 NA A
A

pg 2 y2

2i)'INgA"(0)= W KFP"(0)+ W KFP"(0) (3)(0} NRA (20)

Using
The formulas obtained in this section are listed

in column 1 of Tables I and II.

B. Quark model predictions

We next turn to the quark model, within which we can calculate expressions for all of the scalar, pseudo-
scalar, and tensor renormalization constants, and for certain of the form-factor first derivatives as well.
We use for the nucleon the standard spin-internal-symmetry wave functions of the nonrelativistic quark
model, '

I P, s, = z &op = ( ~).)'" [ 2
I
6' & 61 & 6' & )+ 2

I
6' & 6' & 61 & &+ 2 I pf & 6' & 6'& )- I

6' t 6' & pf & ) - I
6' i pf & ip & &

—
I
6' & 6f i 6' & )- I 6f t )P i 6' & ) - I 6f & 6' t 6' & &

-
I
6' i 6' e X O & ], etc. ,

(21)

where P denotes the proton and 6', 3: denote quarks.
In treating the nucleon spatial wave function, we
assume three colored quark triplets to be present,
with the physical nucleon constructed as a color
singlet. ' The nucleon states are then completely
antisymmetric in the color index, and so satisfy
Fermi statistics with completely symmetric spat-
ial wave functions, which we form from one-par-
ticle quark orbitals. For the quark orbitals in a
nucleon we assume a. spherically symmetric Dirac
wave-function form:

6t, iJ„(r)""'=
)4 i"* -~ 'Z, ) )}"

with J, and J, arbitrary functions of r, with X

being the quark Pauli spinor, and with the nor-
malization constant X, fixed by the condition

1= d'r )i, (r) y(r)

3 X.' 2d'r ' [J,'(r)+J, '(r)].

(22)

(23)
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TABLE II. Pion parameters.

Renormaliz ation
constant

SU3 or chiral.
SU&(3 SU& prediction

Quark-model prediction,
in terms of I

&

Quark-model
phenomeno logical relation Comment

Fs",'(p)

FE,)(0)

, 2+a &~F~ "' 4

3 M~3(1-2I))

3 Mg3(1 —2I,)

M F(s)(p)

4 M F(s )(0)

Equating columns
2 and 4~

0 ~r3 GeV

+3) (p)
3

For f= (&)~4,
columns 3 and 4

give -1.19 and
-1.26, respec-
tively.

The procedure for calculating nucleon renormali-
zation constants is now completely straightfor-
ward. ' %e consider the general quark-model cur-
rent $ r = $I'g (I is a combination of y and A. ma-
trices) with one-nucleon matrix element

%2
$3y 0 J 2(y)

4m

X2
I =

2 4~

Ã(P, )l &r l&(P, )) =&M u (P.)Kr( p. , P, )u(P, ) (24)

%orking in the brick-mall frame with I3

x''r ' r J,(r)J,(r), (28)

I
p, = —2k,

I
p, =2k

p p [yf 2 ~
~ k2]1/2

(25)
3 X.' 2 2d'y a y'J, 'y),

and using our independent-orbital construction of
the nucleon wave function, we get the r'elation

1

&„u(P,)Kr(p„p, )u(p, )= & 6)Ir(k) +
QN Q hf

(26}

with SR„a matrix in the quark spin-internal-sym-
metry space given by

6)Ir(k) = d're'" ' ' ' (- iJ,(r), o rJ, (r))

xI' . (27)

Taylor-expanding e' " ' ' and equating terms of
zeroth, first, and second order in k on the left-
and right-hand sides of Eq. (26), we get formulas
at zero momentum transfer for the form factors
appearing in K„(p„p,), expressed in terms of
integrals over the quark wave function. [In eval-
uating the order k' relations we drop nucleon
recoil terms of order k'/(8M„) on the left-hand
side of Eq. (26); these terms are relatively small
and do not represent a mell-defined correction
since a description of nucleon recoil has not been
built into the quark-model wave functions. ] The
quark wave-function integrals which appear are
linear combinations of the five basic integrals

X2
d y y J (y)5 4~

Expressions for the nucleon scalar, pseudoscalar,
vector, axial-vector, and tensor renormalization
constants and certain form factor derivatives, in
terms of I„.. . , I„are given in column 2 of
Table I. Eliminating the integrals I, , in terms
of the normalization condition of Eq. (22) and four
experimentally measured parameters of the vec-
tor and axial-vector currents [we take these as
g„, g„'-=g„'(0), r, '=proton squared charge radius, "
p~/(2M„) = proton magnetic moment] gives the phe-
nomenological relations listed in column 3 of
Table I. These relations are valid in any quark
model with a spherically symmetric wave function
of the form of Eq. (22); for example, they are
valid in both the MIT' and the SLAC" bag models
and in the Bogoliubov model, "even though these
assign the quarks very different looking wave func-
tions.

The procedure for calculating pion renormaliza-
tion constants is analogous to that used for the
nucleon, with a few differences mhich we briefly
describe. Just as for the nucleon, we use for the
pion the usual spin-internal-symmetry wave func-
tions of the nonrelativistic quark model, '
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[v')o„=(-')' '[['Ilk(PI)-]5IO(Pt)], etc. (29)

For the quark wave function we use an analog of
Eq. (22),

3I,f '~' iJ,(r/f)
(4 )'" -o r~(rlf) (30)

(v(P. )l &rl v(P, )&=&,&'r(P„Pi)

with f being a rescaling factor which reflects the
fact that quark orbitals in a pion may have a dif-
ferent radius from those in a nucleon. In the MIT
bag model' f has the value (-', )'/' = 0.90, not much
different from unity. The antiquark wave function
is the same as Eq. (30), with the antiquark con-
tribution to a current with even (odd} charge con-
jugation equal to +1 (-1) times the corresponding
quark contribution. The pion analog of Eqs. (24)-
(27) is evidently

the quarks in a nucleon are confined to a finite
spherical region of space of radius R„with or-
bitals

J,(r) =j,(ur/R, ), J,(r) =j,(uw/R, ), r ~R,

J,(r ) =J,{r) = 0, r & R, ,

~=2.04, Z, =0.97&1„-',

sinz .
( }

sinz cosz

Evaluating the integrals I, , we find in the MIT
model

2(d —1f1= —0 740,

2(d —3
IR = ——0.260,

1

2(M 2+ ~ P)&/2

(31)
=0.3048„

8((o —1)

(35}

FP~(0) =4M/1 —2I,}, (32)

with 3g„being the same matrix function as defined
in Eq. (27). In applying Eq. (31) we only expand
out to terms of first order in k, since neglect of
recoil in the case of the pion would be unjustified.
To order k, the normalization factor X, is just
I/(2M, ). In the case of the tensor density cou-
pling to the pion this factor of M, ' is just can-
celled by a corresponding factor of M, coming
from K', giving a formula for Tt3~(0) which does
not involve the pion mass. On the other hand, in
the scalar density case the factor M, ' survives,
giving the relation

= 0.3578,',
RI, =

2 1
(4(u' —10(o'+20(u —15)

= 0.175R

I lf. TABU LATION OF RESULTS

In Tables I and II we tabulate our results for the
form factors defined in Eq. (2). To recapitulate,
the quantities c, & m, ass, n „, and 0 „», defined
above in Sec. IIA, have the values

FP,~(0) = 4 M„(1 —2I, ) . (33)

which explicitly involves the pion mass. Since,
however, the quark model leads to a degenerate
meson 35-piet, instead of having a nearly mass-
less pion, we reinterpret the factor M, in Eq. (32)
as being 31„, a typical quark-model meson mass,
and thus write

c= —1.25,

~ m =173 Mev,

&ss= —0 44,

a„=0.66,

=45~20 MeV,

(36)

As we will see below in Sec. IV, this interpretation
of Eq. (32) is in accord with the chiral SU, 3 SU3
formula for F,'-", (0) obtained above. The results of
our analysis in the pion case are given in column
2 of Table II (in terms of the integrals I, , )

and in column 3 of Table II (in terms of vector
and axial-vector current parameters).

We conclude this section by giving expressions
for the quark orbitals and the integrals I, , in
the MIT bag model, ' which gives a fairly satisfac-
tory account of the measurable parameters of the
vector and axial-vector currents. In this model

while the integrals I, are defined and eval-
uated in Eqs. (28) and (35}. The mass M„, a typi-
cal quark-model meson mass introduced in Eq.
(33), is of order 0.6-0.8 GeV while the scale fac-
tor f introduced in Eq. (30) is close to unity, with
the value (—',)' ~ =0.90 in the MIT model. "

IV. DISCUSSION

We conclude by comparing the results obtained
by the various calculational methods described
above and by attempting to estimate the reliabil-
ity of our predictions for the scalar, pseudosca-
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lar, and tensor current parameters. We turn our
attention first to the isovector pseudoscalar re-
normalization Ee(e&(0) and the isovector induced
pseudoscalar amplitude I& „"(0), both of which are
pion pole dominated. From chiral SU, SSU, and
pion pole dominance we find

F]"(o)
Ef (0) W2+ c & &e&

(37)
I&(e&(0) = ~ 2

we find

F].'&(o)
Qe&(p)

The trouble here is most likely the quark-model
prediction that E[e&(0) = F]e'(0), which leads to
near cancellation of the two terms on the left-
hand side of Eq. (17) and hence to a large pre-
diction for F]e&(0). In actual fact, since there
is no light ninth pseudoscalar meson associated
with the SU, -singlet axial-vector current it is
likely that F]e (0) & E$"(0). Rewriting Eq. (17)
in terms of the ratio

while the NIT model gives"

g3) 0
F) &(0)

' ' " M
=3.1 I& "(0)= "0.037 (38)

both much too small ~ Evidently, the quark-model
predictions for pion pole dominated pseudoscalar
quantities behave as if the effective pion mass
were

(3 —4(e ~) M~Z~
FP&(0) &m(v 2 —c+2c~)

which gives the following predictions for r
= 0.3, 0.5, 0.7 respectively:

~"( ) -I 27
"'( ) -O 38' Fp'(0) ' ' 4"(0)

F(e&(p) F(e&(0)

Zfe&(O) ge&(0)

(43)

(44)

4i 1/2

M, =0.51 GeV from F]e&(0),
(39)

F]e&(0) F],o&(0)

4"(0) ' FP'(0)

M„=O.&1 GeV from h(J&(0),

not unreasonable values since the quark model
does not predict an almost massless pion, but
rather gives a pion degenerate with all other
pseudoscalar and vector mesons in the 35 re-
presentation of SUe. [In fact, the same NIT mod-
el calculation giving the value f = (-e,

)'~' used in Eq.
(30) above leads to a value of the 35 representa-
tion central mass of 8+/(3fRe) =0.87 GeV, con-
sistent with the above estimates. ] Referring to
Table II, we see that these values for the effec-
tive quark-model pion mass are compatible with
the value 0.53 GeV obtained by equating the chiral
SU38SU, with the quark-model predictions for the
pion scalar density coupling Fee&(0).

We consider next the isoscalar pseudoscalar re-
normalization constants F]e&(0) and Q '(0). As
we have seen, chiral SU, SU, gives a single equa-
tion [Eq. (17)] relating these two constants to
EP&(0), which reduces, when E]e'(0) and F],"(0)
are equal (as in the quark model), to the si&rple
relation

(40)

This prediction is evidently in serious disagree-
ment with the quark-model value

F]:&(o)
ge&(0)

in reasonable agreement with the quark-model
value of Eq. (41).

Continuing our comparison of columns i and 2
of Table I, we note that SU, predicts

E)'&(0)/FP &(0) = 3 —4c(ee = 4.76, (45)

with an empirical semistrong D/(D+ E) ratio ace
= —0.44, while the quark model gives

E("(0)/FP'(0) = 3 . (46)

Evidently, Eq. (46) represents pure E-type bary-
on octet semistrong mass splitting, a feature
which is a well-known shortcoming of the quark
model. For the corresponding axial-vector cou-
pling ratio SU, predicts

a~'(0)/g~"(o) =3-4(e~ (47)

with an empirical value n„=0.66, while the quark
model gives

g~ '(0)4~ '(0) =3/5 (48)

corresponding to a value of n„of 0.6. Although
the quark-model value of o,„is quite good in this
case, the fact that Eq. (47) vanishes for n„=0.75
makes the predicted g„" in the quark model differ
by more than 60% from the value obtained from
SU, and the empirical n&. Obviously, in doing
phenomenological calculations the predictions of
column i of Table II should be used (where they
are available) in preference to the quark-model
values.
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For the value of FP'(0) and for all of the tensor
density parameters, we must rely solely on quark-
model predictions since no information is furn-
ished by SU, or chiral SU, SU, alone. Hence it
is essential to have some a priori estimate of the
reliability of the quark-model predictions.

The following five considerations would appear
to be important in forming such an estimate.

1. Consistency of the quark model with SU& and
chiral SU~@SUq predictions, where available.
This question has just been discussed in detail
above. In the case of EP)(0), the 60% discrepancy
between Eq. (45) and Eq. (46) suggests an estimate
of 60-90% for the possible quark model uncertain-
ty.

2. Comparison of the quarh model -predictions
for the vector and axial-vector parameters with
their known exPerimental values. Referring to
Table I, we see that the MIT-model predictions
for g„, g„', p, ~, and r~' all agree with experiment"
to within about 30%, suggesting 30-60% as the gen-
eral level of reliability for quark-model predic-
tions when other factors (such as pion pole dom-
inance, sensitive cancellations, nucleon recoil
corrections, or possible large "glue" contribu-
tions) are not involved. In particular, this esti-
mate of the quark-model uncertainty might be ex-
pected to apply to the tensor renormalization con-
stant T,"'(0)."

3. Consistency between the predictions in the
final tu)o columns in Table I. Column 5, we re-
call, gives the predictions of the MIT-model wave
functions, while column 6 gives the predictions
obtained from the quark-model phenomenological
relations of column 4, using as input the empirical
vat. ues of g„, g„', p, ~, and r~'. Sensitive cancella-
tions are unlikely to be involved in cases in which
the quark-model predictions are relatively large
and relatively unvarying from column 5 to column
6, as for example, for T)("(0). On the other hand,
when the quark-model predictions are small or
strongly varying from column 5 to column 6, as
for T(s.o)(Q) T(s)(0) and T{s,o, s)(0)
considerably less reliable than the 30-60% esti-
mated above.

4. Possible importance of neglected nucleon re-
coil terms. Whereas EP (0), T,' ' (0}, and
1',"')(0) are true static quantities which are in-
sensitive to our neglect of nucleon recoil, expres-
sions for the renormalization constants T(""(0)
are obtained from the second-order term in k in
Eq. (27) only when nucleon recoil ambiguities are
neglected. This introduces an additional source
of uncertainty in the quark-model determination
of T(8'o')(0) relative to the uncertainties present
in the quark-model determinations of the other
renormalization constants.

5. Possible presence of large "glue" contribu
talons. In the quark model only quark contributions
to the various current densities are evaluated,
while possible contributions from the "glue" which
binds the quarks together are ignored. One pecu-
liar feature of tensor densities is the possibility
of induced vector meson couplings of the form

gFkq g(() qA) ()k Aq) (49)

with A. being a vector meson field. Such couplings
can contribute to the induced tensor renormaliza-
tion constants T, (0) and T,(0), while not affecting
the value of T, (0). If all vector gluons carry a
color quantum number, then terms like Eq. (49)
will be absent in the color-singlet tensor densit-
ies of Eq. (1}. In this case, the quark-model pre-
dictions for T20 (0) and F28'(0) should, like that
for T[3)(0), be relatively reliable. On the other
hand, if color-singlet-unitary-singlet gluons are
present, then the unitary-singlet tensor current
, "" could receive important "gluon" contributions
from terms of the form of Eq. (49), introducing
a possible large uncertainty into the quark-model
prediction for T20'(0)

Added note Apply. ing the method of Eqs. (10)-
(15) to the ninth axial-vector current 5', ~ gives
the divergence equation

s 6, k ( ((( )i/2(g 6;5)

which when sandwiched between nucleon states
gives

2i)f„g(„0)(0)= ~ [W2 F{')(0)+erg)(0)j.

(50)

(51)

Dividing Eq. (51) by Eq. (15) then gives the addi-
tional chiral SU, SU, relation

g„' (0) &2r +c
g„"'(0) W- c+2cr ' (52)

r=03 " = —043g(8)(0)

g(o)({))r =0.5: (8)
)

= —.0.38, (53)

r =0.7: (") = —0.28,
g")(0)

while for the quark-model value r =1, Eq. (52)
reduces to the quark-model prediction that
gz("(0)/g~" (0) = 1. Equations (50)-(53) are valid
only when anomalies are not present. %'hen ano-
malies appear, the above equations apply to the

with r =Q')(0)/+8)(0) being the parameter defined
in Eq. (42). For r =0.3, 0.5, 0.7, Eq. (52) gives
the respective predictions for g(o (0)/g„~ (0),
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axial-vector renormalization g„"(0)associated
with the symmetry generating" ninth current,
but this is no longer the same as the axial-vector
renormalization for the physical ninth axial-vec-
tor current. (See W. A. Bardeen, Ref. 17).
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