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Mass formulas for SU(4) and SU(8) groups have been obtained and are especially simple for
degenerate representations. Also, tensor representations of baryon multiplets are discussed together with
some applications to weak decay processes.

I. INFINITESIMAL GENERATORS OF U(n) GROUP gv&v(l v- I„)
1!2!~ ~ ~ (n 1)! ' (1.4)

Recent spectacular discoveries' of tt) and |I)' re-
newed a great interest in the study of the SU(4)
symmetry proposed by many authors' some years
ago, since the SU(4) group is important in the con-
struction of a consistent unified gauge theory. "

In this note we will study mass formulas of the
SU(4} as well as SU(8) groups. We shall also dis-
cuss some applications of the SU(4) for weak de-
cay processes. As we shall see shortly, the
SU(4} mass formula is much more complicated
than the ordinary SU(3) formula, and we shall
consider mostly special classes of the SU(4) ir-
reducible representations which are of physical
relevance. With this in view, we shall, in this
section, recapitulate some basic properties of
the irreducible representation theory of the n-
dimensional unitary group U(n). We shall con-
sider here the U(n) group rather than the SU(n)
group, since it is far easier to deal with for our
purpose. Besides, the transition to its SU(n) sub-
group is trivial. Some possible and physically
different consequences between the two groups
will be discussed in Sec. IV.

Let A„"(p, v=1, 2, . . . , n) be infinitesimal gen-
erators of the U(n) group satisfying the Lie com-
mutation relation

[A,", , A8] =5~qA„- 5„A~8 .

If we are interested in the SU(n) subgroup, then
we have to consider traceless generators B,"
given by

where we have set

then we call T"„avector operator. Especially,
A.," itself is a vector operator. For any two vec-
tor operators 8," and T,", we can define a product
vector operator 8," by

ft," = g S,'T", .

For simplicity, we shall hereafter write this
relation simply as

A =ST, (1.7')

dropping all Greek indices. The product thus
defined obeys the associative law (ST)U =S(TU)
for three-vector operators. Moreover, the unit
vector operator I is given by

where E is an identity operator in our irreducible
space. Then we can define the jth power A' re-
cursively by

A~''=A'A, A =I, j=0, 1,2, . . . .

Next, for any vector operator T„", we can assoc-
iate a scalar (T) by

I~=f~+n-X, X=1,2, . . . , n.

If n2 operators T," (p, v= 1, 2, . . . , n) in this space
satisfy the commutation relation

B„"=A," —5„"Q A~~, -
X= y

which satisfy the same commutation relation as
A,".

Hereafter, we shall restrict ourselves to a
given irreducible representation of the U(n)
specified by n integers f„f„.. . ,f„satisfying

(1.2)

f &f &f & ~ ~ ~ &f (1.3)

The dimension N of the representation is calcula-
ble from the Weyl formula'

(1.10)T~= T E,

Since Q~=,Tq commutes with all A„" so that it
must be a constant multiple of a unit operator E
owing to Schur's lemma. Especially, if we set

M', "' = (A'), j = 0, 1, 2, . . .
then these are eigenvalues of generalized Casimir
operators of the U(n) group. Its explicit values
have been computed by Louck and Biedenharn'
to be
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A(l, ) =A —/jf, (1.14)

and the product is the vector product in the sense
of (1.7'). However, we can find a stronger identi-
ty if we have f„=f,for some y. 65v. Let us suppose
that we have f„,=f, for some integer j. Then we
call A(l, ) the redundant factor, and fj the corre-
sponding redundant signature. In such a, case, we
can omit' all redundant factors in Eq. (1.13). As
an illustration, let us consider a special case
n=8 with

M(n) P (l )j II i + u (1.12)
/, —lg

V= 1

where the product on v omits the singular point
v=A. .

Now as we have proved elsewhere (see Ref. 7,
hereafter referred to as 1), the U(n) generators
4„" satisfy a simple nth-order polynomial equation

A(&,)A(&,)" A(&. ,)A(f. ) =0, (1.13)

where A(l, ) is defined by

(A8+ 6 8 }K + (A jj+b jj)K68- (A88 + 6 88)K + (A + 6 )Kj8

(1.20a)

where K," is given by

K,", = (AA) „"—2(f, +f, + 2n —4)A,", . (1.20b)

We note that (1.20) is consistent with (1.18') and
(1.19) for a special case, f, =0. Also, it becomes
a trivial identity for the case f, = f, in view of
{1.18'}.

Last, we can prove' that any vector operator T,",

can be expressed as

P a (Aj)8 (1.21)

T~ =ae~Z+ W~ (1.22)

in the irreducible representation space under
consideration where a, (j = 0, 1,2, . . . , n —1) are
some unspecified constants. Because of (1.18) this
formula can be further simplified to become

fj =f2 f3 f4 f5 f6 f7 f8 (1.16)
for any degenerate representation.

Then, all factors A(l, ), A(l, }, A(l, ), and A(l, )
are redundant, and we have a stronger identity,

A(l3}A(l 5)A([6)A(l8) = 0. (1.16)

Of course, the validity of (1.16) automatically
implies that of (1.13) with n =8. As we have shown
in 1, Eq. (1.16) is the minimum polynomial equa-
tion satisfied by A," for this case.

Next, following the terminology of I, let us
name a given irreducible representation to be
degenerate, if we have

(1.17)

for an integer j. Then, the above redundant factor
rule implies the validity of

A(&j)A(l„) =0,

or equivalently of

(1.18)

QA, ", A83 =(fj+ l„)A,", —1 jl„b,"E .
X=y

(1.18')

(A,"+6„")Ajj= (A88+ 688)A„". (1.19)

We remark that such a simple relation does not
necessarily apply for other degenerate represen-
tations. If we relax the condition to a weaker one
f =f = =f =0, i.e. , f, =0 for j551, 2, we find
a slightly more complicated formula, '

The most interesting special case of the degenerate
representation is that of the completely symmetric
representation with f, =f, = .=f„=0, i.e. , fj =0
for j4 1, where we can prove" an extra stronger
relation

IL SU(4) MASS FORMULA

As in the SU(3) theory, we assume that the
SU(4)-breaking interaction H, has the tensor
structure

H, =T +yT (2.1)

where y is a real constant. "Then, as we noted in
(1.21), T„"can be expressed as

T,"= a68E + bAu+ c(AA}„"+d(AAA), ", (2.2)

in any given irreducible representation, so that
the most general SU(4) mass formula contains
five unknown parameters. Now, physical states
are labeled by quantum numbers specified by the
canonical chain decomposition

U(4}&U(3)&U(2) ZU(1) . (2.3)

Explicit expressions for matrix elements of (AA)4

and (4~)~4in this canonical decomposition can be
easily obtained. " However, the difficulty is to
evaluate matrix elements of operators (AA),' and
(AAA),'in the closed form. Of course, any matrix
element of generator A.," and hence of (AA}', and
(AAA)', can be calculated in principle from the
general formula given by Baird and Biedenharn. "
However, this procedure is in reality very compli-
cated to be of much practical use, as has recently
been noted by Bose,"who also derived Eq. (2.2).
Hence, we shall restrict ourselves to special
classes of representa, tions which are of physical
interest. First, let us consider the case of de-
generate representations.

(a) Degenerate xePresentations. As we noted in
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T„"=ah„"F. +5A,".
As a result, we have the mass formula

M=MO+ b(N, + yN, ),
where we have set

X) ——A~, j=1,2, 3, 4.

(2.4)

(2.5a)

(2.5b)

Note that in the quark model, X, is simply the
number operator of the jth quark. Then, our
mass formula (2.5) implies that it gives exactly
the same answer as is given by a naive additive
quark model, where the mass difference in the
multiplet results solely from masses of constitu-
ent quarks. In that case, the parameter y is re-
lated to the bare quark mass nz~ for the jth quark
q, by

pl g in'
m 3

(2.6)

As usual, we identify the completely symmetric
representation (3, 0, 0, 0) as the lowest J~ =-,'
baryon multiplet. Then, the mass formula (2.5)
gives the familiar equal-spacing mass rule. How-
ever, since their explicit mass relations have
been given elsewhere, "we shall not reproduce
them here. The same equal-spacing relation
also applies for the completely antisymmetric
case (1, 1, 1,0), of which Yg(1405 MeV} is pre-
sumably a member. With respect to bosons, so
far no exotic state has been found. However,
Iwasaki~' attempts to classify g'(3.700 MeV) in an
exotic representation which may correspond to
(1, 1,-1, -1). In that case, we can again apply
our formula (2.5) with b=0 since the mass of the
bosons must be invariant under N, - -N, because
of the charge conjugation invariance.

For the completely symmetric representation
(3, 0, 0, 0}, we could considerably simplify the
second-order mass formula for the second-order
perturbation interaction of the form

H2 T33 + nT~~+ pT~~ (2.7)

For this case, we can utilize {1.18) as well as
(1.19) to reduce complicated tensors formed out
of generators A„". Then the final result is simply
to add terms proportional to A', A'„A4A~, and

the previous section, this implies that we have
either f, &f, =f, =f„or f, =f, &f, =f„or f, =f, =f,
&f, . Especially, this class contains 20-dimension-
al representations (3, 0, 0, 0) and a 4-dimensional
one (I, 1, 1, 0) for baryons as well as another 20-
dimensional representation (1, 1, -1, —1) for pos-
sible exotic bosons. For degenerate representa-
tions, we can express (AA)," and (AAA)"„in terms
of 5,"E and A„" because of Eq. (1.18'). Therefore,
(2.2) can be simplified to become Eq. (1.22), i.e. ,

A', A4~to our mass formula (2.5a). We need not
consider a term A', A,' since (1.19) leads to

The situation is very much analogous" to the
electromagnetic mass difference of the decouplet
baryon state in the SU(3) symmetry.

(b) RePresentation smith one degeneracy. This
is the case where only one pair among f„ f„ f„
and f, coincides, i.e. , we have either f, =f, &f, &f„
or f, &f2=f~ &f4, or f, &f, &f, =f,. Especially, this
cLass contains physically interesting cases of a
20'-dimensional baryon representation (2, 1, 0, 0)
with f, =f, =0 and a 15-dimensional boson repre-
sentation (1,0, 0, -1) with f, =f, =0. Then, our
redundant factor rule implies that we can now

express (AAA}„" in a linear combination of 5„"E,
A„", and (AA),". Therefore, the mass formula is
rewritten as

M =Mo+ b(A,'+ yA4) + c[(AA)~~+ y(AA)~~]. (2.8)

In terms of the baryon number 8, hypercharge
Y, and the charm quantum number C, we can
identify'6

N, =A3~= 8- C —Y,
4

A~~=3B.

N =A4 =C,4 4

(2.9)

Then, (AA)~ is easily computed as in the SU{3)
case" ' to be

2(AA)~=M, ' -M, —M2' +(N4)'+4N4, (2.10)

where the jth Casimir operator M~"' of the U(n)
group with n = 3, 4 can be evaluated by means of
Eq. (1.12). Note that M23 is the second-order
Casimir operator of the U(3} group contained in

the canonical chain (2.3).
Similarly, (AA)', can be expressed as

or equivalently" as

(AA)3 = 4 Y I (I )+—I(28 - C+ 2) Y - (1+ B)C

(2.11')

However, the difficult part is the evaluation of
the matrix element A,'A', contained in (2.11). As
we remarked earlier, we could compute its ma-
trix element from the formula of Baird and
Biedenharn or from that of Sen. ' But the gen-
eral expression proves to be too complicated to
be of practical use, the main reason being that
two irreducible representations of the U(3) sub-
group now mix together by this operator. Hence,
it is far easier in practice to handle specific cases
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separately.
(i) RePresentation (2, 1, 0, 0). This is a 20-di-

mensional representation which contains the fol-
lowing U(3) components:

(2, 1, 0)8 (2, 0, 0)8 (1, 1, 0) (1, 0, 0) = 86 68 3 8 3 .
(2.12)

iance of the mass. Diagonalizing the mixing in
the sector containing 1 and 8, and eliminating
unknown parameters mo and P, we find one mass
relation,

(2.16)

Note that except for the 8-dimensional case, all
other U(3) components are degenerate. Then,
the final mass formula is calculated to be

8: M(8) =m, +al'+I&[I(I+1) —& Y'],

M(6) =mo- (y —1)a+ ~(3y+1)P+a Y,

M(3) =m, —2(y —1)a —P+(a —Q)1', (2.13)

M(3) =mo- (y —1)a ——,'(y —1)p+(a —p)Y,
a

3: M(3 —6) =
2 P g (IS,&&A, I+ IA, &&S,I),

where m„a, and P are some unknown parame-
ters, and M(6 —3) is the mass mixing operator
between two states ( S,) and (A~& (j =1,2} with
I = 2, 7'= 1, and C = 1 belonging to the 6 and 3 rep-
resentations, respectively. The index j=1,2, re-
fers to two isotopic spin states I~ =+ &. Also S
and A designate symmetric and antisymmetric
tensor states, respectively, as we mill show in

Sec. IV.
If we diagonalize the mixing problem, we can

obtain physical masses in terms of three unknown

parameters, m„a, and P. %'hen we eliminate
these, we find various mass relations which have
been given in Refs. 4 and 13. We should also
mention that the mixing between S and A is very
small" and that we can practically ignore its
effect.

(ii) Representation (1, 0, 0, -l). This contains
the following U(3) components:

which has been originally found by Bjorken and
Glashow' and by Gerstein and Whippman. " Note
that this formula differs from the more familiar
Schwinger mass formula" by a factor of 4 on the
right-hand side. For the 1 nonet, this formula
is badly satisfied. Moreover, (2.15) predicts
very low masses for charmed mesons with masses
lower than that of p. Hence, the pure 15-piet
assignment for 1 mesons is ruled out. Indeed,
a more popular assignment' ' ' is to assume the
1 nonet as well as $(3100 MeV) form a part of
a (1581)-dimensional multiplet of the U(4} group.
In this case, we have to consider an additional
mixing between the 15-piet and the singlet. Since
this problem has been discussed by many auth-
ors,""I mill not repeat it.

With respect to 0 mesons, the (ness formula
(2.16) is well satisfied for nonets w, K, Z, g, and
q'(960 MeV). However, (2.15) again predicts then
very low masses (=750 MeV) for charmed mesons.
Besides, this assignment gives the value y =2.43,
which is at variance with the value y =20.7 deter-
mined"" from 1581 plets of 1 mesons. For
these reasons, we have to assign 15 1 structure
rather than a pure 15-piet also for 0 bosons.

IlI. SU(8}MASS FORMULA

As a generalization of the SU(8} quark model, "
we may consider the SU(8) group. '

Let us designate the capital Latin indices A and
8 to represent pairs such as

(1,0, -1)8 (1,0, 0}8 (0, 0, —1)6 (0, 0, 0) A = (p, ,j), B= (v, k), (3.1)

=8 3 3 1. (2.14)

Now, the operator 4', A~ mixes 8 and 1 multiplets.
After some calculations, we find the mass for-
mulas

8: M(&) =mo+13[I (I +1}—g Y ],
1: M(1) =mo+z~P(7 —9y),

(2.15)

3 3 M(3)=M(3)

=mo+ ~P(1 —3y)+ 3P[I (I+ 1) —~ Y ],
where me assumed the charge-conjugation invar-

where the Greek indices p. , v= 1, 2, 3, 4 refer to
the U(4) group, while j, 0 =1, 2 refer to the U(2}
spin subgroup of the U(8}. In order to avoid pos-
sible confusion, we shall now use a notation
Xs (A, B=1,2, . . . , 8) to represent infinitesimal
generators of the U(8) group.

As usual, we assume that the U(8)-breaking
interaction is given by

(3.2)

where the tensor Sc~ (A. , B, C, D=1, 2, . . . , 8) rep-
resents spin-spin interaction between two quarks,
and repeated indices over j and k and over p and
v imply automatic summations on values 1,2, and
on values 1, 2, 3, 4, respectively.
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the general mass formula based upon (3.2) is re-
written as

M =m, + a(A,'+ yA~)+ PJ(J+ 1),

if we use (3.3) and (1.18) together with (3.4).
Here, J is the spin of the system given by

(3.5)

We can write down the most general expressions
for H, in terms of the U(8) generators Xs. How-

ever, the result is too complicated with little
gain so that we shall concentrate on the most
interesting case of the completely symmetric
baryon representation with f, =3, f~ =0
(j = 2, 3, . . . , 8}, corresponding to a 120-dimen
sional degenerate representation. As has been
noted by many authors, "this has a nice decom-
position,

120= (20', 2) e (20, 4),

with respect to the chain U(8}DU(4) tm SU(2). For
the completely symmetric representation, we
can express (XX)~ in terms of ~~ and X~ because
of (1.18'). Also, (1.19) is now rewritten as

XC+G XGXC ~G+C ~C+G '

Defining U(4) and U(2) generators by'

A"= +XI,"",I, p, v=1, 2, 3, 4

{3.4)

B~~= X "„k, j, 0=1, 2

signatures f„f„ f„ f„and f, are redundant so
that our redundant factor rule now demands the
validity of

(XXX)s = a5sE+ bXs+ c(XX)a . (3.9)

However, the evaluation of these matrix elements
is rather involved. Besides, we have an additional
complication of the following nature. The multiplet
decomposes into"

63 = (1, 3) ~ (15, 3}6(15, I)

IV. TENSOR REPRESENTATlONS

In many calculations involving the U(4) group,
the tensor notation is quite often very convenient.
Fi rst, let us conside r the representation
(3, 0, 0, 0), corresponding to the completely sym-
metric tensor S„,)„

under U(8)- U(4)(3 SU(2). This implies that we
have 15-plets of 1 and 0 mesons as well as a
1 singlet. However, a pure 15-piet for the 0
mesons leads to various undesirable results, as
we have already noted in the previous section.
Therefore, we have to consider the 63+ 1 multiplet
instead of a pure 63-piet assignment. This gives
an additional mixing problem, just as in the U(4)
case. The treatment of such a case can be better
handled by the tensor method which will be ex-
plained in the next section. However, we will
not discuss the boson case further in this note.

Sjl vX Sv jf X SXv jf S& yII ~ (4 1)

J(J+ I) = —,
'

Q B,'B, —,'B, —

j,k= 1
(3.6)

Then, the properly orthonormalized state is sim-
ply given by

2 4

B= B~ = A.p.
/=1 P=l

Our formula (3.5} predicts exactly the same mass
relations as the ordinary simple quark model.
Especially, it leads to m (A) = m(Z), which is typi-
cal of the quark model. If we want to remove this
degeneracy, then we have only to introduce an

additional interaction of the form

S{3,& ),(»,k) y&4.J ),(e.k)
2 (3 k), (»,g) + (4,j),(4,k) (3.7)

Then, aga, in utilizing the identity (3.3), the effect
of H2 is essentially equivalent to adding new terms

a'(AA},'+ P'(N, )'+ y'N, + O' N, + e'E (3.8)

to the right-hand side of (3.5). The evaluation of
the matrix element of (AA)', has been already per-
formed in the previous section. The final formula
is very analogous to (but slightly different from)
mass formulas proposed by some authors. "

With respect to bosons, we may identify them
to belong to a representation with a signature

f, = 1, f, =f, = ~ ~ ~ =f, =O, and f, =-l. Then, five

~ n„n„n„n,) =
nl n2. n3.n4

1/2

(4.2)

where n& is the number of the integer j (= 1, 2, 3, 4)
contained in the indices p, , v, A. . For example,
we have n, =2, n2=1, n, =n, =0 for S,~.

A slightly more complicated case is the repre-
sentation (2, 1, 0, 0). This is specified by a tensor
g„„& satisfying conditions

&v ), +& ~a+&~~ =0

(I P V 3. 0V j1 )i. .

(4.3)

(4.4)

(ii) I =0,

(iii) I = 2,

(iv) I = —,',

y =0: A = (-', )'~(g„, —P„,); (4.5a)

&- &112 ~

p 7 I

+331 ~ ~ +332

Properly orthonormalized states under the chain
decomposition (2.3) are given below:

(a) 8: (C =0).

(i) I= I, Y=O.

~ -~2&123y ~ -&223'
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(5) 6: (C=g).

(i) I= 1, Y=O:

&114 y
~ ~2&124 y

(ii) I= 2, Y= —1:
= &224 y

(4.5b)

1
AVV1= ~(1(/V~v —NV~V) I

(4.10)

instead of 1C/„, 1, satisfying (4.3) and (4.4). However,
they are related to each other by

B'=SI =~~ 434 I B'-=S2 =~~ 434 I

(iii) I=0, Y= -2: B = g3

(c) S: (C =z).

(i) I= —,', Y= —1:
B:A1= (3) {(('413 0431) I

&—=A, = {3)'"(f423—f432);

(4.5c)

(ii) I = 0, Y = 0: B' =—A' = (-3)1/2(1(14, 1)I ) .

(d) 3: (C =2).

(I) I= ~2/ Y=-I: B =1CI44i I B =1(/442 I (4 5d)

(ii) I=0, Y=-2: B'=/~3.
For 6 and 3, S& and A,. (j = 1, 2) are the same ob-
jects we encountered in Sec. II. Actually, we have
to diagonalize the mass matrix as a linear com-
bination of S, and A, because of the mixing. How-
ever, since the mixing is very small, "we can
neglect the complication in practice.

%'e have normalized our states as
20

(4.11)

instead of g„,z or Q„„& to describe the J
baryon multiplet. Indeed, we can achieve this
fact by setting

TP v I g e0vof8@

Ot, 8=1
(4.12)

1
0pvk (4p Xv+ Avion) ~

43
In terms of Q„,~, we can rewrite (4.5). For ex-
ample, we find

2 4213 I ~0 {3) (4132 @231) '

Next, as is well known, ' all U(4) representations
with signature (f, +e,f, +e, f, +e, f4+ e) represent
the same single SU(4) representation for all inte-
gral values of e. Especially choosing e =-1, we
see that (2, 1,0, 0} is equivalent to (1,0, -1, -1)
as far as the SU(4) subgroup is concerned. This
implies that we could have used a traceless tensor
T01,

' satisfying

QNI*N, = —, Q 4/IV14VV1 I

k, jl,v= 1

(4.6) Conversely, we can express Q„,~ by

2 1~ = 3~0 ~ 4pvX0pvt
X,P, v =1

/Iv =1
(030 1/43$ I/ 7040 !/441/ V )

Pvv= 1

4'30 v( 3vv +y440 v1(4vv ) I (4.7)

with some unknown parameters m0, e', and p'.
%'e remark that the (2, 1, 0, 0) representation

can be also represented by another tensor Q„,&
satisfying

Apv) +Avxp+C~pv=0

4pv) = -Avp),

(4.8)

(4.9)

where N~ (j = I, 2, . . . , 20) are 20 states listed in
(4.5). This can be easily shown if we utilize Eqs.
(4.3) and (4.4), which especially lead to a relation
such as

)~ = -2g~, ) = -2g

%e can easily reproduce the mass formula of
the second section by the tensor method" if we

write the mass operator as

g cx8
@yves 2 ~ ~pvag~ g

where e„, ~ and ~"" are completely antisymmet-
ric tensors which are SU(4)-invariant but have
signatures (1, 1, 1, 1) and {-1,—1, -1, -1) respec-
tively under the U(4) group. In terms of the quark
model, @„„zand tjj„,z can be regarded as a three-
quark system q„q,qz, while the tensor T~z" cor-
responds to q„q, q&. Therefore, we conclude that
the J = 2' baryon multiplet could be represented
by either of the three-quark systems with form
q„q„qz or q„q, q&. %e note that the latter form
has been suggested by most authors' in the early
formulation of the SU(4) theory. As far as the
SU(4) symmetry is concerned, we cannot tell the
difference between the two forms. However, other
quantities such as electric charge and/or baryon
quantum numbers depend upon the U(4) assign-
ment rather than the SU(4), and they could lead
to different consequences. In view of various
successes of the q„q, q~ quark model, we take,
however, the view that the baryon is really rep-
resented by the (2, 1, 0, 0) rather than (1,0, -1,-1)
representations of the U(4) group. We especially
note that for the latter case, the J = &' multiplet
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must correspond to (2, —1, -1, -1) [rather than the
(3, 0, 0, 0) multiplet], which corresponds to a
complicated tensor T"„'e,"=q„q„q&q q8.

With respect to the (1561)-dimensional 0
mesons, they can be represented by a tensor
P," which is not traceless. In the quark model we
can write it in a form P, =q„q, . A similar remark
also applies to the 1 vector multiplet. Since the
mass formulas based upon this identification have
been investigated by various authors, '~' "me
will not go into detail.

M(&'- l v') =-M(A-nv'),

M{A.'-nl v) =M(A- f)l v)

(5.10)

for the decay matrix elements of A' particles and

Note that A' is the particle with I =0 and 7 =0 be-
longing to the representation 3, which Gaillard
et al. ' designated as C'o. The transformation
4' —A is obvious from the explicit tensor repre-
sentation (4.5).

Because of (5.7) and (5.9), we have relations

V. APPLICATIONS TO VfEAK INTERACT1ONS

In the model of Glashow, Iliopoulous, and
Maiani' [hereafter referred to as (GIM}], the
charged hadronic weak currents are given by

M(D'-m'm'm ) =-M(K'- 7t m m'),

M(D'- v'vo) =M g'- v-v'),

M(D, -7)'v ) = M(K,-- v v'),

M(D'- v Tv) =M(K'- volv)

(5.11)

)x = cos9[qx'0) q2+ q4'Q))qs]

+ sin 8[q,fI}),q, —q4Q), q,],
I ) C os 8[q2Q Ã + q~Q A4]

+ sin 8[q,Qxq, —q,g~q4],

Qg =r), (I+~,)

(5.1)

(5.2)

in terms of four quarks q„, where 6 is the Cabibbo
angle. Then, the nonleptonic weak interaction re-
sponsible for AS440 and/or AC4)0 is given by

1
H)v= —Ggl),I x .

W2
(5.3)

Let us now consider the Weyl reflection,

W: q, —-q, , q, —q4, (5.6)

which is a special finite U(4} transformation, so
that it defines an inner automorphism of the U(4)
group. Under this operation, me find

~ (o) . (o)

However, j z
' does not transform into itself.

When we define

{)('42' 44&4) )

1

W2

then under W, these transform as

W: A' —-A, P —n, &' —&.
D+ -K, D, -K

(5.7)

(5.8)

(5.9)

Also, the neutral current j'},' and electromagnetic
current j~z' ~ are expressed by

) }
= q jQ N + q @xq —q2@ xq~ —q3@} q3

(5 4)

= 3(q»~qi+q4»q4} —4(q».q2+q47 &q ) ~

(5.5)

for the decays of D" in the exact U(4) limit.
%'e can compute the decay rate of A'- pn' as

well as its asymmetry parameter a„ from the
corresponding decay A- nvo by means of (5.10).
However, we do not know how good or how bad
the exact U(4} will be. Here, we take a view that
when we express decay matrix elements such as
M(A'- pv') in terms of Lorentz-invariant ampli-
tudes, then we can apply the consequences of the
exact U(4) symmetry for the amplitudes if they
are dimensionless quantities. For example,
writing

we find that Lorentz-invariant amplitudes S and P
are also dimensionless. Therefore„we can com-
pute them from the known decay parameters" of
A- nn'. Assuming M„= 2.90 GeV, as is deter-
mined" from the quadratic baryon mass formula,
then me estimate e„=0.5 for the asymmetry pa-
rameter and

I'(A'- l)v') =1.2&&10" sec '

for the decay rate.
Also, the same method is applicable for

D'- m'm'm decay and we find

(5.12)

I'(D'- v'vo) =7.5&&10' sec ',
I'(Do-v+v )=3.4x10' sec '

(5.14)

I'(D'-v'v'v ) =3.5x10' sec ', (5.13)
where we assumed M(D) = 1.8 GeV for a reason
which mill become apparent soon. Note that the
SU(4} mass formula predicts M(D) ™2.1 GeV. With
respect to the decay D'- 7l'm, the Lorentz-invar-
iant amplitude has a dimension of the mass.
Hence, we assume that in applying the exact U(4),
it is proportional to the mass of the decaying
parent meson. Under this assumption, (5.11)
enables us to compute
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from the known decay rate of K'- n'm' and Ky- v'v . All these rates (5.12), (5.13), and (5.14)
are somewhat small, since they are really the
minor decay modes obeying the AS=0 rule. The
dominant decays in the GIM model are those'
satisfying the b S = + 1 rule, which are expected
to be larger by a factor of cot'6} in comparison to
the former.

Niu et al."discovered a particle X' decaying
into m +charged. If they identify the exact decay
mode as the X'-Pv' decay, then they find M(X)
=2.95 GeV with a lifetime of 3.6&10 "sec. On
the other hand, if the decay is X'- r'n', then we
must have M(X}=1.8 GeV, with a lifetime of
2.2 x 10 "sec. We note that the former mass is
very near to the SU(4) mass value of m(A') =2.9
GeV. Hence, we identify it with our &+ particle.
In that case, we can compute the decay branching
ratio from (5.12) to be

~- ""'-'"'=O.4xlo-,I'(A+- all) (5.15)

which is small but not unreasonably so. On the
other hand, if X' is really D', then we compute

'"') =18 10-'I'(D'- all) (5.16)

&XIII~ I p& = &xli&l n&, (5.17)
&xli, l n& =(xli, l p)

for any state X, where X is a W conjugate of X,
i.e.,

X= WX. (5.18)
For example, if we identify X =K'= P'„ then we
find X=-P,'=-D'. In other words, if X is a
strange particle, then X is a charmed particle
and vice versa. Therefore, roughly speaking,
the validity of (5.17) indicates near equality of
the charmed-particle production cross section
with the strangeness-particle production cross
section in the neutrino reactions. This fact may
be relevant to the recent experiment'6 on muon-
pair production by a neutrino. For the neutral
neutrino reaction, we can write more precise
relations,

o(vT- v+ Y+anything) =o(vT- v+ I+anything},
'

(5.19)
o(vT- v+ Y+anything)=o(vT- v+ 1'+anything),

which is too small for a single event D'- m'mo to
be fortuitously discovered. Hence, the identifica-
tion of the particle of Niu et a/. , with the baryon
A', is perhaps more realistic, unless it corre-
sponds to other particles such as V„which is the
1 counterpart of P4=D'.

As another application of our W symmetry, we
find

for isoscalar target T in the exact U(4) limit,
where Y(F=W Y) denotes any particular single
particle, if j z' alone is responsible.

There is another interesting Weyl symmetry
operation, W ', defined by

W': q4 q~ - —q4,

q3 q2 —q3 ~

(5.20)

Under W', all currents including the electromag-
netic current ) „' are now invariant, i.e.,

~(0) (0) ~ (ef11) (~m)

(5.21)

Noting that under W' we have

(5.22)

this implies that all decay matrix elements for
K,'- yy and K,'- p. p. as well as the K', —K', tran-
sition are forbidden in the exact U(4) limit. This
fact has been previously noted by Gail1.ard and
Lee" on the basis of an SU(2) subgroup of the U(4}.
As we noted, the neutral current j„' is invariant
under W'. Conversely, if we demand that j'„"be
W'-invariant with CP =+1 parity, then it would be
easy to show that j„cannot contain any trouble-
some strangeness-changing component. Besides,
it must be a U-spin scalar. " Therefore, the
W' invariance is perhaps one of the important in-
gredients of the usefulness of the GIM model,
since it can effectively determine many essential
features of all hadronic currents.

When we combine W and W' symmetries,
then we can generate another Weyl symmetry,

W" =W'W = -WW': q, —q, q —q, , (5.23)

which may be useful for some weak interaction
processes.

Last, we briefly mention a new weak interaction
scheme of Goto and Mathur, "who assign electric
charges 3, 3 3 and —'

—, for four quarks, q„2 1 1

q„q„and q4, respectively. In this theory, the
weak charged current is now given by

j = cos e[q,Q q, + q,Q ~q, ]

+ sin 8[q,Q,q, + q, Q ~q4]

rather than (5.1). Unfortunately, all Weyl symme-
try operations so far considered are no longe~
symmetry of the new theory, so that we cannot
derive any analogous relations. However, the
operation
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S'"': q, —q„q,—q„q,—q,

leaves

2x
~ ~ (o) (o)

which may be useful for some problems.

Noie added in proof A. fter this paper had been
completed, many earlier works related to the SU

(4) group in particle physics came to my attention.
Following Ref. 29 I will cite these papers up to
1972 other than those to which I have already re-
ferred.
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