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A partial-wave analysis of the reaction ~N —~~N has been carried out in the energy region
1300-2000 MeV. Two continuous solutions have been found; they are very similar in regions
where data exist, but differ in the continuation of amplitudes through a gap between our low-
and high-energy data. The second solution ("B")gives a much better fit to the data. These
new partial-wave amplitudes provide important information on the inelastic couplings of the
nucleon resonances to the N p, ¹, and Dx channels. A new resonance, a&3(1700), long pre-
dicted by the quark model, has been observed coupling to two inelastic channels~N and 47(,
and the existence of a P&3(1700) state is corroborated. Our preferred solution indicates a
second new resonance, P33(1700), coupled strongly to the 4~ channel.

I. INTRODUCTION

Elastic phase-shift analyses have provided us
with an impressive list of resonances, which is
both the essence of our understanding of baryon
spectroscopy and also the main testing ground for
many of the ideas on the dynamics of hadronic
processes. The agreement among the many inde-
pendent groups is very impressive, ' ' and gives
confidence in the resulting scattering amplitudes.

Corresponding investigation of the inelastic
scattering reactions has not kept pace with that of
elastic reactions. This derives not only from the
lack of data (with high statistics, and systematical-
ly spread in energy), but also from the complexity
of the phenomenological analysis. However„ the

study merits the effort. As can be seen from Fig.
1, the inelastic cross section represents a very
substantial fraction of the total m~ cross section,
even at 1.0 QeV/c, and it is therefore intrinsically
interesting to understand the scattering process.
In addition, the inelastic decays of ~* are a very
specific signature of the state and its properties,
and are therefore an important study in their own

right. Finally, for resonances with very small
coupling to the elastic channel [e.g. , D„(1700)]
these studies are the only effective means of in-
vestigating the resonance in a formation experi-
ment.

In the resonance region the principal inelastic
reaction is

mlV- mmN .

We have therefore made a detailed study of this
channel in the c,m. energy range 1300-2000 MeV.

In a previous analysis of these data in the range
1640-1760 MeV we attempted to isolate the
reaction

from (1.2}

by selecting only events with 1.14 &M(m n) &1.320.'
This study enabled us to extract values for the Eys
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FIG. 1. Total and inelastic 7I p cross section vs energy.
The o(inelastic) curve comes from Ref. 2 (EPSA) as in

Eq. (4.21); the 0(tot) data come from Lovelace (.t al. ,
LBL Report No. 63 (unpublished).

3183



3184 D. J. H ERNDON et al.

and D» coupling constants to the m~ channel. An-
other group has used a similar technique to an-
alyze' the reaction

p +Op++ (1.3)

11. THE DATA

In the energy range we consider, single-pion
production reactions can be unambiguously iden-

to obtain the isospin-& amplitudes in the c.m. en-3

ergy range 1820-2090 MeV. (They have also con-
tributed their data to the present study. }

In reactions of types (1.1) there is the possibility
of producing many resonances which overlap
strongly in the final states, particularly at lower
c.m. energies. The interference effects associated
with these overlaps are not removed by the ~-
selection techniques described above, and hence
are an inherent limitation of such analyses. At

higher energies the increased phase space and the
possibility of using the mass conjugation technique'
improve the situation. Nevertheless, the inter-
ference effects are still a problem. These effects
led to fitting the reactions in their entirety using
the isobar model and its extension'; these take
into account the effects associated with many
strong final-state interactions present. These
methods have only been used currently at e.m.
energies below 1560 MeV. '

We have extended this latter approach by includ-
ing many more intermediate final states (and
partial waves) and using the maximum-likelihood
technique in confronting the data with theory.
These extensions have allowed us to successfully
apply this method throughout the energy range
considered, 1300-2000 MeV. The data cover the
regions 1300-1540 MeV and 1640-2000 MeV with
a 100-MeV gap between the two regions. We pre-
sented one solution at the 1972 Batavia confer-
ence. " The energy-independent par tial-wave an-
alysis now yields two continuous solutions over
the whole energy range. The solutions are very
similar in the two regions where we have data,
but have different continuations through the 100-
MeV gap in the data. We favor solution B, but no
fundamental ambiguity exists in the partial-wave
analysis —when data in the gap region (1540-
1640) become available, a clear choice between
our two solutions will emerge. We include plots
of our earlier solution A for historical reasons
and also to demonstrate the stability of many of
our conclusions concerning the partial-wave am-
plitudes. This analysis provides for the first time
information on 50 inelastic couplings of the nucleon
isobars and essentially accounts for all of the
mW- mm& cross section in this energy range.

m p-m mp,

7r p rr 77 P2,

m'p- ~'mop,

7r P-7r mn

(2.1)

(2 2)

(2.3)

(2.4)

at energies 1300-2000 MeV. These experiments
are listed in Table I.

The major features of reactions (2.1)-(2.3) can
be observed in Figs. 2-5. The Dalitz plots of
Figs. 2-4 demonstrate the presence of ~(1236)
production in all cases, although its contribution
decreases at the higher energies. Indeed, at
these higher energies the major final-state inter-
action is due to the p meson and its effects clearly
should not be ignored even at the lower energies.
The presence of these obvious resonance bands
was the motivation for the quasi-two-body analyses
of Refs. 4 and 5, but while the present solutions
contain the qualitative features of Refs. 4 and 5,

TABLE l. Experiments used in this analysis. '

c.m.
energy range

Beam Laboratory (GeV)
partic le (reference) Low High

Number
of events

~'~ n 7r x'p

SLAC-LBL
(12)

Oxford
(10)

Saclay
(8)

Total

Oxford
(9)

Riverside-
LBL (13)
Saclay

(8)

Total

1.47 1.50 1010 648
1.64 1.97 41 175 27 946
1.31 1.54 18 502 5892

1.39 1.53 13340 7314

1.31 1.97 74 027 41 800

r'm'P K'm'n

1.43 1.56 7262 1374

1.82 2.09 41412 17 255

1.64 1.97 11522 3382

1.43 2.09 60 196 22 011

The events in this table, in the form of 16 full BCD
Data Summary Tapes, are available on request. The 7r+

events at or above v s = 1820 MeV must be requested from
the UCR-LBL collaboration, care of Professor Anne
Kernan, U. C. Riverside; the remainder from LBL,
SLAC, or Saclay.

tified in the bubble chamber, resulting in effective-
ly bias-free data. We have gathered data from
several large bubble chamber experiments' "'""
leading to a total sample of 200000 events covering
the reactions
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FIG. 2. Dalitz plots for the state n~ ~' at four c.m. energies: 1490, 1650, 1770, and 1930 iAIeV. The side of the little
squares is proportional to the predicted density of our fits. On the projected distributions, the dotted line is the experi-
mental data, while the solid histogram is the result of the fit. The scales are linear in (mass), but the tiny numbers
are actually in MeV.

they differ by many standard deviations from the
earlier quantitative conclusions.

The variations in the structure of the production
angle, 6, of the nucleon {see Fig. 5) are indicative
of the presence of rapidly varying transition am-
plitudes. We can therefore anticipate that many
partial waves will be necessary and that these
will change rapidly with energy as expected from
the presence of the structure in the inelastic cross
sections of Fig. 1.

III. THE EXTENDED ISOBAR MODEL

In this section we summarize the ingredients
of our extended isobar model and give the final
formulas and partial waves we use in our fits.
A detailed discussion and derivation of all formu-
las may be found in Herndon, SMing, and Cash-
more. "

A. Ingredients of isobar model

—,V~{760)

—Xe, (3.1)

where e represents the strong s-wave mm final-
state interaction at a, round 650 MeV.

(ii) The reaction can proceed through a large
number of partial waves. We then have a transi-
tion amplitude for each angular momentum and
isospin state which we write as &' „(~),where c
represents the charge channel, e.g. )T'm n, m v'p,
etc. ; n is the group of quantum numbers
(F, L, L', I,J) describing the reaction. These are

{i) We assume that the reaction proceeds through
three quasi-two-body channels,

~X- ~~(1286)
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FIG. 3. Dalitz plot for the state p~ ~ . For details see caption to Fig. 2.

summarized in Fig. 6, and the notation is spelled
out below Eq. (3.2); p, represents ts„p,~, the ini-
tial and final nucleon helicities; ~ describes the
four kinematical quantities necessary to describe
an event: We choose these to be e, ', ~,'—the
Dalitz-plot variables —and cos 6), g—where 6), @
are the angles of the incident m in our final-state
coordinate system. " Our ~ axis lies along the
direction of the outgoing nucleon, and the y axis
is perpendicular to the production plane. We note
at this point that different charge channels differ
only in isospin Clebsch-Gordan coefficients.

(iii) We ean now explicitly develop some of the
factors contained in T'~(~):

T (&0) =0A D» (00)B0(I33)WZ(S0)C~ =—A 0X'„&,

{3.2)

where D „(~)contains all spherical harmonic
factors (D functions) associated with the angular
momentum decomposition; B„(s0)contains the

centrifugal barrier factor bl, , associated with the
decay of the intermediate J state; 8'~{~) rep-
resents the Watson factor for the final-state inter-
action; &„represents the amplitude for the par-
ticular wave and is assumed to be only dependent
on the total mass of the system and not on any
of the submasses. It is these complex parameters

which we vary during a fit; C' the appropriate
isospin Clebsch-Gordan coefficients for channel c0

{iv) The final transition amplitude to a given
final state is then obtained by making a coherent
sum of these individual amplitudes,

Tt (S0) = Q T' „(~)

This summation implies some double counting of
the amplitudes, which had been thought to be a
small effect." However, prompted by Aaron
and Amado and others, ' the Illinois group" and
we are both estimating corrections to the ampli-
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FIG. 4. Dalitz plot for the state p~'~ . For details see caption to Fig. 2.

tudes. "
(v) The differential cross section is then given

by

do'(r0) =33.' p ~
T'„(&u)[', (3.4)

mhere we sum over initial and final nucleon helic-
ities, as we are neither working with polarized
targets nor observing the final polarization.

This eonstruetion of the final-state amplitude
and cross section allows easy fitting to all single-
pion production channels and hence allows the
partial-wave decomposition of the scattering
amplitude.

(vi) Cross sections are expressed in terms of
the conventional T-matrix elements T {called
1

„„

for elastic scattering, Tz, for & production,
etc.). The unitary circle has unit diameter, and
if there were only a single channel present, the
total cross section mould be

Note that by convention T carries no subscript
ii as in Eq. (3.4); i.e&.r,

Ir.l*=J Q Ir., i*81 . (3.6)

dA g g ~ TO„~'+ interference terms

The nucleon helicity states are uniquely related
by Clebsch-Gordan coefficients, i.e., T

„

~C(4, L', p.)T, and so the actual amplitude T
is well defined.

In practice, however, a single incoming partial
wave can feed several values of a (i.e., several
channels, such as m&, piV, &X). This may result in

substantial interference effects which are observ-
able in the integrated cross section [see Eq. (3.7)j.
The cross section is written as in (3.4),

o„=4vi'(J+-,')~ T„['. (3.5) which in the spirit of Eqs. (385) and (386) we define
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FIG. 5. Distribution of the angle of the final nucleon with respect to the incident pion in the center-of-mass system.
The histograms are given at four c.m. energies: 1490, 1650, 1770, and 1930 MeV for the same channels as in Figs. 2-4.
The dotted line is the data, the solid histogram the result of the fit.

as F= 6', p N, p NOr ~N.
5/2 i/Z

i

&,„(4) =4rrh'(/+ 2)
I p ~ T„~'+ overlap inteIrrals

(3.7) f
7T

L

Equation (3.7) defines the normalization of the
Argand plots. The overlap integrals are important
and are taken into account at all stages of the
program.

Different incoming partial waves never inter-
fere, so we can write

Notation for 1AIave a: F, LL' IJ

FIG. 6. Schematic representation of the isobar mode].
and definition of the partial-wave notation. F describes
the final-state particles, ~7t, etc.
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cr(J ) . (3.8)
180i 180 180

B. The final-state interaction, 4'F

This could be parametrized as a Breit-Wigner
factor. However, rather than attempting to rep-
resent the &, p, or e by Breit-Wigner forms we
chose to use the Watson final-state interaction to
describe the effects of these strong interactions by

a factor

e' F sin&F
F q)+1
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C. The centrifugal barrier, br. '

We should include centrifugal barriers in both
the incident state and the quasi-two-body inter-
mediate state. However, the first of these is con-
stant for a given partial wave at a given energy
and hence we have ignored it. (Its inclusion would

just result in a rescaling of A„,which is unimpor-
tant —see below. )

The barrier factor in the intermediate state has
been introduced as

L l
bq -—Q (3.10)

where Q is the isobar momentum in the c.m. and
L' the orbital angular momentum. Equation (3.10)
is only the low-QR limit of the standard Blatt-
Weisskopf factor, "which we meant to use. We
inadvertently started with (3.10) and caught the
mistake only after it was inconvenient to change.
In Appendix C we show that (3.10) is adequate for
our purpose, but urge the use of the correct form
for all future partial-wave analyses.

D. The partial waves used in our fits

As discussed above we only considered three
final-state interactions in our analysis:

(i) the ~(1236) (intermediate state sh},
(ii) the p(760) (intermediate state Np),
(iii) the s (intermediate state Ne}

Since our decomposition of the amplitude is es-
sentially an LS representation [where i= 0 (dipart-

Here ~F is the appropriate elastic phase for the
strongly interacting particles, and q is the momen-
tum of each particle in the isobar rest frame.

The actual values of ~F are summarized in Fig.
7. The only uncertain phase shift was for the
e diparticle, but our parametrization is in close
agreement with recent analyses" except near
1000 MeV, which fortunately is a, t the extreme
limit of phase space for our highest beam energy.
For more discussion, see Herndon. '

0
1.0 1.5 2.0

M(Nvi) (Gev)

0.0 0.5 1.0

M(nor) (Gev)

Ot
0.0 0.5

M(~~) (GeV)

1.0

FIG. 7. Phase shifts and modulus of %atson factor
IWI=sind/q'+i for 6, p, and e diparticles. Dashed line
on the & plot corresponds to the later analysis of Proto-
popescu {Ref. 19); a11 phase shifts used are given in
Herndon's thesis (Ref. 20).

icle spin) +8 (bachelor-particle spin)], in the case
of the p meson we have two tra, nsition amplitudes.
These are obtained because

I s, +S&I = a» a, (3.11)

and are denoted as p, or p, waves.
In order to make the fitting problem tractable

we have limited ourselves to orbital angular
momenta in the inc ident and f inal states, I., L' ~ 3 and

total angular momentum to J~,'—.In Table II we
list the 60 waves with which we began the analysis.
As described in the later sections the a.ctual num-
ber of waves required increased with c.m. energy;
the maximum was 28 at our higher energies.

IV. THE FITTING PROGRAMS

A. Choice of method

The choice of fitting procedure is clearly dictated
by the number of events available in a given ex-
periment. To exploit the correlations that exist
in the data in the case of I.imited statistics the
most powerful approach is that of the maximum-
likelihood technique. "

At the time we began our analysis, none of the
existing maximum-likelihood fitting programs
could handle either the amount of data or the num-
ber of parameters (up to 120) in a reasonable
amount of computer time, so we developed a new

program (RUM&LE)' which handles any problem
in which the parameters appear bilinearly in the
probability density (see below). It took the equiv-
alent of 400 hours on the CDC 7600 to perform the
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analysis described in this paper, including random
starts, studies of uniqueness, etc.

8. Likelihood formulation

1. Likelihood i&i each charge channel

The full expression of da'/d'cc (in charge channel

c) in terms of the search parameters, &, is
given by (3.2) through (3.4) as

TABLE II. The 60 waves with angular momentaL, L',
l each ~3. There are two nucleon-p terms in the isobar
model, indicated by p &

and p i, where the subscript indi-
cates the coupling between the spin of the p (E= 1) and the
spin of the outgoing nucleon. See Fig. 6 for more com-
plete explanation of the notation. We never needed more
than 28 of these 60 waves.

Isospin Incident wave

S« ««« ii

PP«PP«PP „PS«
cd

((u;) =h' Q Q A K~„(cv,)
(4.1)

For this formulation we rewrite d&/d e as p(A„)
to emphasize that it is a cross section predicted
by the &„,i.e. ,

Dis

Di5

} DS, ~

t DDT)

} PPig
(
) PF i&

DDi5 DDi~

DDio DP io

PP, ~ PD„

DD„DF
„

p'(&v„A ) =k' Q +A~X'„„(a;)
Cf

(4.2) (FPiq

I
FF i5 FF

FF i) FDi5

We write the predicted total cross sections as F„ FFi7

c |c.1 —J c ' C*I , ) . (4.3) 3
SDqi SD~i SS)i

The normalized probability for each event is then

p'(~, , A )P(" A-) =
R iA'

)
(4 4)

DS33
DD)~

DD~~

and the likelihood L' describing the shaPe of the

distribution is

1 N

L', „((g)„A„)= II p' =,„,II p'(~, , A „).
5=1

(4.5)

PP )~
PF )q

DD~5

FP~~

)FFn

PP ))
PF i3

DDg5 DD~(

FF)-,

X'f' = —,(events/pb), (4.6}

and the predicted number of events v' is given by

If we dealt with only one charge channel, common
sense would tell us to adjust the scale of the A.

by setting R'(A„)equal to the measured channel
cross section v', but for several channels the cor-
rect scaling is more complicated. Hence we must
next formulate the generalized likelihood L' more
precisely.

The pathlength l' may differ from channel to
channel. If each experiment reports W' events
and a cross sec tion 0', then

FF PF FF

Using (4.7) this becomes P(v, N)
=(1/N!)(N/v)"R"e "" ', i.e., inserting the super-
script c,

~c
c N c) (Rc)N NR/aC-

~C t C (4.9)

We now form the generalized channel likelihood, "
L' =P(v', N')L', „,„,where P is given by (4.9) and

p by (4 .5 ). Th e &' factors ca n ce l to g iv e

1V'
v
' = f 'Rc (A ~) = —,R'(Ac } .

0
(4.7)

The Poisson probability of observing v events when
A are expected is

(Nc/o c)N
i

NcRc v

exp )-, IIp'(, , A, ) .
1

(4.10)

v"e '
P(v, N) = (4.8)

Finally the multichannel likelihood L is the product
of each L',
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greg c}Nc
( ~cftc( N

pj — .
J
IIP'(, A )

1

(4.11)

average logarithm of (4.19) premaximized with

respect to the scale of A .

1F = —lnL

2. Analytic scaling of the A~

We have already said that if we had only one
charge channel we could set R'=O'. Let us check
this for single channel Eq. (4.10) by introducing a
scale factor, s, e.g.

X'B'(A )= constant —ln

yc
+ pQ Q in'((u;, A, ) .

C j= 1

(4.20)

A = SA'„. (4.12)

& lnL'(sA'„) 2N'sR'(A', },1
8s 0 s (4.15)

Setting this to zero gives

Dropping factors which do not contain s, Eq. (4.10)
becomes

C
ycS2ftc AQ ) i N

L'(sA') = exp —'-, " '(s')"' II f '((u„A'„),
1

(4.13)

o
N's'R'(A )inL'(sA )=, + N' lns'+ constant,

g C

(4.14)

C. Unitarity and the agreement with elastic

phase —shif t predictions

Using unitarity and the elastic amplitude from
elastic partial-wave {"phase-shift") analysis
(EPSA), one gets upper bounds for o(%vs, IJN).
The partial waves used were those available in
1970, when we started this analysis. " For most
of our fits we did not need (or impose) these con-
straints. Even in those cases in which we pre-
dicted more cross section than allowed, we were
within two standard deviations of the upper bound.
To correct this, we added to F(A ) the y'-like
terms Fppsp,

1 B'(A')
gc

which as we guessed earlier indeed gives

(4.16)

IJP I JP 1 21 ~ O EPSA IJP IJP
F~-psst ——~ ~ +IJp

g IJP ~(~ ~I:.PsA) )

I JP FPSA0:
(4.21)

and

A'(A }=s'R'(A'„)=o'

C -Ã
L'(s '"A„)= e " „c,II p'((g, , A ) .

1

(4.17)

This expression is manifestly independent of the
magnitude of the vector & .

Next we can apply the same procedure to the
multichannel L of Eq. (4.11). Details are given
in Appendix A. This time the equivalent of (4.16)
is easily found to be

Xs'i =- s' =L m „ggciitcy&c & (4.18)

N'R'(A )L(s .,„A) =Be NfV"

c i= 1

(4.19)

The quantity which we actually maximize is the

where N=
It is also shown in Appendix A that inserting this

into (4.11) yields a multichannel likelihood

where o' is defined by (3.7) and +[;pgp is an av-
erage over the different EPSA, and 60Fpg„are the
external errors on 0',:„s„.By using the step func-
tion, 6, Fypsp only affected the likelihood when the
fitting parameters predicted ~nore cross section
than allowed. These additional terms had very
little effect on the fitted parameters. Of those
amplitudes affected, the modulus was slightly
reduced but the phases never changed.

D. Stepping to a maximum

Maximizing procedures are of three general
categories. At each step they evaluate

(i) only the function F, or
(ii) F and the first derivative vector VF, or
(iii) F, VF, and the second derivative matrix,

VV F (the superscript T means transpose). For
convenience we define the variance matrix V
= (VV'F) -'.

We have found that the most efficient fitting tech-
nique is a combination of types (ii) and (iii).

In both types of fitting programs, one "step"
in the parameters is given by &A = —V' VF where
l' is a negative-definite approximation to V (for
some cases V' = V). We use two methods of up-
dating V', the Davidon method" and a modified
form of the Newton-Raphson method. "
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1. The Davidon method

The Davidon method belongs to category (ii).
The initial V Vy is chosen to be diagonal, and

at each subsequent step V,' is modified by the addi-
tion of a rank-one matrix. A rank-one matrix
is one having just one eigenvector with a nonzero
eigenvalue. A typical example is the outer product
of a vector with itself, M, &

=v,-v, or in matrix
notation M =vv . If v has unit magnitude, then M
is called a projector. Davidon showed that at the
ith step v' should be modified by

V,', , = V,'+X[VI VF;][V[ VF(] . (4.22)

The number ~ is calculated from V,', ~E&, and

VE, , To ensure that the step is toward a maxi-
mum, rather than a minimum or saddlepoint, A.

is adjusted if necessary to keep V'; negative-def-
inite. This adjustment to V,' reflects the additional
knowledge about the curvature of E gained from
knowing the new first derivative V'E, . If the 2n-
dimensional A space is quadratic, Davidon showed
that after 2N steps V,'„=V'.

2. The origina/ Newton-Raphson method

This method chooses V'= V and recalculates the
entire matrix at each step. The modified method,
which we use, calculates a negative-definite ap-
proximation to &~ E and takes V' to be the inverse
of this approximate matrix. The approximation is
such that if our model exactly predicts the event
distribution for some vector A', then V'= V at A'.

3. Our procedure

Our fitting procedure was to calculate and invert
the approximate second derivative matrix every
twenty steps. In between these steps we used the
Davidon technique to update the matrix. %e also
found it more efficient to take a few (in our case 5)
Davidon-type steps initially before inverting the
second derivative matrix.

4. Redundant parameters

Since E is invariant to scale changes in A and to
an overall phase change in A, there are two re-
dundant parameters, and the second derivative
matrix is singular. These singularities are usually
eliminated in problems similar to ours by per-
manently freezing the phase and modulus of one

and reducing by two the dimension of WV E.
%e find, however, that the maximizing procedure
takes less than one-third the number of steps to
reach a maximum if all the A. are permitted to
vary. In this case, the second derivative matrix
has two eigenvectors with zero eigenvalues. The
desired V' is the inverse of ~V E, restricted to
the space spanned by the set of eigenvectors with

nonzero eigenvalues. For details on how the fitting
program calculates the proper V', see Ref. 23.
A two-dimensional example is given in Appendix B.

E. Errors in amphtudes on Argand plots

The error matrix E is given by

F. = (5A ~ 5A ) = —V',
N —' (4.23)

where V'= VV E as described above, and the factor
1/N arises because lnL=NF

In the neighborhood of any local maximum at A '"
with likelihood L '", we can expand L as

L=L '"exp]- —,X'), {4.24)

and an error hyperellipsoid may be defined by a
hypersurface in 4 space labeled by &p' =1, i.e. ,

by L = Lmaxe —z/2

To plot error ellipses on our Argand plots we
project this hypersurface on the complex plane
representing a single T„(orA ). However, the
probability that a result will be within this ellipse
is only 40/~. In order to increase this probability
we have conservatively doubled our estimated
error, thereby raising the y' contour to 4, and
enclosing 87% of the probability. In summary, all
the errors plotted or tabulated in this paper and
in our previous publications are twice those calcu-
lated by the program RUM&LE which uses (4.23).

F. Relative likelihood of competing solutions

Ne were bound to encounter two different sorts
of competing solutions:

(i) The number of parameters (waves) is the
same for both solutions, as in the case where two
starting values lead to competing maxima.

{ii) The number of parameters differs, as when
we have cast out a wave from solution A with
likelihood L„,found a new maximum 8, and won-
der if the new L~ is significantly worse than L„.

For the discussion below, assume that hypothesis
A is the right one and that after a fit we find a
likelihood ratio L„/L~which we call L». A stan-
dard approach is then to say that solution 8 is
ruled out to So if lnL» =WE„~is greater than
4.5 (or 2o if NF„s&2). We now carry this test
one step further and take into account the error
5F» in E». Specifically we wish not to eliminate
solution B unless F„s/5F» is safely larger than
unity. {More sophisticated versions of this test
are discussed by Eberhard, Rosenfeld, and
Tabak. ") We apply the same numerical test to
both sorts of competing solutions {i}and {ii) men-
tioned above.

Of course without generating Monte Carlo events
we do not know 6XE», but we can estimate it from
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the 10000 events in hand at each energy. For
each event I' we form F„'Band can then evaluate QF (in

IOQ — cjr

)2 Zi (P~a}' 5 +A a
AB (4.25)

O
O
O

Figure 8 is a scatter plot of typical values of
~'E» vs F». The logarithmic likelihood ratios are
of course NE~, not EAB, butwe plot E~ sothatwe
can show that all points scatter about the dashed
line, even though the number of events differs
from energy to energy. For easy interpretation
we label the scale as 10000 6F» and 10000 F»,
corresponding to logarithmic 1ikelihood ratios for
typical 10000-event samples. The points seem to
scatter around the dashed line independently of

(i} the number of events (as just mentioned),
(ii} the number of parameters,
(iii) whether the events are real or Monte Carlo.
We have erected a vertical line at a ln-likelihood

ratio of 3, and the standard test would say that
to the right of this line solution 8 would begin to
be ruled out. But consider the "X"plotted as
far right as 4.5; its error 10000 ~'F» is esti-
mated to be 8.5, so that the value 4.5 is not an
adequate reason for eliminating one hypothesis.

Our extra test agrees well with our studies
(in Sec. V C) of actually casting out waves and re-
fitting. Thus later in Table V we show the results
of removing a wave (PP») whose amplitude

~
T)

appeared to be only 2 to 3 standards deviations
from zero. After refitting, X' went up only 11
(for Monte Carlo events) or 14 (for real events)
but lnL decreased by 30 for both sets of events.
We do not believe that the solution with the PP, 3

wave is e" more likely than the solution without.
But Fig. 8 shows that when ~ lnL is 30, its error
is about 10, and the significance test E»/~'F»
= ~~=3 seems quite reasonable.

In any case this extra test (~'F» &F») offers a
convenient numerical way to relate the result of
several studies to the frequently occurring ques-
tion: "Can we throw out this solution' ?" It is
sufficiently conservative that me use it mith con-
siderable faith.

Finally we should point out the large &&cycles

plotted higher on Fig. 8. They are not &'F», but

just ~'FA or 6'FB. These fluctuations in the ln-
likelihood are of course much larger than the
fluctuations in its ratio, but it is reassuring to
note that as hypotheses A and B become signifi-
cantly different, ~'F approach &'EAB. We plot
these &F dots for two reasons:

(i) We know that some older programs have
used ~'F rather than &'F» to compare competing
solutions, and we mant to warn that &F is too
coarse.

IO:

0
O
O
O

I

I

IO 000

~Lk ~~' L- ~WM1~ ~ 1 - 1 f J-4 Lff

IO IOO I 000
FA&= gn ljIteIihood ratjo for IO 000 events

Flo. 8. Scatter plot of O'FAB vs FAB used when trying
to reject one of two competing local maxima A or B. FAB
is the average logarithmic likelihood ratio; O'FAB is its
error. More precisely, FA B = {1/W)ln[L{&)/L{&)], and
O'F&& is calculated using Eq. {4.25). Key to Symbols:
+: competing 18-wave fits to the 9000 Monte Carlo
events of Table V; x: 60-wave fits to 21000 real events
at 1890 MeV; dots: 20-wave fits to 10 700 events at 1690
MeV. For comparison, we have also plotted, as sym-
bols with circles, the errors in the ln likelihoods them-
selves, 6 F.

G. Program tests

We made several checks on our programs:
(1) To ensure that we were calculating A"

„

correctly in Eq. (3.2), we obtained the programs
from three other analyses. '" In all cases we got
agreement" among the different programs.

(2) To test the fitting program itself, we gen-
erated artificial data from eleven "known" ampli-
tudes and then fitted for the amplitudes. We gen-
erated 7583 events (4733 iVv'v and 2850 pw vn)

at ~s= 1690 MeV. To obtain a set of reasonable
starting values, me generated 2000 sets of random
amplitudes and kept the 20 sets with the highest
likelihood. These 20 sets coalesced to five distinct
solutions after fitting. Any wave among the 60
for which the modulus was within one standard
deviation of zero in at least three solutions was
considered statistically insignificant and elimi-
nated. After elimination, we refitted with fewer
waves and again eliminated waves. This mas re-
peated a total of four times until no further waves

(ii) Sometimes one knows that the two competing
solutions are really very different, and it is of
course easier to calculate ~'F rather than &'F»
since a program does not need to know about
both hypotheses at the same time. In this case
it is convenient to know that &'F is an upper limit
to ~ FAB ~
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could be removed. All five solutions coalesced
into one solution and the number of waves dropped
from 60 to 24. These 24 waves consisted of the
original 11 waves and another 13 waves, each of
which had

~
T~ &0.05. Figure 9 shows the initial

11 waves (as dots) and the corresponding 11 fitted
amplitudes. The agreement is very reassuring,
and gives us confidence that we can select the
important waves for an original 60-wave hypothe-
sis. However, in the case of real data, we are
concerned w ith the extra unce r tainties of fitting
with an imperfect model, so we prefer to quote a
"sensitivity" of T =0.1.

We also tried to break up the 7583 events into
smaller samples of the order of 1000 events, but

we found we needed all the events generated to get
a good 60-wave fit. From this we decided to work
with at least 10000 events at each energy in order
to make fi ts to 60 waves.

This completes our discussion of program tests
made before we started fitting real events. More
tests of realistic amplitudes (from fitting real
events) a.re described in Sec. VC.

T &0.1, (4.26)

or, in terms of branching fractions X„=I(I,
1'~ = (X„)X~)' &0.1 .

V. FITTING PROCEDURES, TESTS, AND QUALITY
OF THE FINAL SOLUTIONS

A. Obtaining the 1972 24-wave solution "A"

The number and distribution of the events used
in the analysis are given in Table III. The contin-
uous distribution of events was binned into c.m.
energy intervals of 30 or 40 MeV, except between
1560 and 1630 MeV, where no data were available.
In this section we give an outline of the procedure
used in obtaining our final solution. This pro-
cedure involved several distinct stages. The data
were fitted in three parts: below 1560 MeV,
1630-1830 MeV, and above 1830 MeV.

(i) 1310-1560Me V, In this region (9 bins) we

reduced our 60 waves to 36 by removing all waves
with J & a. In each of the six bins between 1380
and 1560 MeV, we generated 2000 random sets of
amplitudes to use as starting values to the fitting
program and kept the top ten. Any wave within
two standard deviations of zero was considered
statistically insignificant and removed. In this

H. Limits for the observation of partial waves

From the tests above, and from our experience
to be described in Sec. V, we estimate that there
is sensitivity to any inelastic partial wave for
which

~ = Generated T

=- Fitted

v
~ 5

I

FITTED AflPLITUOEG

FIG. 9. Results of a fit to 7583 Monte Carlo events
generated at 1690 MeV to test TRIANGLE/RUMBLE . The small
square covers the area where we indeed reconstructed
the four smallest waves, but also 13 "noise" waves. So
we are insensitive to the area inside the square.

manner we were able, at each energy, to reduce
to one solution. To look for continuity in energy
we used each solution as a starting value for the

neighboring energy bins. This new starting value
always converged to the existing solution at that
energy. Moreover, our A(F) varied smoothly
with energy, providing a continuous solution.
Below 1380 MeV, there were too few events for
the fitting program to be able to distinguish be-
tween different solutions. In this region we prop-
agated the solution from the bin above, removing
all unnec essary w aves.

(ii) 1630-2830 Me V. In each of these five ener-
gy bins, we again generated 2000 random sets of
amplitudes and this time kept the 20 with the high-
est likelihoods. From these twenty sets, we
made fits with as many sets (10-15) as necessary
to generate five distinct 60-wave solutions. We
then made a list of all waves whose modulus was
within 2.0 standard deviations of zero in three of
the five solutions. These waves were removed
and the solutions were refitted. This continued
until no further waves could be removed. At this
point, the five original solutions at each energy
had reduced to two or three at that energy. How-
ever, the removed waves were different at each
energy. We then returned to the 60-wave solution
and removed all those waves which had been
eliminated in at least three energy bins. Then we
remaximized. We continued to remove waves that
were unnecessary in at least three bins. In this
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TABLE III. Number of events for the energy bins used in the fits. For availability of these
events, see note at bottom of Table I.

c.m. energy
Range
(MeV) 7t P-~'m n r p~r rp ~+p -~'7t'p

i 1310
1340
1370
1400
1440
1470
1490
1520
1540

ii 1650
1690
1730
1770
1810

iii 1850
1890
1930
1970

Total

1300-1330
1330-1360
1360-1380
1380-1410
1430-1460
1460-1480
1480-1510
1510-1530
1530-1560

1630-1670
1670-1710
1710-1750
1750-1790
1790-1830

1830-1870
1870-1910
1910-1950
1950-1990

1300-1990

1069
1664
2471
5049
4918
3252
5555
3241
3905

6061
5901
3455
3214
2447

3931
5072
5817
5277

72 299

151
11

2

964
1802
1629
3197
2588
3285

3757
3689
2630
2352
1541

3183
3170
4080
3544

41 575

78
359
175

1523
795

1114

2467
1139
4061
2853
3855

6372
12 690

4298
7744

49 523

way we reduced from 60 to 30 waves, but still had
several competing solutions at each energy.

(iii) 2830-1990 Me V. Instead of using the full
60 waves, we started with the 30 waves from the
lower energies together with the eight E,5 and F37
waves which had been removed at lower energy.
We generated 2000 random starts in this 38-wave
set and kept only enough of the highest sets to
give four separate solutions after fitting. Where
possible, we again removed the unnecessary
waves.

(iv) Continuity in energy above 1630 Me V. To
look for continuity, me now used each solution as
a starting value in the energy bin above and below
its own. In more than half the cases, these start-
ing values led to already existing solutions. If a
new solution had a comparable likelihood
(DE/5&I' & 1), we not only kept it, but also used
it as a starting value above and below its energy;
and of course we checked that waves needed at
v s =1540 were present above the energy gap. In

looking for smooth energy behavior, we found
that some waves had discontinuous (almost random}
behavior. We removed these waves even though

the fitting program felt they mere necessary. In
1972 we found only one chain of solutions over the
entire energy range 1620-1999 MeV. This chain
consisted of 20 waves from 1620 to 1710 MeV, 23
maves from 1710 to 1750 MeV, and 24 waves from
1750 to 1990 MeV. Figure 10 gives the waves
needed at each energy. This is the point at which

B. The 1973 28-wave solution B

As we will discuss in Sec. VIC, the 1972 solu-
tion had some "undesirable" theoretical proper-

Count
of~s waves

Isospin I/2

FF)~ ( 6m') I770(28)FD„(&N)
FP, ~P) l730(27)

SD„, (Q~) I650(24)

Isos pin 3/2

FF„(p„,N)

FF@7 (Q vr )

{P~N)
F F~5 (Q~)

DS~~ (Pp~pN)

»„(D~)
(/i', N) 1520(18)QDD (6 vr)

DD5 (Q~) I 490{16) SDg) ( 6&)

SS, (P„N) I 440(I3) Ss„(P„,N)

I3IO(II)
SP, (& N), PP„(gm') PP, (Am), PP, (P„N)
PP)i {pppN ) PSg {E'N ) DS$3

DP(& N ), DD, ~(Qm')

FIG. 10. Waves used in 1973 Solution B. In Solution A

waves not used are indicated with an asterisk and Dfg
started later (at Ws= 1650 MeV).

our analysis stood at the end of 1972 and this solu-

tion will be referred to as solution A.
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C. Tests and quality of our fits

1. Four-dimensional X

To compare our fits with the data, we consider
four-dimensional (or less) binning of our data.
A theoretical bin population can be calculated by
binning Monte Carlo events weighted by P(~t, A).
The solid lines in Fig. 11 were generated for solu-
tion A in this manner. From these theoretical
bin populations we can also calculate various y'
for the fit. Results are given in Table IV; 24
Dalitz plots corresponding to Fig. 11 are given
in Ref. 20.

r-q
Dotg

) I
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0.75 = ====-

0.70
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E
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O.S5~" '. -.
1

0.50 .,'.„,
0.45
0.40 . .
0.35;
0.50

I. l 0 l e20 l.30 l.40 l.50
m (n - ) (Gev)

ties. In an effort to see if this solution was com-
pletely stable to the inclusion of new partial waves,
we added some further amplitudes' to our 1972
set (those marked with an asterisk in Fig. 10),
and repeated the fitting process. We found a new

continuous solution in each energy range which
differed dramatically from our previous solution
only in the Py] waves and the new waves. How-
ever, as we shall see this has allowed us a further
degree of flexibility in relating the partial-wave
amplitudes in our two regions of analysis. In
this case the final set contained 28 waves, and
we will refer to this as solution B.

The purpose of using the maximum-likelihood
technique is to take advantage of the many corre-
lations that exist in the data, and thus the real
test of our solutions lies in the ability to account
for such correlations. As can be seen from Fig.
11 and the y' values, we observe excellent repro-
duction of those correlations. This constitutes
a major justification for our solutions.

2. Agreement with total and partial- wave
inelastic cross sections

In Fig. 12 we demonstrate that the single-pion
production cross sections" in the channels we fit
are well reproduced. However, we can compare
our prediction for

vr /»- azmoz)'

vr It)t zzm v

which are not included in our analysis. This is
done in Fig. 13, where we observe excellent agree-
ment for a(nm'm') but a large discrepancy for
o(ntt'tt'). This latter fact may well have a simple
physical interpretation and we return to this point
in Sec. VII.

We can make even more stringent tests by
comparing our inelastic partial-wave cross sec-
tions with the predictions from EPSA. At the
lower energies where single-pion production is
the major inelastic channel we find excellent
agreement as demonstrated in the next section.
However, at high energies, other inelastic chan-
nels begin to appear and the prediction from EPSA
only becomes an upper bound on the single-pion
production cross section, and this bound is sat-
isfied at all energies.

3. Removing waves, Monte Carlo cheeks

At 1530 MeV we tested the final fit to see if our
model was adequately describing the data. From
the final amplitudes (R for "Real" ) we generated

TABLE IV. x at each energy based on four-dimen-
sional bins. The four-dimensional space is subdivided
into 44=256 bins, but some have no population, hence
the number tabulated below is & 250.

FIG. 11. Solution A fits to the reaction n p —Tr+m n at
a c.m. energy of 1690 MeV. The figure contains cose vs
P plots for individual regions of the Dalitz plot where
cos6) and Q are the angles of the incident pion in a co-
ordinate system defined by the final state. The ~ axis
lies along p„and the y axis lies along p„-xp~+. The
plots outside the Dalitz plot are the sums of the corre-
sponding plots within the boundary.

1370
1440
1530
1690
1970

279 228
243 2,'35 216 233
328 229 253 236
526 237 378 2'36

864 236 601 233

t 2 2
o s (MeV) X„~~~ Bins g~-„p Bins

90
209
182
907

160
216
208
235

2
gp~+ ~p Bins
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FIG. 12. Solution B cross sections for the fitted
channels n~ n+, Pn ~0, and Pn+m'o. Crosses correspond
to our fits; tiny dots with vertical error bars are experi-
mental, from Ref. 31.

FIG. 13. Solution B cross sections predicted for the
channels n~ono and nr+n'+. Crosses are predicted from
our fits t~ the other channels of Fig. 12; dots with verti-
cal bars are from Ref. 31.

an equivalent number of Monte Carlo events. By
fitting these Monte Carlo events, we determined
a set of amplitudes T«which gave the best fit
(within the errors we indeed found T„c= T~).
From both fits T& and T~& we then removed a
wave, refitted, and compared the changes in the
likelihoods and in X'. The p' was calculated by
binning each variable into four bins (4'=256 bins
total). We did this for the four waves shown in
Table V. The top wave listed, Ds»(p, N) is a
"large" wave having

~ T~/5~ T~= 10 and its re-
moval caused the other fitted T to move by many

TABLE V. Effect of removing waves of varying importance at v's = 1530 MeV, 9000 events.
Each entry in the second and third columns in the lower part of the table is arranged 6 lnL
for real events [A,lnL for Monte Carlo], and the same format holds for EX2,

Original 18-wave fit Real

Monte Carlo

lnL

0.2817

0.3198

X'/D. F.
790/681

624/788

IZI/6' 6 l.nL

18 waves minus DSf&(p3N j
18 waves minus PP&z(b&)
18 waves minus PP f3(pf&)
18 waves minus DS&&(p3+)

11 [10]
6[6]
2 [3]
1 [-.']

-320 [-390]
-60 [-80]
-30 [-30]
-1 [-1]

173 [215]
53 [102]
11 [14]
3 [2]



3198 D. J. H ERNDON et al.

standard deviations. The PP»(av) and PP„(p,A)
are medium waves with

~
T

~
/5

~
T

~

= 6 and 6, re-
spectively. The DS»(p,~) is a "small" wave with

I TI/&I ~I = a. Table V shows the results of these
changes, which seem reasonable, and suggests
that our program behaves properly. Since the
results are the same for both the real and Monte
Carlo events we believe our model fits the data
adequately.

We also removed waves at higher energies:
the DD»(4v) wave at 1650 and the FP„(av)wave
at 1690. The DD»(&v) is the only D» at 1650 and
is quite large. Indeed lnL dropped by 584 when
it was removed. The FP»(av) wave, however,
is one of three F» waves at 1690 and is only
"medium" in size. Here ~ lnL was 186. So again
the program seems adequately sensitive to "medi-
um" waves.

4. Checks with a 60 X 60 error matrix

After finding a best fit at each energy, we found
it useful to calculate the full 60x 60 error matrix,
even though a satisfactory fit had been obtained

with only, say, 20 waves. The idea behind inspec-
tion of the full error matrix is as follows: Suppose
some untried wave, e.g. No. 59, is highly corre-
lated with a wave used in the fit, e.g. No. 19. Then
we had better try No. 59: We will probably find a
new maximum with No. 59 as large as No. 19, and
with No. 19 considerably changed. The clue that
some wave is highly correlated with No. 19 can al-
ready be found in the diagonal elements of the
error matrices, i.e., by comparing the error in
19 as computed in the 60&&60 error matrix and in
the 20&20 matrix. If the 60&&60 error is, say,
twice as big as the 20~20 one, we should look
among the off-diagonal elements for large corre-
lation eoeffieients such as (5x5y)»», where x and

y can each be either amplitude or phase. A ge-
ometrical interpretation of the relation between
the off-diagonal correlation and the increase in
the diagonal error can be found in Fig. A1 of
Appendix 1 of Ref. 20.

A 60&60 error matrix is too large to reproduce
here (it is available in a supplement" ); however,
the diagonal elements only, for both 20&20 and
60&60 matrices, are compared in Table VI. We

TABLE VI. Square roots of diagonal elements of a 60&& 60 and a 20x 20 (Solution A) error matrix at 1690 MeV.

wave
Error

20
Error

60
psN

wave
Error

20
Error

60
piN

wave
Error

20
Error

60 wave
Error

20
Error

60

ESDii

Zd Pii
~P is

~F is

ADS is

M)D is

EDDis

~P is

~Fi,
ASDsi

~P si

~Pss
~F ss

~Sss
ass
~Dss
~Pcs
~F
~Fs7

0.061

0.045

0.044

0.083

0.053

0.063

psPP is

psPF is

psDSis

0.058 p sDDis

0.052 0.068

0.042 0.054

0.062

0.063

0.052

0.052

0.075

0.086

0.062 0.096

0.049

0.052

0.075

0.052

0.065

0.048

0.050

0.053

p sDDis

psFP is

psFF is

psFF i7

p ssDsi

psPP si

psPF ss

p sDS ss

psDDss

p sDDss

psFP ss

psFFss

0.083 p sSDi i

0.076 p sPP ii

0.040

0.033

0.042

0.079

0.077

0.056

0.048

0.053

0.056

0.050

0.042

0.043

0.041

0.075

0.083

0.069

0.047

0.057

0.060

0.053

0.041

0.046

0.046

p iDDis

piFFis

p iSSsi

p iDDss

piDDss

piFFss

piFF s,

0.054

0.038

0.067

0.069

0.080

0.053

0.057

0.041

0.040

0.033

0.081

0.090

0.060

0.057

0.045

0.040

0.038

cPS ii

cPD is

eDP is

eDF»

eFDis

0.064

0.054

0.027

0.047

0.032

0.066 0.087

0.067 0.084
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see that the 60X 60 errors are only 30gg larger
than their 20&&20 counterparts, rea, ssuring us
that no highly correlated waves have been omitted.

Another use for the 60X60 error ma, trix is in

making the transformation from partial-wave
amplitudes, e.g. py&(+Fy5) p3&(EPy5) 'to helicity
amplitudes, i.e. , pN(F»), & =-,', and —,'. One or
two of the pN partial waves may not have been
needed in the fit, but clearly in making the trans-
formation, the errors in these untried waves must
be propagated along with the errors in the waves
actually used.

D. Comparison of solutions A and B

In the above sections we have discussed the
origin of solutions A and B and demonstrated that
either corresponds to a good representation of the
data available to date. %'e now make a quantitative
comparison of the two solutions.

In Table VII a summary of the differences in
likelihoods of solutions A and B is given at nine
energies between (1640-2000) MeV (evaluated for
a standard sample of 9000 events). For each
energy, solution B gives the higher likelihood,
and the difference is around 100. Since solution B
involves four additional partial waves compared to
solution A, we must determine whether this in-
crease of 25 per wave in the likelihood function is
significant. Reference to Table V, where we dis-
cuss the sensitivity of our solutions to the removal
of waves, indicates that such a change in likelihood
corresponds to that expected for the inclusion of
three or four waves with [ T

~
/6T 3.0 (i.e., quite

significant, moderately large waves). Thus we
conclude that the four new waves are really re-
quired and that solution B provides a substantially
better representation of the data than the original
solution A.

E. Summary

We find two solutions which possess all the fol-
lowing properties:

(i) At each energy the solut:ion parameters cor-
respond to a maximum in the likelihood function
and have a high likelihood (usually the highest of
the competing solutions).

(ii) The solution at each energy propagates to
the solution at the adjacent energies above and
below.

(iii) Qualitatively it has no discontinuous motion
between adjacent energies.

(iv) It possesses good agreement with the EPSA
predictions for the inelastic cross sections.

The crucial step was the selection of a good sub-
set of waves. Our two final subsets were the only
ones we found that had solutions satisfying all the

TABLE VII. Difference in likelihood, L (Solution B)-
L (Solution A) for a standard sample of 9000 events.
Solution B is always better.

vs
(MeV)

A lnL
(9000 events)

1650
1690
1730
1770
1810
1850
1890
1930
1970

113
122
139
107

84
57
15

153
19

Vf. . THE PARTIAL-WAVE AMPLITUDES —DESCRIPTlON

AND DISCUSSION

At each ener gy the solutions of any fits to in-
elastic data are only defined up to an overall
phase. Thus, in order to give Argand diagrams
of the partial-wave amplitudes we must determine
this phase. Of the variety of methods by which
this ca.n be a.chieved, we have linked the inela, stic
amplitudes to published elastic amplitudes (which
have known phase) via a K-matrix fit at energies
where both elastic and inelastic amplitudes are
large" —this turns out to be in the region of a
prominent resonance. This has been done for
both solutions A and B.

In Figs. 14 and 15 we present summary Argand
diagrams for solutions A and B, and in Fig. 16
both Argand diagrams and partial-wave cross
sections for solution B. The equivalent complete
figures for solution A are contained in Ref. 11.
A summary of the major characteristics of each
partial wave is given in Table VIII, together with
comments on resonance interpretations. For the
specialist, numerical values for the amplitudes,
and decks of cards, are available. "

Next we discuss the unambiguous results in our
two solutions and contrast the differences between
them. Before entering into too great detail we
should note that the major difference between the

above requirements. Owing to cost of computer
time we cannot be certain that we have found the
only two subsets. But we believe that the larger
waves are uniquely determined. We cannot be as
certain in the case of the smaller waves, the
amplitudes of which are never more than two or
three standard deviations from zero. Further-
more, with 30-40 MeV energy bins, our emphasis
on continuity clearly biases us against very narrow
resonances.
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two solutions lies in the relative orientation of
the low-energy (1300-1540 MeV) and high-energy
(1830-2000 MeV} amplitudes. This flexibility is
due solely to the fact that we have not been able
to analyze data in the "gap, " and clearly the cor-
rect solution will be identified when this is done
reliably. It is important to point out that within
each energy regime, solutions A and B are essen-
tially identical, except in the P„waves and the
new waves added. All of the major features re-
main the same provided one does not try to link
the two energy regions.

A. 1=- states1

2

The considerable amount of motion in these
plots is not surprising since most of the structure
observed ma, y be associated with the existence of
already established resonant states.

1, I gf In both solutions, the Pyg(1470) is clearly
observed decaying strongly into Tr~ and N&. A

higher-mass P» is also present in both solutions,
although there are distinct differences in shape
in this case.
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+$3(1700), Np is the major decay channel.
3. Dqq(l700). This state is observed in our

solutions. Its presence is predicted" by the L
excitation quark model and is the last remaining
fV* or 6 state of the (70, 1 ) supermultiplet of
negative-parity baryon states to be identified. It

~. Np eouplings. %e observe strong Np cou-
plings of the P»(1700), D„(1520),and F„(1680)
resonances. This is not surprising, as the last
two resonances are strongly seen in photoproduc-
tion and application of the vector dominance mod-
el would imply this result. In the case of the new

PARTIAL -%'A VE ANAL YSIS 0 F TH E REACTION
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ii
QO
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{G~V)

decays into the aalu(DS») and Ne(DP») channels,
but its mass and width are difficult to estimate
and probably differ between our solutions A and
B.

4. D» and E&z. These two resonances are strong-

ly observed in our analysis. This verifies our
previous result that the D» couples exclusively
(within errors) to the mN and m~ channels. More-
over, we have now determined unambiguously the
relative sign of the F» and D» ~m couplings and
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accounted for all the F» inelasticity. Thus we
have made a significant improvement over our
previous analysis. '

5. Ne decay modes. In our analysis the e is a
slowly varying effect over the Dalitz plot. Hence
Ne decays may also be interpreted as direct three-
body mmN decays of a given 4

3B. I=- states
2

1. For E & 1540, all of the I = a amplitudes are
small, whereas for E ~ 1650 MeV (where we again

have data) the S3] D33 and P33 amplitudes are al-
ready large. This means that we cannot observe
the complete anticlockwise motion in these chan-
nels.

2. The presence of two low-energy Pgg s'tates
(-1410 and -1730 MeV) implies the need for two
I'» states in most schemes, while the (56, l. =2+)
supermultiplet requires yet a third. In terms of
partial-wave analyses, the situation is confused-
the two EPSA's disagree; likewise our solutions
A and B. We compare the CERN and Saclay pa-
rameters:



3206 D. J. H ERNDON

yrN Fsg~
jlio I 'r'' 'I '' I '' r'' r '''r6

1.4

AN Fs7~
r I 12 r r r r r

5

E4
v3

4r2

b
1

0

] q2

from below

1-3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.2 i-
",

4

,FF3S ~3'"

0

r - r r r

,F

10:-

u8
6

2
0'.
1.3

from below

l'

. . r.f. . . r. . .
1r4 1,5 1.6 1.7 1.8 1.9 2.0

OoZ r r r ' ' r ' r ' ~

0.1- 4 0.1-

-R 4

0.0
1.3 1.4

0.2 . -. -

1.5 1.6 1.7 1.8 1.9 2,0
—4 4

Q Q
1.3 1.4 1.5 1.6 1.'? 1.8 1.9 2.0

0.2

0.1- 4 0.1-

,F

4 4

i
Q Q

-.4

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.04 S (GeV)

Q Q r

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
o' 8 (Gev)

FIG. 16. (a)-(e) Argand diagrams and partial-wave cross sections for the elastic and inelastic channels. The elastic
solutions are from CERN 1972 (Ref. 1). The inelastic channels are our 1973 solution B. On the Argand plots the nom-
inal resonance energies come from Saclay 1973 (Ref. 2). Arrowheads are spaced every 20 MeV, with a wider arrow-
head at integral hundreds of MeV. Lower-/ waves are plotted starting at Ms=1400 MeV; higher-l waves start where
introduced into the fit. Last arrowhead is always at 1940 MeV. To show the gap in our data the straight line joining
the five arrows in the gap has been deleted. The + or —signs at the upper left of each circle show how to transform
from our sign conventions to the "baryon-first" convention. "New" indicates one of the four waves used in solution B
only. Nine pr and s signs were changed 5 July 1974. Facing each inelastic Argand diagram of T„,we plot ~T„~ vs
v s. Facing the top (elastic) Argand plot, the total 0;„,&„„,(~ 1 —g ), derived from EPSA, is compared with the sum of
the 0~ from each isobar-model channel plotted below. The small interference terms between channels are taken into
account; see Eq. (3.7). Note that the 0's, as plotted, are labeled by isospin, not charge, so to get 0{T( P -N«) one
must use 30(I =2) + 30(I =2). Numerical values for our amplitudes are listed in Ref. 44.

Mass 1 y
(Mev) (Mev)

CERN' 1680 220 0.1

Sac lay 1900 204 0, 19

Authors' own "crude" estimate of resonance quality

poor

good, but in need of clarifica, tion

Our solution A does not show these resonances,
but our preferred solution B is consistent with
the existence of both.

3. Eq&. In both solutions A and B we have evi-

dence for a,n F-wave ~& system, a.s do Mehtani
et al. ,

' a.lthough one might expect, on kinematica, l
barrier-factor arguments, the P wave would dom-
inate. In our solution the decay into Np domin-
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TABLE VIII. Characteristics of each partial wave.

Partial wave EPSA results (Ref. 2) Discussion of our results

Decay channels and
general comments
on our resul. ts for

Sot.ution B

M =1520; X,„.i-0.45 Not clearly observed in our data; this is con-
sistent with a large branching fraction
( 0.55) into ~ (see Ref. 3).

M = 1670; X;ne) 0.85 Resonant loops are clearly present in the
dV and pN channels. Some evidence of
coupling to 7th, .

mN, eN, pN, 7tA

2280
& X ine) Not sensitive to this state above our energy

range.

1410' X &net 0 45

]73P, X ~P

Resonance behavior in 7th and Ne channels.

All channels show a small loop, distinctly
narrower than EPSA width of 164 MeV.

7tN, mD, eN

mN, 7tD, cN

Pic M = 1700; X inc} 0.85 Clear resonant behavior is observed in the
pN channel.

7t N, p n strengthens
the observation in
E PSA

D(3 1520' Xinel 0 45 Strong resonant behavior in the Np and &b,

channels (even though Np is 300 MeV below
threshold) .

~N, pN, 7th,

1710' Xinel Clear resonant motion in cV and ~d, but
distinctly broader than EPSA width of 100
MeV.

xN, eN, mb,

First unambiguous ob-
servation of resonant
behavior in this region

D(5 M =1660; X;net 0.6 The x6 channel. s show strong resonant
behavior, saturating the unitary bound
near the accepted resonant mass.

M = 1680& X ines 0.4 This resonance is observed in eN, pN,
and ~b, with comparable strength.

xN, eN, pN, xD

M= 1.620~ Xinel 0.70 We lack the experimental data which would
reveal the behavior of this wave in the reso-
nance region. The present points above 1650
show a smooth behavior which is compatible
with the accepted resonance mass.

mN, mD, pN

P3&

P,)

M = 1790 X e& 0.85

Suggestion of reson-
ance with M- 1900;
Xinel 0 8

No evidence for resonant behavior.

Fast Dx motion across gap suggests resonance
near 1700, i ~ e., below EPSA value of 1900.
t See discussion in Sec. VI. B2.I

D33 M 1720; X,„,i 0.85 Our analysis is consistent with a resonance
interpretation for ~A and p N .

mK, mD, pN

F35 M -1870; X,n„-p.85 Strong resonance behavior seen in pN
channel small. er coupling to mA.

xN, pN, 7th

1930' Xinel 0.6 Clear resonance behavior is apparent in pN
and xb, channels.

rN, pN, gg
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ates, and this final state allows us to saturate the
EPSA inelastic cross section prediction.

4. Fgp. This resonance is observed both in the
m~ and Np channels. However, these two chan-
nels do not saturate the predicted inelastic cross
section (only -60%%uo is accounted for). The strong
Np decay might well be expected again as this
resonance is a dominant feature of photoproduc-
tion.

~. Pgq, Dqq. These waves fall short of the EPSA
predictions. In particular we find no need for any
D3, interactions, i .e ~,

o,„(D„)=0.

Thus, if there are any low-lying D35 resonances
they do not couple to the w4 or Np channels. How-
ever, EPSA does predict a large inelastic cross
section from the wave (-4 mb), and this is a short-
coming of our results, although it probably has a
simple interpretation. [See E 1 below. ]

C. The origin of solution B and the new waves added

We were motivated to study the stability of solu-
tion A by the observation that some of the relative
coupling signs between resonances in our lower-
energy region and resonances in our upper energy
region (in solution A) conflicted with the predic-
tions of broken SU(6)~ (Ref. 30) and Melosh trans-
formations, "although within each energy region
there was consistency with theory. Thus we stud-
ied several ways in which another continuation of
the partial-wave amplitudes across the energy
gap might be achieved. A second solution —our
solution B—was found in the following manner.
We added many new waves (admittedly suggested
by theory") and reperformed our whole fitting
process. This led to the new solutions in the
two energy regions which allow a different con-
tinuation through the energy gap and hence the
new solution B. This solution is an even better
fit to the data than solution A, and furthermore
the signs of the DD„(1520)and DD„(1660)are
now in good agreement with the theoretical ex-
pectations.

The four new waves are SD» in m&, DD33 in m~,

EEy5 in n &, and PPyy in Np, .
From the previous discussion of this section it

is clear that within the energy regions in which
we have data there is little difference between
these solutions. The important test lies in the
"gap" through which we have to make a K-matrix
extrapolation. Thus this result emphasizes the
need for the free availability of complete data sets
or at least a reliable partial-wave analysis in the
energy region 1540-1630 MeV.

D. Resonance parameters

We have resisted the temptation to quote any
resonance parameters in this paper. The problem
of extracting these quantities is difficult and is
the subject of the companion papers. """

E. Further comments

We would like to call attention to some conclu-
sions we may draw from the absence of certain
waves (D»), the failure to reach EPSA predic-
tions (P», F»), the poor fits to the n'n'n state,
and the general deterioration of the fits at the
higher energies.

1. vr+w+n and N~~ final-state interac tions

Our predictions for &r(w'w'n) are a factor of 2
too small (-2-3 mb unaccounted) at the higher
energies. This is not surprising, as only the m&

intermediate states of our isobar model connect
with this final state, and from inspection of the
m'n mass spectra it is clear that Ny/2 isobars
(P„,D,~, F», D„)may be present. Furthermore,
if one considers low angular momenta in the mN,*&,

system one finds

vN~(D, ~) in a P wave
are derived from D35,

wN*(F») in an S wave

wN*(P») in an S wave would be derived from P»,
which suggests that our previously noted failure
to reach the P» and D35 predictions is associated
with not including N* final-state interactions.
This suggestion can be further substantiated if
we note that

o . . (P»+D»+F»)=o, „„„„„(w+v'n)+o(wwwN).
missing

Finally, the inclusion of these waves would have
an appreciable effect in the n'n'n final state,
whereas Clebsch-Gordan coefficients reduce their
effect in the other single-pion production reac-
tions so that our analysis of those channels would
probably show little change.

2. Peripheral nucleon

The deterioration of the fits at higher energies
is generally associated with being unable to en-
tirely account for the onset of peripheral pro-
cesses. This probably indicates the necessity
for inclusion of m exchange in the production of
the Np final state, so that higher partial waves
are generated.
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VII. CONCLUSIONS

Elastic phase-shift analyses only relate to one
aspect of the nN interaction, and the analysis de-
scribed here represents a substantial progress in
providing complementary information on the in-
elastic channels.

This analysis has demonstrated that isobar-mod-
el partial-wave analyses of inelastic final states
can reproduce the detailed nature of the data.
This then allows the observation of resonances in
inelastic channels.

We have evidence for the existence of a
D»(1700), long predicted by the quark model.
The existence of a P»(1700) is corroborated
through a strong pN coupling. Qur preferred
solution 8 indicates a P»(1700) resonance. Fur-
thermore, we have strengthened the interpreta-
tion of many resonances due to our observation of
them in the inelastic channels Np, Ne, and m~.

Earlier analyses have produced limited n~
Argand plots, but this analysis presents the first
full Argand plots for all three channels, Np, Ne,
and n&. These begin to allow a complete picture
of the vN interaction, accounting for almost all
of the inelastic cross section.

Finally, we are at present using these ampli-
tudes to study resonance parameters and cou-
plings and their relations in other theories of had-
ron interactions. "'""
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APPENDIX A: MAXIMIZING THE SCALE PARAMETER

IN THE LIKELIHOOD FIT

In Eq. (4.11) remember that ¹R'/a' is the num-
ber of events v' predicted by the parameters A,
so write

= g v'(A) =- v(A) .

L=B -'"' 11p, (A).
&=1

Introducing the scale factor of Eq. (4.12),

A=sA,
we have

v(sA') =s'v(A') -=s'v'

(A1)

(A2)

H p ( A') = '"Hp;(A'}.

Equation (Al) becomes

L(sA') =Be ' s'" IIP;(A"), (A3)

and the last factor gP; is independent of s. Com-
bining it with B, we have

Ao) Boe -s u s2N (A4)

Then

lnL(sA, ) = lna' —s'v'+ 2N lns

and

a 2N
lnL(sA, }—= —2s v'+ —.

~S S
(A5)

To find s'~~ „-=s', set (A5) =0, and we get Eq.
(4.18), i.e.,

N

vo QN'R'(Xo)/o' ' (A6)

L(s A') =B'e "—
0

and this in turn into (AS)

(A4m)

N

I.(s A') =Be "
~ P,. A') .

0 1

(A8m)

Now that s is maximized, we see that (A3m)
is independent of the over-all magnitude of A',
and we can drop its superscript zero and call it
A. For the purpose of searching in A space for
L„„,we emphasize factors containing A:

¹B' A)L(s A) =Be "N" g, Il P&(A),

(A7)

lnL(s A ) =const Nln-¹B'(A)

Equation (A6) is derived in Miller's thesis, "but
there s' is written by mistake as s. W'e now insert
our result (A6) into (A4),

For this discussion the first product in Eq. (11) is
only a constant B which does not depend on A, so
Eq. (4.11) becomes

+g lnP;(A) .
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We actually work with the average of this pre-
maximized L, which we call F(A),

Assume a starting value x„yo. Then the first step
ls

F(A) = —lnL(s A), (A8}

APPENDIX B: EXAMPLE OF STEPPING PROCEDURE

WHEN VV'~f MATRIX IS SINGULAR

As an example of the method discussed in Sec-
tion IV D4, consider the function f (z)= —z'+2z+1,
but let z =x+y, i.e.,

F(A) = const —ln g, + —g Inp&(A) .
N'R'(A) 1

O' N !=1

(A9)

The factor I/N in (A8} makes F roughly indepen-
dent of N, so it is easier to compare fits at dif-
ferent energies where there are different num-
bers of events. Equation (A9) is the same as Eq.
(4.20) of the text.

(1 I '}
—V'VFO=+ —

( 2[1 —(x, +y, )] )

(1 —(x, +y, ) )
2 (I —(x, +y, ) )

Thus

(
x, ) (x,)

I-V vF, (B7}

(B8}

f (x, y) = —(x+ y)' + 2(x+ y) + 1, (Bl} xo &o 1 ~o &o

1
Vf =2[1 —(x+y)]

1

and (112)

vv'f = I —2 —2

The two normalized eigenvectors of && f are

where f has a maximum at z =x+y =+1. In this
case, we clearly have a redundant parameter.
Now

and we are at the minimum in one step, as we
should be since F is quadratic.

Thus the problem in a multidimensional case re-
duces to finding the eigenvectors with zero eigen-
values, subtracting the rank-one matrices gen-
erated by these eigenvectors, inverting the re-
sulting matrix, and finally adding back the rank-
one subtractions.

In the case of likelihood problems such as ours,
the eigenvector for scale changes is A and the
eigenvector for phase changes is iA, Thus we

automatically had the necessary two eigenvectors.

I/WZ ) (- I/Wa)

Let
VV f = —4v, v, +Ov, v, .

M = && f —V2 V2 = —4 V~ V~ —V2 V2

Clearly,

2 2
= —4V~V~ -V V

Now let

(84)

{B5)

+V, V, = —4V, V,

{B6)

with eigenvalues -4 and 0. Note that Vf can be re-
expressed more clearly as vf =2v2 [1 —(x+y)]v,
+Ov2. Now

APPENDIX C: CHOICE OF ANGULAR MOMENTUM
BARRIER FACTORS AND OF THE A'~ RADIUS

Unfortunately three different forms of barrier-
penetration factors B~{QR} are now common in
partial-wave analyses. This appendix compares
them in Fig. 17, points out that for I.=2 they may
differ, and makes a plea for using the standard
Blatt-Weisskopf factors, which have recently been
given considerable support by von Hippel and
Quigg

In the text, Eq. (3.10}, we used the notation b~
for the barrier factor for the amplitude T; here
we use the more standard notation B~ (=~ b~ ~'}

for the barrier factor for the intensity
L
T12. The

"industry standard" for B~ is taken from Eq.
(5-8), page 361, of Blatt and Weisskopf" {where
they are called v, }.,
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2

Bo-1~ B& = —,)1+x' ' ' 9+3x'+x' '

(Cl)

00 02 04 06 08 l 0 Q(GeV/cj fpr R ) Ferm
0.0 O.S l.6 2.4 5.2 4.0 = —Fermi

.0 ) I I I I

where x=QR. These B~ have the property that
their inflection point is at about QR = L. For
x «L, they start off as

0.8

x'~

, [(2L —1)~~]~ ' (C2)
0.6

and for x»L, B~ -1. Figure 17 gives Bl, vs QR
for I.=1 to 7.

There is general agreement that the B~ should
start out as x' and should approach unity for
large L; but before the 1972 paper of von Hippel
and Quigg, "the detailed form (Cl) was regarded
with some skepticism by particle physicists be-
cause it was derived by assuming that the region
of interaction was a square well. This is reason-
able when the intermediate state is a nucleus,
which is what Blatt and Weisskopf had in mind,
but less convincing when it is an N*. Accordingly,
many physicists just used the low-QR form {C2),
or perhaps a form somewhat like that for L= 1,
which has the correct limiting properties at both
ends

2L

B const+x'~ '

but in general does not have its inflection point
near QR =L. von Hippel and Quigg have now shown
that form (Cl) can be rederived using only the pro-
perties of the radial wave function U~(x) ~xh~(x),
where h~ is a Hankel function. For more discus-
sion and an approximate form, see Ref. 40.

Figure 17 shows not only the Blatt-Weisskopf
form of B~, but the small-QR approximation for
L=1 to 3. As one expects, both approximations
fail badly by QR = L. This brings us to our pro-
posal. Now that the Blatt-Weisskopf form has
been well justified, why not use itT Then, once
most analyses use the same barrier, we can go
on to gather experience on the best value for the
radius R.

Next we take up the question of what value to
choose for the radius parameter R. Barbaro-
Galtieri" has done a thorough analysis of the
4(1336) peak and finds that R should be about
1 F. Yet when R is used in a far more indirect
way to do SU{3) fits, it turns out that values of
0.2 F,4' or even zero, '~ work best.

The radius question, specifically as it applies

c3 04
(Q

0.2

0.00 6
x=QR

l0 12

FIG. 17. Blatt-Weisskopf barriers I.Eq. (C1)] for L =1
through 7, compared with their approximate forms [Eq.
(C2)] for low QR.

to our reaction mN mmX, has recently been stud-
ied at Saclay by Dolbeau~' in his isobar analysis
in the Ws range 1390-1740 MeV. These fits are
very sensitive to the radius, particularly near p
threshold around 1700 MeV. Dolbeau finds a best
radius of -4 F, i.e., in between the large value
favored by the 4(1236) and the small value favored
by SU(3). Specifically he finds that 1/R should be
750+ 250 MeV/c.

Finally a comment on what we ourselves did.
Because of a programming mistake, we started
our fits using the small-QR approximation {C2),
and did not catch the mistake until so late that it
was expensive to refit. But now Dolbeau's finding
that the best value of R is only & F keeps QR so
low that it does not pay for us to refit. Specifical-
ly, consider the kinematics of our reaction even
at our highest energy Ms=1970 MeV, and set ft
= ~», MeV/c. Then for

xN- 4(1236)w, Q~=Q, —= Q =393 MeV/c, Qft =0.52,

-p(770)N, Q~=Q„=—Q =500 MeV/c, QR =0.67.

This means that near the resonance bands of our
Dalitz plots, where rve find most of our data, the
small-QR approximation is quite good, and we
have decided not to refit. In our K-matrix pro-
grams for energy-dependent fits we have always
used the standard Blatt-Weisskopf form {C1).



3212 D. J. H ERNDON e/ gl,

"Work supported by the U. S. Atomic Energy Commission.
g Present address; Lawrence Livermore Laboratory,

Livermore, California 94550.
$ Present address: CEN, Saclay, France.
5 Present address: DESY, Notkestieg 1, 2000 Hamburg-

52.
~~

Present address: Nuclear Physics Laboratory, Oxford,
OX1-3RH.

~S. Almehed and C. Lovelace, Nucl. Phys. B40, 157
(1972). For earlier references, see our Ref. 3.

2R. Ayed and P. Bareyre, paper presented at the Second
International Conference on Elementary Particles, Aix-
en-Provence, 1973 (unpublished).

3Particle Data Group, Rev. Mod. Phys. 45, S1 (1973).
4A. D. Brody et al. , Phys. Lett. 34B, 665 (1971)~

'U. Mehtani et a/. , Phys. Rev. Lett. 29, 1634 (1972);
Y. Williamson et al. , ibia. 29, 1353 (1972); A. Kernan
et a/. , in Baryon Resonances —73, proceedings of the
Purdue Conference on Baryon Resonances, edited by
E. C. Fowler (Purdue Univ. Press, Lafayette, Indiana,
1973), p. 113.

6P. Eberhard and M. Pripstein, Phys. Rev. Lett. 10, 8

(1963).
'B. Deler et a/. , Nuovo Cimento 45A, 559 (1966),
M. DeBeer et al. , Nucl. Phys. B12, 599 {1969);B12,
617 (1969). Further analyses may be found in the
theses of B. Deler [CEA-R-3579, 1969 (unpublished) j;
G. Smadja [Orsay Series A, No. 556, 1969 (unpublished)],
M. P. Chavannon [D. Ph. P. E. Saclay, 1971 (unpub-
lished) J, Nguyen Thuc Diem [CEA-N-1602, 1973 (unpub-
lished)]; in the recent papers by J. Dolbeau and F. Tri-
antis, paper submitted to the Second International Con-
ference on Elementary Particles, Aix-en-Provence,
1973 (unpublished); P. Chavannon, J. Dolbeau, and
G. Smadja, Nucl. Phys. B75, 157 (1974); J. Dolbeau,
M. Neveu, F. A. Triantis, and C. Coutures, ibid. B78,
233 (1974).

~M. G. Bowler and R. J. Cashmore, Nucl. Phys. B17,
331 (1970).
W. Chinowsky, J. 3I. Mulvey, and D. H. Saxon„Phys.
Phys. Rev. D 2, 1790 (1970).

~~D. J. Herndon et a/. , LBL Report No. LBL-1065/SLAC-
PUB-1108, presented to the XVI International Confer-
ence on High Energy Physics, Chicago-Batavia, Ill. ,
1972 (unpublished).
A. D. Brody et al. , Phys. Rev. D 4, 2693 (1971).

~3U. C. Riverside-LBL collaboration; see U. Mehtani
et al. and Y. Williamson et al. , Ref. 5.

~D. J. Herndon, P. Soding, and R. J. Cashmore, pre-
ceding paper, Phys. Rev. D 11, 3165 {1975)~

~5G. Smadja, LBL Report No. LBL-382, 1974 (unpub-
lished). We have founcl a mistake in this paper which
greatly underestimates the problem.

~ "R. Aaron and R. D. Arnado, Phys. Rev. Lett. 31, 1157
(1973); G. Gustafson, Nucl. Phys. B63, 325 (1973).

'The preliminary conclusions of R. Ascoli {private
communication, 1974) are that the corrections will not
be very significant.

~BY. N. Goradia, T. A. Lasinski, G. Smadja, and
M. Tabak, LBL Report No. LBL-3011, 1974 (unpub-
lished).

~~S. D. Protopopescu et a/. , Phys. Rev. D 7, 1279 {1973);
B. Hyams et al. , Nucl. Phys. B64, 134 (1973);
P. Baillon et al. , Phys. Lett. 38B, 555 (1972).

2~D. J. Herndon, Ph, D. thesis, University of California,

Herl. eley, 1972, LBL Report No, LBL-544, 1972 (un-

publisheded)

.
~~J. Blatt and V. F. Weisskopf, Theoretical Xuc/ear

Physics (Wiley, New York, 1952).
~ln our case, four kinematic variables are needed for
each event: two Dalitz plot variables, and two angles,
9 ancl c . The Dalitz plots of Figs. 2-4 require 10-100
bins, The cos0 distributions of Fig. 5 need -20 bins
and the 4 distribution needs another 10 bins. The total
number of bins is then -2000-20000, while the experi-
ment has only -10000 events at each momentum.
Under these circumstances, the event population in
each bin would be too small tn allow the assumption of
a Gaussian distribution. It follows that the maximum-
likelihood technique mould be the most appropriate
fitting method to apply in our experiment.
L. R. Miller, Ph. D. thesis, University of California„
Berkeley, LBL Report No. LBL-38, 1974 (unpublished).

2"F. T. Solmitz, Ann. Rev. Nucl. Sci. 14, 379 (1964),
Eq (36).

-5W. C. Davidon, Computer J. 10, 406 (1967).
~"P. Eberhard and %. O. Koellner, LBL Report No.

UCRL-20159, 1970 (unpublished).
-'P. H. Eberhard, A. H. Rosenfeld, and M. Tabal',

Group A Memo (private communication, 1974).
Some of the numbers and conclusions in this paragraph
cliffer from those of Miller's thesis (Ref. 23), which
we now think are wrong.

2~Eventually.
+D. Faiman and J. Rosner, Phys. Lett. 45B, 357 {1973).

We gratefu11. y acknowledge the help of David Faiman,
who suggested the four new amplitudes which led to
the disc overy of sol ution B.
E. Flaminio, J. D. Hansen, D. R. O. Morrison, and
N. Tovey, CERN-HERA Reports Nos. 70-4 and 70-7,
1970 (unpublished).

3""R. Longacre, Ph. D. thesis, University of California,
Berl.eley, 1973, LBL Report No. LBL-948, 1974 (un-
published); R. Longacre et a/. , LBL Report No. LBL-
2636/SLAC-PUB-1389 (unpublished).

3 R. H. Dalitz, in ~X Scattering, proceedings of the
Conference on 7' Scattering, Irvine, California, 1967,
edited by G. L. Shaw and D. Y. Wong (Wiley-Inter-
science, New York, 1969), p. 187.
F. J. Gilman, M. Kugler, and S. Meskov, Phys. Lett.
45B, 481 (1973); Phys. Rev. D 9, 715 (1974)~

'R. J. Cashmore, in BaryonResonances —1973, pro-
ceedings of the Purdue Conference on Baryon Reson-
ances, edited by E. C. Fowler (Purdue Univ. Press,
Lafayette, Indiana, 1973), p. 53.

+A. H. Rosenfeld, in Lectures at the International School
of Subnuclear Physics, Erice„Sicily, 1973 (unpub-
lished); LBL Report No. LBL-2098 (unpublished).

~ R. J. Cashmore, D. W. G. S. Leith, R. S. Longacre,
and A. H. Rosenfeld, LBL Report No. LBL-2635/
SLAC-PUB-1388, 1974 (unpublished) ~

R. S. Longacre et al. , Phys. Lett. 55B, 415 (1975).
""F.von Hippel and C. Quigg, Phys. Rev. D 5, 624

(1972).
"OA. H. Rosenfeld, in Particle Physics, proceeclings of

the Irvine conference on Particle Physics, 1971,
edited by M. Bander, G. L. Shaw, and D. Y. Wong
(A.I.P. , New York, 1972).
A. Barbaro-Galtieri, in Properties of the Fundamental
Interactions, proceedings of the 1971 In:ernational



PARTIAL-WAVE ANALYSIS OF THE REACTION nX —mmW. . . 3213

Summer School "Ettore Majorana, "Erice, Italy,
1971, edited by A. Zichichi (Editrice Compositori,
Bologna, 1973); LBL Report No. LBL-555 (unpub-
lished). See particularly Table V.
D. E. Plane et al. , Nucl. Phys. B22, 93 (1970).

4 J. Dolbeau, Ph. D. thesis, 1974, D. Ph. P. E., Saclay
(unpublished).

44D. J. Herndon eI' al. , supplement to LBL Report No.
LBL 1065 {Rev.), 1974 (unpublished) or SLAC Report
No. SLAC-PUB-1108, 1974 (unpublished).








