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An even-wave harmonic oscillator (h.o.) model for the quark-quark interaction proposed
recently for the baryon spectrum is described with a detailed mathematical formulation.
The mechanism, which formally admits of a relativistic extension of the Feynman-
Kislinger-Ravndal type, leaves unchanged the usual h.o. predictions for 56 states (symmet-
ric) for all L values even and odd, but totally keeps out the 20 states (antisymmetric). It
changes the structure of the 70 states considerably, while retaining the principal feature of
linear rise of (mass)? with J through the interplay of two reduced slopes of magnitudes Lo
and }v3a, compared to o for the 56 spectrum. The new features of the 70 states are (i) a
dual spectrum leading to considerable mass splitting compared to the usual h.o. model with-
out SU(6)-breaking effects, (ii) prediction of a unique (70, 0%) supermultiplet lower than the
(70, 17), and (iii) the prediction of low radial excitations because of the reduced slopes. The
immediate experimental successes are (i) an understanding of P,;(1470) together with possi-
ble A, Z, A counterparts, (ii) two distinct mass groupings manifest in (70, 17) states, and
(iii) plausible explanation of Pj;(1750) as a radial excitation of Py;(1470). The mass splitt-
ings of A, Z, A from their N counterparts, compared for 56 and 70 states, conform extremely
well to the ratio of the average slope 6 =3a (1 +V3)~0.68a for 70 states to that () for the
56, thus facilitating the prediction of A, £, A positions from those of N states for different
quantum numbers. Extra predictions of states are discussed in terms of an extended classi-
fication scheme given by an ordered set of four quantum numbers (z,l,#,l ;) defined in the

text.

I. INTRODUCTION

The success of the harmonic -oscillator (h.o.)
quark model'® stems primarily from its capacity
to predict a linear rise of squared masses with J.
All versions of this model, relativistic or other-
wise, incorporate this feature in an essential
manner. Therefore, any attempt to modify the
h.o. model in order to respond to the weaker
areas of agreement with experiment is likely to
prove futile unless the “straight line” feature is
maintained, and this fact severely limits the pos-
sible alternatives.

Certain experimental features provide important
clues to the direction of modification. For ex-
ample, one of the natural predictions of the h.o.
model’ is the existence of 20 states of L¥=1%,
corresponding to the spectroscopic notation
P(1p)?, at the same principal quantum number
which describes the first Regge recurrence of the
56 supermultiplet. So far there has been no evi-
dence, direct or indirect, for any of the 20 states,
after almost a decade of the discovery of the
symmetrical quark model.! Another vexing anom-
aly is the existence of the P,(1470) at an unusually
low mass compared to what its most favorable
status in the h.o. model (viz., the first radial ex-
citation of the 56 nucleon) would entitle it to. No
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less significant is the fact that its mass is lower
than even the lower-mass negative-parity nucleons
D ,(1520) and S,,(1550). To understand such huge
mass shifts would require strong symmetry-
breaking effects which can be incorporated in ap-
propriate mass operators with several free pa-
rameters to be determined from the data. Several
attempts which were made in this direction in the
mid-sixties* ¢ have recently been stepped up more
systematically in the light of much richer data
that are now available.™® still another feature is
the existence of two distinct mass groups in the
(70, 17) spectrum for each of the particle types

N, A, . The spin-orbit splittings in these groups
are relatively small, but there is as yet no theory
to understand these group separations, except
through a parametric mass operator.

This paper represents an attempt to formulate
an alternative mechanism with which we hope to
face some of the above questions, without giving
up the “straight line” behavior. The attempt
stems from the consideration that since an SU(6)-
symmetric h.o. model has a much higher symme -
try content than mere SU(6) symmetry, one does
not necessarily have to break the latter in order
to produce some structure in the mass spectrum
by breaking only the former. [In the usual de-
scription of hadron spectra, the h.o. model and
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SU(6) symmetry have got so much intermingled
that it is useful to remind the reader of their dis-
tinct roles.] The mass splittings, if any, pro-
duced by an SU(6)-invariant mechanism would
have to be strictly orbital [ not spin or SU(3)] in
character.

The mechanism we propose in this paper is that
the pairwise quark-quark (Q@) interaction be still
h.o. in character, but (for some reasons which es-
sentially beg the answer) the odd partial waves be
heavily depressed with respect to the even ones.
Ideally, therefore, we choose a Serber-type® h.o.
potential in which the proportions of direct and
exchange forces are exactly 50:50, leading to an
h.o. interaction only in the even partial waves.
Such a mechanism, which is an offshoot of (and
generalization from) an earlier suggestion of only
s-wave forces,'° has now a built-in mechanism
for yielding straight-line trajectories, by the in-
clusion of an infinite number of partial waves (a
feature which the s-wave model did not possess).
This mechanism, like the earlier s-wave model,
clearly keeps out the 20 states, thus responding
to one of the observed features (at least so far) of
the baryon spectrum. As for the 56 and 70 states,
the mechanism leaves the former unchanged, but
yields a drastically altered spectrum, dual in
character, for the latter.

The physical features of the dual 70 spectrum,
together with its experimental successes, have
already been described in a recent note by the
author.'" This paper is mainly devoted to the
mathematical formulation of the even-wave h.o.
theory and a new classification scheme, especially
for 70 states, necessitated by the introduction of a
more elaborate set of quantum numbers than is
customary in the usual h.o. theory. Unfortunately,
a certain degree of approximation appears un-
avoidable for an explicit derivation of the mass
formula, as well as the associated wave functions.
We shall seek, in this formulation, to achieve a
physical meaning of this approximation (and hence
its plausibility) in terms of a certain quantum
number v which, roughly speaking, is a measure
of the degree of departure of a given state of
|2, 1] symmetry from a totally symmetric state.
The formulation also requires the introduction of
an alternative set of variables (v;, y;), as well as
the associated quantum numbers, in preference to
the usual internal coordinates (&;,7n;) and corre-
sponding quantum numbers, for a three-body
system. (The necessary connections will be de-
fined in the text.) This alternative set of quantum
numbers (n,,l,,n,,1,), rather than the more usual
set (ng, Ly, 7y, 1), will form the basis of this new
approach both for the mass spectrum and for the
structure of the wave functions.

In Sec. II, we derive two coupled spatial equa-
tions for the 70 wave functions (¢’, ¢”), after
eliminating the SU(6) variables. Section III is
mainly concerned with the eigenvalue problem
for 70 states with L =0, using certain variables
(7,p, A) introduced by Simonov,'? to obtain a pair
of uncoupled equations in suitable linear combina-
tions (¢’, ¢”) of the functions (y’, ¢”), together
with a discussion of their significance. Section IV
gives a more general formulation of the problem
using the Bargmann-Moshinsky'® method. This
leads to an explicit derivation of the dual mass
formula and associated wave functions in terms
of the variables x;, y;, and X, for any general
state. The nature of the approximation used in
the process is clarified (and hence made plausi-
ble). An alternative derivation in the Appendix,
using a spherical basis, also leads to a closely
similar structure for the dual mass spectrum,
thus lending additional support to the latter. Sec-
tion V is devoted to a discussion of an alternative
classification scheme brought about by the intro-
duction of the new quantum numbers (n,, [, n,,!.,)
and the difficulties of their visual indentifica-
tion interms of the observed mass spectra, with-
out a simultaneous examination of more sensitive
physical parameters such as decay matrix ele-
ments. (The latter, which moreover requires a
detailed formulation of techniques within this
framework, is, however, left out of the scope of
this paper.) Section VI discusses the essential
features of experimental support for the new mass
formula for E states, and also summarizes our
conclusions.

II. DYNAMICAL EQUATIONS FOR QQQ STATES

The techniques of treatment of the different
degrees of freedom in the symmetrical QQ€ mod-
el! are extensively available in the literature® '*7!¢
to which we refer the interested reader for details.
In the notation of Ref. 16, and SU(6)-invariant
@-@ potential of the h.o. type in even partial waves
is given by

V(”(ij)=[Pf,(ij)P:(i]')+P;(i,i)PJ(ij)]
X PI(ij)zmwr;?+Vy), (2.1)

where the even-odd projection operators P*(z‘j) in
the different variables are expressible in terms of
the corresponding permutation operators (ij) as

P =zl 1£ (@ )o,un] s (2.2)
(ij)o:%[l*'aiaaj] ) (2-3)

8
(ij)u=%<%+; Aiaxjcy). (2.4)
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(ij), is the space-exchange operator and A;, are
the Gell-Mann matrices. V, is a constant addition
to the h.o. potential, which would now affect 56
and 70 states differently, in contrast to the full
h.o. model where such an inclusion would produce
a constant shift in all the levels. The 20 states
cannot be supported by the operator P} in (2.1);
rather one requires the complementary part v
which together with (2.1) would lead to the full,
SU(6)-invariant h.o. potential with Bose statistics:

Vi) =[PH(i) Py (i) + P (i) P} (i )]
XP;(ij)(émwozruz.;. Vi) . (2.5)

Since the potentials are SU(6) invariant, the equa-
tions for the spatial functions, ¢° for 56 and
(¥’,¢") for 70, are most quickly recovered by
considering their 10, and 8, multiplets whose
complete wave functions are given by*®

[10,) = ¢5%°¢° , (2.6)
18,0 =212 (" + 9" )X, 2.7

where x° and ¢ are the spin and SU(3) wave func-
tions of appropriate permutation symmetries de-
scribed in Ref. 16. Thus, after some manipula-
tions with normalization, the use of (2.6) for 56
states leads to the following eigenvalue equati_o—n:

Ha™ 9% =[ = 3(V ¢+ 9,9 + 3(82 + )|y
=(M*+B)a""yS, (2.8)
where
a=V3mw,, B=-3mV,, (2.9)

and all lengths are expressed in units of a™'/2.

Eand 7 are normalized internal coordinates of the
QQQ system defined by

2/a)"?E=T,-T,,

e om e
(6/ )2 =—2F +T,+T,.

(2.10)

In the above normalization, the quantity M2
(=mE) which substitutes for the energy (E) may
be regarded directly as the square of the rela-
tivistic mass, in the sense of Ref. 2 or FKR.
Further, the effect (8) of the constant part (V,) of
the body potential has been displayed along with
the M2 term in Eq. (2.8).

Equation (2.8) is obviously identical to the full
h.o. prediction, since the part (2.5) of the @& po-
tential does not contribute to the 56 states. The
56 spectrum solution is therefore described by the
formula

MylP=mE =a2n¢+l+2n,+1,+3) -8 (2.11)

in terms of two sets of h.o. quantum®® numbers
(m, 1) and (ny,,L,).
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For the 70 states, the use of the wave function
(2.7) yields in the same notation and normaliza-
tion the coupled differential equations

K =[=Ve?=v,2 =@M *+B)a™ +5(82+n)|y’
=3[ 289" + (£ =n")'], (2.12)
KOZP" E[ —ng - Vnz - (2M2+ﬂ)01_1 +%(£2 +TI2)]1P”
=3[28- 79 - (&2 -], (2.13)
whose structure is vastly different from that of
the full h.o. model. The latter, which can be re-
covered only with the addition of (2.5) to (2.1),
would lead exactly to Eq. (2.8) separately for ¢’
and §”, as also for the 20 wave function ¢* which
comes entirely from (2.5). In the absence of the
portion (2.5), the 70 dynamics is governed by the

new equations (2.12_)—(2.13), while 20 is totally
kept out.

III. THE EIGENVALUE PROBLEM FOR 70 STATES

The solution of the coupled Egs. (2.12)-(2.13)
for ¢’, ¥” cannot, unfortunately, be found exactly,
but it is possible to recast them in a form sug-
gestive enough for suitable approximations with
clear physical interpretation. The method re-
quires some familiarity with the language of
three-particle coordinates of the type developed
by Simonov ef al.,'?'” to which we refer the in-
terested reader for details. To keep the discus-
sion reasonably self-contained, we shall sum-
marize the roles of some important variables
which enter the calculations in an essential man-
ner.

Of the six coordinates £; and n;, the three scalar
coordinates may be chosen as y, A, p:

g2 —n?=ycosx, 2&m;=ysinx, 3.1)
p=E+n°. (3.2)

(These variables are somewhat different from
those used by Simonov'? whose p® is our p and
whose A is our yp~'.) The significance of the
variable A, defined by

tanx=2&;m; (82 -n*) ", (3.3)

stems from the fact that it is the main carrier of
the [2, 1] symmetry among scalar wave functions,
since the other two variables p and y are totally
symmetric.

The dependence of the three-body wave function
on A which preserves the necessary |2, 1] symme-
try is given by e** (or their sine-cosine forms),
where v is the eigenvalue of the operator ¥ de-
fined by
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n

. 9 E) )
—l(&,-a;i——nia—g‘—>——2l87. (3.4)
The operator ¥ commutes with the free Hamilton-
ian, or even with the one involving the full h.o.,
and in these cases, its eigenvalues are integral,
as has been shown by Simonov.'? There will, how-
ever, be found some additional problems with our
(2 X2 matrix) Hamiltonian for ¢’ and §” since it
has an additional X dependence.

The other three coordinates (angles) which
specify the orientation of the Q@ system are
more relevant for the consideration of higher L
(>0) states, but remain implicit for purely scalar
wave functions (L =0) which we consider first in
this section. They appear explicitly for higher L
states which can be treated in either of two al-
ternative ways: a tensorial formalism of the
Bargmann-Moshinsky type'? (as a generalization
of the Simonov differential techniques'” for the
free Hamiltonian) or a direct angular momentum
analysis in terms of the Dik functions involving
the three Euler-angle variables of the Q@@ sys-
tem. We shall describe both these methods (the
latter in the Appendix) for the solution of the 70
spectrum. The introduction of the tensorial meth-
od is facilitated by a prior consideration of the
L =1 case which we take up in this section im-
mediately following the L =0 case.

(a) Reduction for L=0 states. The crucial step
in the reduction of Eqs. (2.12)—(2.13) lies in find-
ing suitable linear combinations of (¢’, ") which
will decouple them. Now Egs. (3.1) indicate that
the right-hand sides as well as the nondifferential
portions of the left-hand sides of (2.12)-(2.13)
will separate out with the combinations

¢’ =’ coszA+¢” sinzx,

! 1 (35)

¢” =y’ sinzX =" coszA,
indicating, as it were, that cos3\ and sin\ are
analogous to the [2, 1]¢ , functions ¢”, ¢', re-
spectively, but such an interpretation clearly re-
quires going beyond integral eigenvalues of the
quantum number v.'? The combinations (3.5)
which can be achieved by multiplying the two
equations (2.12) and (2.13) by the indicated half-
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3° 9 9
V4V, = 4pa—pg+128———+ p_ [(1 —2w)5;+w(1—w)

P

But for the iy terms in K*, Egs. (3.9) would have
been separable in p and y, the latter being involved
only in the Jacobi polynomials P91 _2y), ac-
cording to the structure of (3.11).'*'® As they
stand, these equations are not exactly soluble,

harmonics must also pass the test of the differ-
ential operators whose X dependence is expressed
(for L =0) by

4p 3?2
V§2+V,,2=y—fm—2+(non—)\ terms). (3.6)

Now the condition that the result of commuting
the half-harmonics through the differential opera-
tor 3,% should be to reproduce the ¢’ and ¢” func-
tions is expressed by the requirement that the
quantities

COSIAd 2P’ +5IngA0, 2P =9,2¢ - 5@’ +0, 0",
(3.7

39" =0,

be proportional to ¢’ and ¢”, respectively, pref-

erably with the same constant of proportionality.

This leads to the following A dependence of ¢’ and

¢

¢’ sin(v+3)N, ¢”xcos(v+3)A, (3.8)

Sin%)talep' —COS%)\B\Z(})" =8X2¢)” -

with the right-hand sides of (3.7) replaced effec-
tively by —(v+1)?¢’ and — (v+1)%¢"”, respectively.
Thus, the quantity — (v +1)*> may be regarded as
the eigenvalue of the operator 8,% as modified by
the extra terms on the right-hand side of (3.7).
As to the nature of the quantum number v, we
take the view that since the actual wave functions
are ' and §”, rather than ¢’ and ¢”, the former
should have an integral harmonic dependence on A.
In that case, the quantity v should be integral
(=0) as in the usual description.'? (If, on the
other hand, we were to insist on ¢’ and ¢” having
integral harmonic dependence on A, the values of
v would have to be half-integral).

The (¢’,¢”) versus (¢’, ¢”) controversy is, of
course, a new feature of our description of zg
states, arising out of the even-wave h.o. potential.

The decoupled equations with the A dependence
indicated by (3.8) are now

K'¢'=0, K ¢"=0, (3.9)
where 7% =p°w and the operators K* are given by
K =3iy+3p-2CM*+B)a™' =V, > -V} (3.10)
and for L =0
9° 4
—s —— (v+1)%]. 3.11
ey (3.11)

-

yet they show a most interesting feature: the
existence of two distinct branches of the spectrum,
corresponding to the two modes ¢’ and ¢”. These
branches would be coincident for the full h.o.
model, so as to conform to the standard (degen-
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erate) solution given by Eq. (2.11). This partial
lifting of degeneracy over the h.o. model, which
is still achieved within SU(6) symmetry, is a re-
sult of h.o. symmetry breaking due to the suppres-
sion of the odd partial waves in the @-@ potential.
However, since this result is likely to raise mis-
givings about an apparent doubling of the number
of states, the following immediate clarification
is relevant. The complete wave function for a 70
state, e.g., (2.7), involves both ¢’ and ¢”, and
hence both ¢’ and ¢” as well. Reexpressing Eq.
(3.5) as
$'= ¢’ coszh + " sinzh,
L . (3.12)
" = ¢’ singh — ¢” coszA,

it follows that ¢’ involves the mass spectra pre-
dicted by ¢’ and ¢” with the probabilities cos?3A
and sin?3), respectively, while §” involves the
same spectra with the opposite probabilities. The
complete effect of such mixing of masses on physi-
cal observables requiring the spatial wave func-
tion will depend on the full X structure of the lat-
ter, including the role of A mixing given by Eq.
(3.12). A fuller discussion of these problems will
be given in Sec. V in connection with the detailed
classification of state in terms of a new set of
quantum numbers derived in Sec. IV.

(b) Cartesian treatment of L=1 states. To con-
struct L =1 states of the correct 2, 1] symmetry,
in the Cartesian basis introduce the vector func-
tions ¢}, ¢{ and the corresponding vector combina-
tions ¢;, ¢{ as

¢} =coszA ] +sinzgr ¢’ ,
L \ (3.13)
7 =sinzX ¢ —coszA ¢{ .
Since ¢; and ¢} satisfy Egs. (2.12)-(2.13), multi-
plication of the latter, from the left, by the in-
dicated half-harmonics in (3.12) and (3.13) leads
without approximation to the equations

coszAK* ¢ +singAK ¢! =0, (3.14)

singAK "¢} —cossAK ¢/ =0, (3.15)

where the operators K* are given by Eq. (3.10) but
without the validity of Eq. (3.11) any more. In
particular, the half-harmonics can no longer be
commuted through K* to permit an exact inference
of the equations

K*'¢/=K ¢/ =0. (3.16)

The latter are now only approximately true, un-
like their scalar counterparts, Eq. (3.9). This ap-
proximation lies in the neglect of certain portions
of K* which depend on the Euler angle variables
and hence would now come into play because of the
nonzero angular momenta of ¢;, ¢;. The same
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difficulty appears for functions of higher L values.

In the next section we outline a more systematic
method (following Bargmann and Moshinsky) by
which it is not only possible to understand some -
what precisely the meaning of the approximation
involved in commuting sinjA, etc., through K' in
Eqs. (3.14)—(3.15), but also to extend the corre-
sponding approximation to any L value exhibited
by a tensor of arbitrary rank.

IV. THE BARGMANN-MOSHINSKY METHOD

We present here an adaptation of the Bargmann-
Moshinsky method'? for our even-wave h.o. for-
malism, which turns out to be rather convenient
for the construction of wave functions. Though
the method is somewhat approximate, it is pos-
sible to give a rather precise meaning to the ap-
proximation through the neglect of couplings to
certain types of states.

Define the operators

%Eiia_&i:a;iv a:i) 4.1)
%n,-;ta,,i=an,-, arvi, (4.2)
which obey the normalized commutation relations
+ t
law,ae;1=[an, ay;1=0;, (4.3)

while all other pairs commute. While these forms
differ from those of the full h.o. theory,'? their
normalized nature warrants the deduction of inte -
gral eigenvalues for the operators

N
Ny=alay, Nypi=anian;. (4.4)

These operators diagonalize a good part of our
(2%X2) (mass)? operator K defined through Egs.
(2.12) and (2.13) in the (¥’, ¢”) basis as

' K. Ll b
vi) \edeen Ko )y

where
K, ==V =V, 2+3p7 (82 =nY) = (C2M*+B)a ",
(4.6)
and in the (¢’, ¢”) basis as

<¢,> <K+ O ) <(pl>
K(‘s = 3 (4.7)
q‘)" 0 K- *”

where K™ are given as in Eq. (3.10).

The last form, while rigorously true of scalar
functions (¢’, ¢”) with the A dependence, Eq.
(3.8), is only approximately true of higher angular
momenta states, as mentioned after Eqgs. (3.14)
and (3.15). In order to see the effect of this ap-
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proximation more closely, and also to give a more
transparent look to the resulting structure for K*,
we define, analogously to (3.5), the new variables:

x;=§&; cos%)&+ni sin3A,

(4.8)
y;= £;Sins A —n; coszA.
Using Egs. (3.1)-(3.3), we find
p=x*+y%,
y=x* =y, 4.9)
x;y;=0.

The last equation shows that the vectors x; and y;
are nof independent. Nevertheless, we can define
the operators a,; and a,;, analogously to (4.7), as

a,; = CcoS3Aay +singha,,, (4.10)
a,;=sinziay —coszrany; , (4.11)

together with their Hermitian conjugated relations,
and deduce the commutation relations among

these from (3.3) and (4.1)-(4.3). Some sample
relations are

[axixa:j] =0;;+2v7y; ay + 2a} vty + 4y,
(4.12)
[ayirax;] =2y (yiay; = ¥5ay,), (4.13)

[ayi,ay,] = 055 =2y 0, - 2aL, 7%, + 47y
(4.14)

These equations show that a,;, a,; have almost the
significance of the operators ay, a,;, except for
certain correction terms. The latter arise be-
cause of the (£,7n) dependence of the A variable
which is also responsible for the lack of indepen-
dence (x; y;=0) of the x; and y; variables. How-
ever, these correction terms have a simple sig-
nificance: They involve fwo units of the quantity v
defined by Eq. (3.4), thus implying coupling of a
given state to those differing from it by Av=2. [A
marginal exception to this rule arising from Egs.
(4.12) and (4.14) when summed over ¢ and j is dis-
cussed at the end of this section.]

Unfortunately, we have not been able to solve in
a closed form (through suitable transformations
or otherwise), the algebra implied by Egs. (4.12)-
(4.14), and a host (~20) of others. We have there-
fore chosen the next best course for a solution of
this modified h.o. problem, viz., to ignore the
coupling to states differing from a chosen one by
Av=2. This immediately leads to the simplified
commutation relations

[axiaa:jlzéljz [ayha;j] ’ (4'15)
[axi’lez—[a:i,lezéu, (4.16)
[ayid'j]:'[a;i:yj]:éu ) (4.17)

with all other pairs commuting.

Indeed, these relations amount to regarding x;
and y; as two sets of effectively independent vari-
ables, ignoring the constraining relation x; y;=0.
The same approximation also justifies commuting
the half-harmonics cosiA and sins) through to the
right of the operators K* in Egs. (3.14)-(3.15), and
hence also the reduction of the 2X2 K, matrix,
Eq. (4.5) to the K4 matrix, Eq. (4.7) for any angu-
lar momentum state (not merely L =0). The ele-
ments of the K, matrix, Eq. (4.7), now take the
following forms in terms of the x and y variables
(summation implied):

K*+(2M2+B)a ™ =a);ay; +a;a,; +3+5)°,

(4.18)
K™ +@M?+B)a ™ =a] a,; +a;a,; +3 + 537,

(4.19)

where use has been made of Eq. (4.9). These op-
erators are still not diagonal in Hilbert space, and
we need two “Bogoliubov” transformations, noting
the relations

. + T
Xi=@u+ay;, Vi=Q,+a,;. (4.20)
These work out as

(1-€%)"2b,;=a,; —€a,

xi

(4.21)
(1-€®'%b,;=ay, —-ea;,- ,
where
€==-2+V3 (4.22)
and
[byi, 03 1=1b,i, 00 =65 (4.23)

These lead to the diagonalized operators (summa-
tion implied)

K*+@M2+B)a™" = (ay;axi+2)+ V3 (b);b,; +3),
(4.24)

K™ +(2M?+B)a™ = V3 (b);b,; +3) +(af;a, +3).
(4.25)

The latter in turn give rise to a dual spectrum
(corresponding to the null eigenvalues of K*)

3
(@M ) =2 + V3 m) +3(1+V3),

(4.26)

3
(eM®+B)a”'= Z (V3 iy +m,) +3(1+V3),
et

(4.27)

where n,;, m,;, etc., are integers (= 0).
The associated wave functions which can be con-
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structed through the action of suitable creation
operators on the ground states, ¢, and ¢/ defined
by

axi(p(,):byi (;I: ’ (4.28)

badl =a,;0=0, (4.29)
are as follows:
@' =(afas; bypbye)0s, (4.30)
& =(ba; by Nagpan, oy, (4.31)

where the sum of the exponents in each bracket
adds up to the appropriate group of excitation
quantum numbers (n, m) specified in Eqs. (4.26)—
(4.27).

To get a more concrete picture of the above
structures in x and y coordinates, we note that in
the “decoupling approximation,” the commutation
relations (4.16) and (4.17) imply the effective rep-
resentations

1 9
Ay, axizé_""l:ta/\_ ’
i
4.32
L (4.32)
ayir ayi“zyi 8}“ ’

as if x and y were completely independent vari-
ables. In the differential operator representation,
moreover,

K'=-v,2-V, 2+ 0% +5y* = (2M*+B)a”", (4.33)
K =-9,2-9,%+x2+ 52 - @M*+B)a”".
Equations (4.31)—(4.33) lead to the following struc-

tures of the ground-state wave function

¢6=N'exp(-ix* -5V3 y%) (4.34)

oJ =N"exp(-35V3 x? —5y7), (4.35)
while the excited states can be expressed alter-
natively in terms of standard Hermite functions in
x; and y;. As to the spectra (4.26) and (4.27),
these can alternatively be represented by radial
(n) and orbital (!) quantum numbers, so that the
squared masses are finally given by

M= aln, +3L,+3) + aV3 (n,+3l,+3) - 38,

(4.36)
Mig= V3 (ne+ 3l +3) + aln, +31,+3) - 26 (4.37)

in terms of the two independent sets (n,,[,) and
(n,,1,) according to the identifications

3
Z ny; =2n, +1,, ete. (4.38)
i=1
We add a word of caution about ignoring the con-
straining relation x; y; = 0 which would apparently
produce one too many independent variables A. In
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the “decoupling” approximation, however, X is
largely passive so that the above procedure does
not constitute any real danger as long as this vari-
able does not appear explicitly in the wave func-
tion, e.g., (4.30)-(4.35), since the ¢ and b opera-
tors can be expressed entirely in terms of the x
and y variables. (There are some marginal diffi-
culties in calculations involving transition matrix
elements but these can be surmounted.)

To obtain some further insight into the general
form of the spectra (4.36) and (4.37), we present
in the Appendix an alternative (spherical) approach
to the problem in which the independent variables
chosen are the three internal coordinates (x,y, A)
and the three Euler angles (6, x, ¢) specifying
the orientation in space of the “effective rigid
body” defined by the vectors x; and y; constrained
by x; y;=0. In essential details the spectral struc-
ture is identical to (4.36) and (4.37), except for an
alternative classification for the quantum states
involved (consequent on rigorously incorporating
the constraint x; y; =0).

A brief comparison between the two approaches
is given in the next section where arguments are
advanced in favor of the Cartesian treatment. We
now close this section with a remark on the effect
of errors in Eqs. (4.12) and (4.14) due to nonin-
clusion of Av=0 effects from the neglected terms.
This error, which can be most easily estimated
through an inspection of Eqgs. (4.18)-(4.19), gives
rise to a correction to the K* operators which is
simply half the sum of the neglected terms in (4.12)
and (4.14), contracted with =3, and reduces to

Y_lyi(a;ri+ayi)"’7_lxl(a:i+axi):'_ 1. (4.39)

The correction is thus merely a constant, and does
not change the relative shape of the spectra.

For completeness we also record the corre-
sponding spectrum for 56 states in the (approxi-
mate) x, y representation:

Mse®= a(2n, +1, +2n,+1,+3) - B, (4.40)

with a similar correction (-2), analogously to
(4.39).

V. INTERPRETATION OF THE SPECTRA

We have thus obtained two alternative descrip-
tions of the spectra, each with a certain degree of
approximation, yet their general features bear
strong resemblance to each other. We hope this
lends some credibility to the techniques used, but
more importantly points to a certain degree of
stability of the spectrum structure against our ap-
proximate treatments. This stability arises from
the dominant role of the potential energy terms
which remain unaffected by the approximations
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used and are directly responsible for the slopes.
In particular, the two independent slopes 3 a and
3V3 a are a direct manifestation of the potential
energy in the two different modes (¢’, ¢”) of solu-
tion and are in no way affected by our approxima-
tions. The latter, which affect certain kinetic en-
ergy terms of less sensitive ranking (except per-
haps for very short distances), give rise to much
lower order effects. For example, the decou-
pling approximation in the treatment of Sec. IV,
which resulted in x; and y; being regarded as ef-
fectively two sets of independent vectors, gives
somewhat higher “zero-point energies” (3, 1, etc.)
than their lack of independence would warrant. On
the other hand, the apparently smaller zero-point
energies in the alternative treatment given in Ap-
pendix A are partly a result of “correct” counting
of variables and partly of the absorption of the
former in the symbol a,,, incorporating the angu-
lar momentum effect in the energy spectrum.

Both methods require {wo radial quantum num-
bers (n,,ny) and two angular momenta for a com-
plete description of the spectrum. The latter
have been expressed in two sets of alternatives:
(I,,1,) in the “Cartesian” treatment of Sec. IV,
and (L,k) in the “spherical” treatment given in
Appendix A. In the 56 states, the dependence of
the spectrum is on the total L only, as in the full
h.o. model, but the 70 spectra now see a more de-
tailed dependence on both [, and [, (or equivalently
on L and k). The same remarks are true of the
radial quantum numbers », and n,. The quantum
number v, which has the significance of a differ-
ence between the (n,,1,), (n,,!,) sets,"

2v=2n,+l -2n,-1,, (5.1)
or in the decoupling approximation, of a corre-
sponding difference between the “x” and “y” sets,
does not appear in the full h.o. calculations or, for
that matter, the 56 spectrum in the even-wave
h.o. treatment, but appears nontrivially in the 70
spectrum. In the Cartesian description, the two
combinations 2n, +1, and 2n,+{, appear with dif-
ferent coefficients, thus bringing out the v de-
pendence of the spectrum, while in the spherical
treatment, this quantum number appears through
the coefficient a;,,, which in a sense plays the
role of a “sum of L and 2».”

The extra structure exhibited in the 70 spectrum
as a result of lowering the full h.o. symmetry by
keeping only the even partial waves requires a
more detailed classification of states than has
been the general practice in the full h.o. model
(because of the mass degeneracy associated with
it). This can, in principle, be done in terms of
either of the two sets

(nxyny) lxrly) and (nx;nwl”k)- (5-2)

Since both have entailed some approximations in
their respective derivations, and since both ex-
hibit strong similarity of structures, it is not
useful to continue giving a comparative discus-
sion of both, instead of making a conscious choice
at this stage between them for the purpose of fur-
ther exposition. In making the “Cartesian” choice
we have been guided by the following considera-
tions.

The Cartesian form is explicitly move symme-
trical in the quantum numbers associated with the
x and y variables than its spherical counterpart.
All the quantum numbers appear with explicit
linearity in the Cartesian form, in contrast to
the spherical form. The main drawback of the
Cartesian treatment, viz., the assumption of ef-
fective independence of x; and y;, ignoring the
constraint x; y; =0, is no doubt avoided in the
spherical version, but adequate care has been
taken to avoid duplication of variables by omitting
any further reference to the A variable after incor-
porating its effect through the connecting relations
(3.5), (3.13), etc. Finally, a great advantage of
the Cartesian treatment is the immediate facility
it provides for a straightforward relativistic ex-
tension,® while the spherical treatment offers no
such possibility in any simple way. Moreover,
since a relativistic extension increases £ and 7
vectors (hence also x and y) by one component
each, the effect of the constraining relation x,y;
—-x,y,=0 on the independence of the variables
x, and y, should be somewhat diluted with respect
to the 3-dimensional version, thus reducing the
relative error involved in its neglect.

Having thus chosen the Cartesian version, Sec.
IV, for further presentation, we devote the rest
of this section to a discussion of a few important
features of the 70 spectrum as well as the new
classifications. The two slopes, 3a and 3V3 &
which are associated with corresponding strengths
of the “x” and “y” parts of the potential in the two
modes ¢’ and ¢”, appear in complementary forms
in the two spectra. In contrast, the 56 spectrum
involves these strengths symmetricaiy and has a
unique slope a.

The “half-spacing” of the quantum numbers for
70 masses compared to their 56 counterparts is
directly traceable to the very ‘nature of the poten-
tial used. Thus, by cutting out the odd partial
waves from the full h.o. potential, one is not losing
any effective strength for the 56 states since the
former are not operative in @—it all. On the other
hand, the 20 states which depend entirely on the
odd partial waves are completely eliminated in the
process. The 70 states, which receive half their
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strength from the even waves and the remainder
from the odd ones, are only “half affected,” so to
say. It is this half-strength of the h.o. that is
manifest in the appearance of corresponding slopes
in the 70 masses, compared to 56.

From the observational point of view, the most
interesting feature is perhaps the doubling of the
mass spectra for 70 states in general, the only ex-
ceptions being those which correspond to n,=n,
and I, =1,, and hence have degenerate masses for
both the ¢’ and ¢” modes. In particular, the
lowest state, n,=n,=1,=1,=0, has a unique mass
and corresponds to a (70, 0%) supermultiplet. The
prediction of such a low-lying 70, even below the
(70, 1) supermultiplet, is a unique feature of the
even-wave h.o. model, and has no analog in the
usual h.o. model which predicts a (70,0%) at a
much higher mass value.? _

The classification of levels in this new descrip-
tion must be made in terms of the set of numbers
(ny, Ly, ny, 1), prefixed by 56 or 70 as the case
may be. Since the (degenerate) mass prediction
for 56 states is identical to the usual h.o. the
correspondence to the usual notation (56, L) is
easily established. However, for 70 states in gen-
eral there is enough structure in the mass formula
to necessitate a more detailed description (in
terms of the set of four quantum numbers) to avoid
possible confusion. Thus, the two first excited
states, corresponding to L¥ =1, are now denoted
by (0100) and (0001), in the order (n,l,, n,,L,).
Each of these states has two distinct masses asso-
ciated with it.

The next excited states have several competing
possibilities, which in the above notation are
given by the sequence

(0200), (0002), (0101); (1000), (0010). (5.3)

Of the three orbital excitations (L =2") each of the
first two, (0200) and (0002), predicts a pair of
distinct masses (coincident among themselves)
while the third (0101) corresponds to a unique
mass lying between (0200) and (0002). Since the
radial quantum number (r) appears with twice the
weight of the corresponding orbital quantum num -
ber (I), it is clear that the states (1000) and (0010)
have exactly the same masses as (0200) and (0002),
respectively, while there is no radial counterpart
to (0101). The corresponding (56,2") states have
exactly similar classifications but all their masses
are degenerate (as in the usual h.o. theory) at a
level which is distinct from the three 70 levels
described above. For still higher 70 levels there
is a further proliferation of states,_yet with an
appreciable structure in the mass patterns com-
pared to the predictions of the full h.o.
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To identify these quantum numbers with the ob-
served mass doublets such as (S,,,D,) versus
(S1,,Di35,D,5), before breaking SU(6) symmetry,
it should be possible to define the spatial wave
functions (y’, ¢”) of the correct[2,1] symmetry
for each of the lower (/) mass and higher (k)
mass states. For the case for LY =1~ (n,=n,=0)
these (vector) wave functions ¢,;, ¢,; turn out to
be as follows:

‘Miy lp&i:COSZ (4)):13 (sz)*Slnz)‘(q)yn (tbs,'i)’
¢xn ¢;';)“COS )\((Pyzs q);n)

Here the ¢ functions ¢;;, ¢, correspond to the
I, =1 excitations of amounts &/2 and aV3 /2, re-
spectively, while ¢;, ¢;; give [, =1 excitations of
amounts V3 /2 and a/2, respectively. This ex-
plains the occurrence of the indicated ¢, , com-
ponents in the ¢,, ¢, functions and ensures that
the (mass)? operator has the excitations a/2 and
@V3/2 for the ¢, and ¢, states, respectively.
Similar expressions hold for the wave functions
for higher excitations. The effect of these struc-
tures is more interesting for decay matrix ele-
ments which will form the subject matter for a
separate communication, while the present study
is concerned only with the mass spectra.

(pln Lpl,l,i = Sinz

V1. DISCUSSION OF THE SPECTRUM

The 70 mass spectrum, Eqs. (4.36) and (4.37)
has a constant —%B arising out of the constant
term V, in the @@ interaction whose correspond-
ing effect on the 56 spectrum is the addition of a
term —{3. Thus, while this constant has no role to
play within a given supermultiplet, it is important
for a comparison of the levels of 56 and 70 states.
This situation contrasts with that of the full h.o.
potential, which would provide a uniform shift of
levels for all states 56 and 70 alike. Consider-
ing only nucleonlike states in 56 and 70, =4
GeV? was found to describe the relative spacings
of several states,'' but at the cost of depressing
the entire spectrum (56 and 70) by about 2 GeV>.
To compensate for this effect one requires an
overall additive constant C of magnitude ~ 2 GeV?
(= 1.88 GeV? to normalize to the nucleon mass) for
both the 56 and 70 states. A possible interpreta-
tion of this term comes from the FKR® treatment
of the relativistic extension of the Hamiltonian A
through the following successive steps:

=3(m+H)?
= 5(m+H? -sm®. (6.1)

1 1 2
—sm? -z H*

FKR identified 3(m +H)? as the “square of the rela-
tivistic mass,” absorbing the additive constant
3m? in the definition of their overall constant C.
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Since the role of this overall constant is uniform
for 56 and 70 states (unlike that of the constant V,
in Q@ potential), one obtains a formal justifica-
tion for its addition in our treatment which clearly
admits of a straightforward FKR-type relativistic
extension without any change in the structure of
the spectrum, except the inclusion of timelike ex-
citations.®*

The ground state of 70, i.e., n,=n,=1,=1,=0,
has now the unique mass

MP=M{*=5a+iV3a-3B+C, (6.2)

while the masses of the excited states rise in units
of o and V3 a for each unit of [ excitation in the
appropriate term of the mass formula, and of «
and V3 a for each of the corresponding units of n
excitation. In a recent note we have discussed the
possibilities of accommodation of several N states
up to the third resonance region, within the above
scheme.'' These possibilities are based on three
main features:

(1) The dual spectrum which, even without SU(6)
symmetry breaking, predicts two distinct groups
of masses, with obvious relevance to the L =1-
states;

(2) low radial excitation compared with the full
h.o. model, a feature which naturally accommo-
dates states like P},(1750);

(3) existence of P, (1470) below the L¥ =1"
states, as a rather natural candidate for (70,0%).

The partners of the N component of (70, 0%) are
no doubt a problem for the even-wave h.o. model
just as much as they are for the regular h.o. mod-
el. In the full h.o. model these are in 56, and
hence require the identification of fewer particles.
On the other hand, these masses, corresponding
at least to the first radial excitations of 5_6_, re-
quire strong symmetry-breaking effects to bring
down their values. It may be argued that only the
P ,(1470) needs to be brought down in mass, while
the others (A, A, Z, etc.) yet to be properly es-
tablished may still afford to remain hidden in a
somewhat higher-lying region of mass, thus keep-
ing the low-mass region relatively peaceful. On
the other hand, it is difficult to see how a sym-
metry-breaking mechanism which can be so effec-
tive in bringing down the N mass would be so in-
effective for bringing down the other partners cor-
respondingly without the mass operator having
some complicated properties. Indeed, there
seems to be some mild evidence for relatively
low-lying A, A, and Z states, according to a re-
cent compilation and analysis® from the Particle
Data Group data and other sources,'® % viz.,
P,.(1690), P, (1570), and P,,(1620). Since the
P, spin is not established® and J ¥ =%" is not
ruled out, one may expect that these are just the

mass levels of particles needed for the low-lying
(70, 0*) supermultiplet, without an excessive re-
liance on strong, symmetry-breaking effects. (We
give below some estimates of its mass in terms of
our 70 mass formula). As to the other missing
masses, while the 1, state would be difficult to
distinguish from its 8, counterpart, an outstand-
ing difficulty with (70,0%) would still remain with
the missing 8, state with J =3, again at a com-
paratively low mass (1500-1600 MeV). It will be
difficult to detect such an N state easily, in view
of a photoproduction selection rule,?® so one has
primarily to rely on a more intensive phase-shift
analysis®' for a P{, state in the 1500-1600 MeV
region.

A. 70 versus 56 mass differences

For a more quantitative comparison of the dif-
ferences of our predictions from the usual h.o.
model we need to go beyond the N states which
have already been so compared.'' In this respect
we are considerably inhibited by the lack of ade-
quate reliable data of each variety (A, A, Z). We
therefore do the next best thing, i.e., make use of
certain empirical mass difference regularities
recognized by FKR,? to normalize the non-N-type
masses to the level of the N states before compar-
ing with our mass formula. We further recognize
that we are entitled to borrow the FKR regularities
only for 56 states with which our predictions
agree, but instead of a literal takeover of the
FKR regularities for the 70 states, which may
well be in disharmony with our own results for
such states, we would rather predict the latter in
terms of our model, with only the 56 cases as in-
put.

Since the two slopes for 70 states are 3 and
1aV3, our basic unit of (mass)? intervals for 70
may be taken as the mean of these two, i.e.,

6=ja+3aV3 =0.68¢, (6.3)

to be compared with a for 56 states. This esti-
mate we shall use as a “conversion factor” from
56 to 70 before making the FKR regularities for
56 on symmetry breaking in (mass)® applicable to
the 70 states. We do not, of course, use the fac-
tor for predicting the SU(6) unbroken N masses
which are still given by the complete dual mass
formula, but believe that the averaged interval is
adequate for conversion of the (fine-structure)
mass -difference effects such as A% - N* and Z2 - N?
from 56 to 70 states.

Before giving a comparison of our predictions
for non-nucleonic 70 masses in terms of FKR-like
estimates let us first check the working of the con-
version factor 8/ a=0.68 for at least two tvypes of
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mass differences, A%~ N?and £?-N°, in 56 and
70 states. In GeV? units, A% - N? has the values
0.65 and 0.42 for 56 and 70 states, respectively,
taking for the latter the average of D,,®> - D * and
S,,2 =S,,% Thisgives aratio 6/@=0.66 in rather good
agreement with our theoretical estimate 0.68 of
b/ a given by Eq. (6.3), i.e., A2 =N?~0.44a. In

22 - N?, we take the three states £(1190), =(1670),
and Z(1765) to be compared with their respective
J counterparts N(938), N(1520), and N(1670).
They yield the respective numbers 0.54, 0.43, and
0.33, the average of the last two figures, viz.,
0.38«, again agreeing rather well with the pre-
dicted value of 0.37«, according to Eq. (6.3).

For A states we take the point of view that a di-
rect comparison is difficult in view of the alter-
nating signs for £* - A” between 56 and 70, of
magnitude 0.16 GeV?, as noticed by FKR. Since
we cannot explain the last feature, we prefer to
incorporate this correction by hand to reduce the
A -mass problem to an effective Z -mass problem,
before making the predictions on A masses. (This
point of view is somewhat different from FKR’s
who consider the average mass of 2 and A2.)

B. Comparison with the data

Having thus tested the working of our conver-
sion factor 6/« for mass differences within 56
and 70 states, we can make specific predictions
for A, £, A masses in terms of the N masses,
after taking into account the following precautions.

(a) The experimental slope for N is a=1 GeV?,
as used in Ref. 11, which is also reasonable for
A states, but the corresponding slopes for A, Z
are more near the average value 1.05 GeV?® as
given by FKR; this introduces a small correction.

(b) As noted by FKR, the 1, A states should be
negatively corrected for strangeness before com-
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paring with an 8, A state. In other words, a 1,
state can be directly compared with an 8, N state
and should therefore have nearly the same mass,
except for an (upward) correction due to the T-A
mass difference effect. This should make plaus-
ible the close equality of the D ,(1520) and
D,,(1520) masses, but would still not explain the
low mass of S,,(1405).

(c) Finally, since our theory is SU(6) invariant,
the predictions must be understood in the sense of
spin-averaged mass squared, as in Ref. 11.

Table I gives the predicted A, £, A masses for
the low-lying states together with the observed
ones, taking into account the various corrections
noted above. We have taken (in GeV?)

A?-N?=0.43, Z®-N?=0.317 (6.4)

and used slopes @=1.05 GeV? for (A,Z) and 1.0
for A states. Also listed are the predicted (spin-
averaged) masses for the N states, and these
values (rather than masses of the observed nucle-
on states) with specified (/j) values have been used
for predicting the positions of A, Z, A, according
to (6.3) and (6.4), in terms of their most plausible
(1j) assignments as appropriate companions for the
corresponding N states. For the A states we give
two numbers, one each for the 1, and 8,, respec-
tively (only the latter requires a strangeness cor-
rection according to the above arguments). Under
the “observed” columns we indicate what we be -
lieve could be reasonable candidates, according to
the current listings.'

It is not possible to make any comments on quan-
titative comparison with observations beyond in-
dicating the generally hopeful pattern of the pre-
dictions against the data, since in the first place
the theory does not as yet include SU(6)-violating
effects. Indeed, since the theory merely claims
to provide a much reduced role for SU(6)-violating

TABLE I. Low-lying mass predictions (N,A, Z, A) in GeV; spin assignments (in 2/ 2J nota-
tion), together with observed particles. For the A states, the upper and lower figures corre-
spond to the 1, and 8; multiplet, respectively. For N states, see also Ref. 11.

N (GeV) A (GeV) z (GeV) A (GeV)
Pred. Obs. Pred. Obs. Pred. Obs. Pred. Obs.
1.48
P(1.41)  P;{(1.46) P;,(1.60) Py(1.69) Py(1.58) Py (1.62) Pm(l 59) Py (1.57)
1.60 1.52
D(1.56)  Dy5(1.52) Dgg(1.73) Dgy(1.69) Dpy(1.71)  Dyy(1.67) DM(HZ) DOA,<1'69>
D(1.68)  Dy5(1.67) Dy5(1.81)  Dyg(1.77)  Dg5(1.83)  Dos(1.83)
Py (1.76) Py, (1.75
P'(1.72) P{(1.75) P4(1.89) P (1.91) P4 (1.88) P, (1.92) (1-76) o1 (1.75)

Pj(1.87)  Py3(1.87)
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effects over the usual h.o. treatment (which seems
to require the latter in a stronger and more es-
sential manner?®), any quantitative comparison of
the prediction with the data would be premature.
Therefore, some of the cases of “good” agree-
ment in Table I must be regarded as partially ac-
cidental, rather than causal, at this stage. As a
general trend we notice that the predictions tend
to underestimate the observed masses for even
parity states, but the opposite seems to hold for
the negative parity states. Further, the observed
A states seem to lie between the predicted masses
of the corresponding 1, and 8, states.

The pattern of agreement for the low-lying states
seems, on the whole, reasonable enough to war -
rant the conclusion of a better zero-order descrip-
tion than with the full h.o. model without SU(6)
symmetry -breaking terms. The following addi-
tional comments for higher-lying states are also
largely qualitative and concern some of the better
established states only.

In the third resonance region, there is clearly a
much larger proliferation of states. Thus, the
prediction of a A state of P;,(1.91) would seem to
put it rather too close to a corresponding observed
P, (1.91) state which traditionally has been regard-
ed as a (56,2%). The difference lies in the quark-
spin assignment which in our prediction of a
(70,0%) radial excitation is a doublet. Since a
(?_0—, 2*) A state, on the other hand, can at best
show up as a P, (not P,,), the competition is be-
tween (56,2%) and (70,0%), presumably with little
mixing effects (since AL =2). Indeed, a fairly un-
ambiguous way of distinguishing between these two
possibilities would be through a direct photo-pro-
duction experiment—only a (70,0%) A5, would be
easily photoproduced, while the (56,2%) A,, would
not (since such a low J with high L state of A can-
not be easily produced by the magnetic interaction?®¢).

Because of the mass splitting patterns, the need
for mixing among the “third resonance” states,
such as (56,2%) and (70,2") or (56,0%), and
(70,0%),, is much less urgent in our model than
in the usual h.o. theory. Thus, even before the
introduction of mixing effects our assignment of a
(70,2%) to the P ,(1860) seems to agree with cur-
rent thinking on this state.® ' In Table II we have
listed separately some of our predictions for the
higher N states in the extended notation (n,,n,l,).
The G,(2190) seems difficult to accommodate in
the 70, but finds fairly easy accommodation as a
(56,3") which predicts the mass as in a full h.o.
n_lgdel, viz., Eq. (4.40). Most of the other pre-
dictions in Table II are speculative at this stage,
and are intended merely to indicate the rapid pro-
liferation of states with the fairly narrow mass in-
tervals as a characteristic of this model.

C. Summary and conclusion

To summarize, we have tried to present a con-
siderably modified version of the usual h.o. model,
one characterized only by even waves, as a means
of keeping out 20 states. The 56 structure is left
unchanged, but the dynamics of 70 states changes
considerably over the usual h.o. model while
maintaining a linear rise of M? with J. Its predic-
tion of a low-lying (70,0") presents an attractive
candidate for Pu(lfﬁa) and similar low-lying A,
Z, A resonances in the p wave for which some
evidence seems to exist. The dual mass spec-
trum, even within SU(6) invariance, provides
some understanding of certain distinct mass
groupings among (70,17) states. The consider-
ably small spacing predicted for radial excita-
tions is a great help for states like P (1750) and
P ;(1860). The average (mass)® spacing for 70
states which is predicted as about % for 70 states
compared with 56 seems to account extremely
well for A’~N? and Z% - N? mass differences in
these two supermultiplets, a feature which has
been used in this paper to build up our predic-
tions for A, Z, A states, in terms of N states.

On the not-so-bright side of the picture we must
reckon with the fact that the calculation of 70
states is not yet exact, though the plausibility of
the approximation and the stability of the structure
of the mass spectrum has been shown by two in-
dependent methods. Again, the (as yet) absence of
a low-lying 8 , multiplet of (70,0") exhibiting
J =% states could be another serious difficulty.
Finally, the large proliferation of higher 70 states
with comparatively smaller spacing would call for
a far more fine-grained analysis of the data than
available at present.

The classification is also more involved, re-

TABLE II. Predictions on higher lying 70 N states in
the (n, 1,7 1) classification, together with a list of ob-
served N states with possible relevance. For discus-
sions, see Sec. VL.

Pred. mass Observed states

N state (GeV) (GeV)

(1000), (0200)
72,1.92 P,,(1.75),P3(1.86

{(0010),(0002)} 1.72,1.9 11(1.75),P15(1.86)

(0101) 1.82

(1101), (0111) 2.08,2.25 F(7(1.99), F 5(2.18)
{(0300). (0003)} {1.86, 2.14} D (3(2.04),5,(2.10)
(0201), (0102) 1.95,2.05 D 5(2.10), G17(2.19)

{(1201), (1102)} {2.19,2.28}
(0211), etc. 2.36, etc.
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quiring as many as a set of four quantum num-
bers (n,,n,l,) for the identification of a state.
This, unfortunately, requires looking beyond the
mere mass spectrum, and more closely into the
decay characteristics. The latter in turn requires
a detailed formulation in terms of wave functions
(and perhaps also some mixing effects). While
some preliminary results have been obtained in
this direction,*” a more detailed study is still in
progress.

To conclude, we draw attention to two theoreti-
cally attractive features of the new proposal. Like
the full h.o. model the present one also admits of
a straightforward relativistic extension on the lines
of FKR? and it appears that such extensions can
now be defended by more formal field theory as
well.* Secondly, since the even-wave h.o. model
predicts all the 56 and 70 supermultiplets (with
both even and odd L), it is fully compatible with
exchange degeneracy requirements as well.?®
Finally, despite these attractive features, how-
ever, a direct and unambiguous experimental
determination of a 20 (1p)* state would be suffi-
cient to demolish this model.
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APPENDIX A

We outline here an alternative derivation of the
spectrum in a spherical basis, using as indepen-
dent variables the three internal coordinates x,

y, A and the Euler angles 6, ¢, x according to the
following scheme?®:

X, =xsinfcos¢,

x,=xsinfsing, (A1)
X3=xcosb;

y, = — ycosxsing - ycosécos¢ siny ,
y,=ycosxcos¢ — ycosbdsing siny , (A2)
Y3 =y sinb siny ,

ensuring that x;y; =0.

The conversion from the six independent vari-
ables &;,n; to the above set is completed through
the inverse relations to Eq. (4.8) involving A:
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£;=X;COS3A+y;SinzA
. . (A3)
N =X; sinzA —y; COS3zA.

These relations lead to the six-dimensional metric

Z (dE;2+dn;®) =dx?+dy? + spdA* + d6?(x* + y? sin?y)
‘ +d¢*(x?sin®6+y*cos?®y+ y2sin®xcos?6)
+y%dx*+2drdpxy sinb cosy
—2d6dxxysiny
-2d9d¢y* sinf siny cosy
+2d¢ dyy® cosf. (A4)

But for the cross terms which involve the cyclic
variable x, there would have been a neat separa-
tion between the external and internal coordinates.
This is the well-known difficulty associated with
the corresponding kinetic energy operator for a
three -body system as recognized long ago by
Derrick.?® For a simple closed form solution we
propose only one approximation, viz., to average
out over the dependence on the cyclic variable X
wherever it appears in (A3). This yields the re-
duced structure (p=x%+3?):

ds® = dx® +dy? + spd\?
+ (k2 +39?)(d6% + sin®0 d ¢?)
+y%(dy +cos6do)? . (A5)

From this expression one can deduce a corre-
sponding structure for the six-dimensional “kinet-
ic-energy operator” in the standard mathematical
manner'8:

\ 2 2
V52+Vn2=ali<pi>+li< 6>+43 ‘ZZL

pax\Pax) pay\Pay /) o2 4 ’
(A8)
where
92 3 1 9 A\ a2
2_ 9 g ©° 2 219
Jop 567 +cot6ae * 5inZ6 Py +< cot 6+c )3)(2
2cosf 9?2
- i
sin®6 8oy ’ (A7)
and
A=x%+3y%, C=y° (A8)

are the two “principal moments of inertia.”

As a result of the decoupling of the internal
(xyA) and external (6¢Yx) coordinates, the six-
dimensional Schrodinger equation is now solvable,
since the potentials depend only on the internal co-
ordinates. Moreover, the diagonal (¢’, ¢”) repre-
sentation is now valid for any angular momentum,
as long as its A dependence, which now factors
out, is taken exactly as in Eq. (3.8). Solution of
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Eq. (A7) leads to the eigenvalue determination
A7Y2=[L(L +1)=Rk3(x*+3)%) " +k%y72,  (A9)

corresponding to the eigenfunctions Df,(8¢X),
where L is the resultant angular momentum, and
k, the projection of L on the body-fixed axis, is
associated with the angular coordinate .

The reduction of the main equations K *¢'=K ~¢”
=0 which now involve the operator (A6) is facili-
tated through the replacement, as in the steps
immediately following Eq. (3.6), of the “modified
operator” 3,2 by —(v+1)? corresponding to the A
dependence of ¢’, ¢” given by Eq. (3.8). Finally,
the change of variables

X=x*=3(p+7); Y=y=3(p-7) (A10)
leads to the eigenvalue equations
Hip =@2M*+B)a™ (Al1)

for the ¢’ and q>" modes, respectively, where
3 2\ 4(v+1)?
=—4X — LA Ik Lt
H iy =-4 aX2 4YaY2 4<3X+3Y)+ X+Y
L(L+1) kZ R?

+—+3X+V)FIX-Y).
X+2Y Y (A12)

These equations are almost separable, but not
completely so. However, from Eq. (A10), and the
fact that y is always positive (and less than p), it
is reasonable to assume that over a wide region
(except possibly for a thin strip where y is small),
the inequality X > Y holds adequately. With this
last assumption, Eq. (A12) becomes separable in
X and Y and one obtains, in a straightforward way,
the dual mass spectrum:

M2, = alng +5ap,,+3)+V3 alny + 3k +3) - 38,
(A13)
MZ:L’ =\/_3—a(71x + %al.lzv +%) + a(”}' +%k + %) - %B )
(A14)
where
App®=L(L+1)+4(v+1)* -k, (A15)
Comparison of this structure with the Cartesian

form given by Eqs. (4.36) and (4.37) of Sec. IV, i
given in Sec. V of the text.
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