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Relativistic second-order energy in infinite fermion matter*
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The second-order terms in the energy per unit volume or energy per particle in infinite fermion

:matter are calculated for scalar, vector, and pseudoscalar meson exchanges.

I. INTRODUCTION

(P)+ gg + (P)+'''. (1 2)

Although it has long been accepted that the in-
teraction between nucleons is mediated by meson
fields, except for the early work of Johnson and
Teller' only relatively recently have attempts
been made to develop a meson field theoretic
treatment of nuclei. A semirelativistic self-con-
sistent formalism was given in Ref. 2, and a fully
relativistic treatment has been attacked in Refs.
3 and 4. Further interest in such theories comes
from possible implications of spontaneous sym-
metry breaking for nuclear matter energies. '

This paper is, like Ref. 3, devoted to the prob-
lem of a relativistic formalism for infinite nuclear
matter. In infinite matter, if meson-nucleon cou-
plings are assumed to be of Yukawa type, the en-
ergy per unit volume E is a function only of the
density p and the squares of various coupling con-
stants,

&(p, g=).
The assumption of perturbation theory is that it
makes sense to expand I' about g =0

will be necessary to compute fourth-order terms
in order to get some idea of the convergence of
the perturbation expansion.

In Ref. 3 a somewhat different approach was taken,
in that some of the perturbation series terms were
summed to infinite order by incorporating them
in the nucleon effective mass (this is also done
in Refs. 4 and 5), but the full second-order terms
were not calculated. Here the full second-order
terms are given; Sec. VI contains remarks on
selective summation of graphs.

This paper gives the formal development only
for the scalar meson case. The vector and pseu-
doscalar cases are similar; only the results a,re
presented for them.

For the field theoretic ideas, the reader is
referred to the books by Bogolyubov and
Shirkov' and Schweber. ' The metric used here
is (1, —1, —1, —1) as in Ref. 7. Of course the
units are chosen so that 5 =c= 1.

II. DESCRIPTION OF THE PROBLEM

The Hamiltonian that will be considered here
describes the interaction of a fermion field g(x)
with a scalar meson field P(x) via a Yukawa cou-
pling:

In this paper E"' and the E';" will be calculated
for scalar, vector, and pseudoscalar mediating
meson fields. The only interest in the procedure
comes from the fact that the underlying vacuum
field theories have the usual ultraviolet diver-
gences; the manipulations necessary to obtain
the correct finite values of E~' and E are not
completely trivial.

The usefulness of just the first two terms in
the perturbation expansion (1.2) might seem du-
bious for cases where the coupling constants are
as large as they are in nuclei. However, it should
be noted that the Hartree-Fock approximation,
which is often used to treat nuclear phenomena,
is just such a second-order perturbation approxi-
mation. The second-order approximation to (1.2)
can be expected to be as useful as the Hartree-
Fock approximation. Eventually, of course, it

H= fg"(o' p+Pm) g+ z [ Q'+(&Q)'+p~' P ]

~s 4Q 0 -( 40)0.)'Idx+ Hc (2.1)

y(x) = y p(x) +)t(x), (2.2)

where Pz(x) is a static c-number field (also uni-
form in infinite uniform matter); then H can be
rewritten

where H~ contains the counterterms that are to
be chosen in the usual way so as to renormalize
the theory at zero fermion density. The notation

( gy) p, is used for the expectation value of Pg in
zeroth order for density p; the term ( gg)00 is in-
cluded because the combination g P —( fr/)oo is nor-
mal ordered for p =0.

In order to consider infinite matter at density
p, it is convenient to set
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H = H» + HI p
+ Hc ~

0'(~ p+ P~) 4

+ 3 [X'+(VX) +Ps X ] ~

HI p Hrp p+ Hlj, p
+ HI2 p+ HI3

~ p

where Z p' is the zeroth-order energy and 0 is the
volume of the system.

The boson Green's function at density p is the
same as at density zero

D, (u) =D.(~)

=&(P)

IIro, p= ,[-'(- &'+ v') 4p

-as(& OC)P3-& 04)«)]
(2.3)

2 1
(2m) p' —p'+. i0 ' (2.8)

while the fermion Green's function, which at zero
density is

HI1, p gs X 0 po
i 1""=(2.) p-I+io

HI. , = -as

HI3, p=

f = (- &'+ ~') 0, Zs(( 4O-&,. (4C)«-)

For p =0, all the terms involving P, are just ex-
actly of the same form as some of the counter-
terms inHc; it follows that P, can be chosen to
be zero, and Q p

is equivalent to Pp —p, .
The eigenvectors of Ho p

are easily constructed
from the plane-wave fermion eigenstates of the
operator Z p+Pm and from the plane-wave boson
states. The state Ip, 0) is the ground state of H,
with fermion density p; it corresponds to all neg-
ative-energy states filled and positive-energy
states filled up to momentum P p(p) with

P =&V'0)P3 —
&tt '4)«

2

(2 )3 EP

y 3
2 ~F (2.4)

d~p -=d p6(P~ —
I p I ); (2.5)

if P, appears in such an integrand, it is to be un-
derstood that p, takes the value

p, = e(p) = (p'+ m')'~'. (2.6)

The expectation value of H, p
has divergent

terms, but the difference (H, p)p, (Ho, )« is fi-—
nite'.

H'p" =
&Ho, p) p, o -&Ho, o)0,3-

Here y is the number of kinds of fermions present:
y = 1 for neutron matter and y = 2 for nuclear mat-
ter. The notation d~p will be used for integrals
in which p is integrated over the finite Fermi sea,

2 + I
(2w)4 [p, +e(p) —i0][p, —e(p)+ iq(p)]

=i .(P)+G p.(P),

~,.(p) =- „...(-) f.(u. s(p))-, (2.10)

n(P) = Ipl (Pp

o+, IVI)Pp

&z(P. -s(p)) =- &(P.-~(p)) ~(Pz —
I 5 I)

The basic idea now is that the perturbation the-
ory based on H, p

and the state I p, 0) is very like
the perturbation theory for the vacuum based on

H, p, and the state I p =0, 0). The differences be-
tween the two involve the following: (1) Some
terms inHI p

differ from those inHI „however,
these differences are such as to lead to finite re-
sults for physical quantities. (2) The fermion
Green's function at finite density differs from the
vacuum Green's function. This difference is non-
zero only inside the Fermi sphere and therefore
cannot give ultraviolet divergent integrals other
than those that already appear in the vacuum per-
turbation theory.

III. SECOND-ORDER ENERGY

The calculation of the second-order energy of
the system at density p illustrates how the diver-
gences cancel. FromH, it is clear that this cal-
culation requires that g be known to first order.
In first order, P p

is determined by the require-
ment that the (constant) function f in HI, p

be zero
so that

(2.9)
(2w)4 [p, +e(p) —i0][p, —e(p) + i0] '

becomes at density p

2y 0
(2m)3 (p) d~p, (2.7) 0',"= apV'/u s'
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for uniform matter. The value of p~ is given by

PP~=( 04&,o (-00&-

2y 6~p
(2w)' c(p)

'

Thus, the second-order term inHI, ~
is

(3.2)

(3.3)

FIG. 1. The second-order self-energy graph.

—(2v)' f z."'(/) 5"'(P P')-= [-(»)' fgl' 5"'(P P')-

x d'q D(p —q) G,(q) .

(3.6)
To second order, the fermion mass counterterm

in H, which is

(qq-(qq), )= o~ -f(q.q-(qq), .)

-5 . ((CS&,.-(CS&..),

When Z[' (p) is expanded about p = m,

z."(u) =z!"( ).(u- )z!'](/), (3.7)

the first term must be canceled by the graph aris-
ing from the first term on the right-hand side of
(3.4); this gives

(3.4)
5m['] = Z!'](m) . (3.8)

contributes an energy

5m(~) p)o)g (3.5)

where Sic', the second-order mass counterterm,
is obtained by computing the vacuum self-energy
part of Fig. 1 whose 8-matrix contribution is

The term Z['](m) diverges in the limit as regulator
masses become infinite, but it will be seen that
5m/] does not contribute to the final expression
for ~Z('~.

Finally there are the second-order energy rep-
resented by the graph of Fig. 2 and the correspond-
ing constant counterterm inII~, which has just the
value of the graph of Fig. 2 calculated with the
vacuum Green's function. Thus, combining these
gives

—oq&oo&(o)[oo& && -oo[", ,]= —][-(oq)'&q]'o&'&(o)Tq f[o&(p)o&(q) G(q)o (q)]D—(q —q)«qd q, (3.9)

«& '-«P', =.=(»)'4"'»r [G,.(P)G.(q)+ 2G,.(p)& .(q)]D(P -q) d'P d'q. (3.10)

From (3.6) and (3.7) it follows that The remaining term is

-(»)'4"' G.(q)D(p -q) =z."(P) g 0
8(2m)'

dzpdzq Tr[(P'+m)([f'+ m)]
e(p)e((l) (P -q)' -)]&'

=5m ' +(p' -m)Z!', (p),
(3.11)

so that the first term in (3.10) is

'Y g
2 (2[])'

dy p dp p (pq)+ m

e(p)~(~) ].'-(P-q)' '

(3.13)

P+mQTr
( )o2 ( )

5~( o
— P»

x[5m &" + (p' —m)Z['](p)]

(2 ) 2+Bi
c (2]])o

[o]5m&2]Q (3 12

where, as noted after Eq. (2.5), it is to be under-
stood'that the subscript F on d~p implies that pp
takes the value e(p), and similarly for q, .

and this cancels the «[I'] term of (3.5). FIG. 2. The second-order energy graph.
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Combining the second-order terms gives

(2}
(~) (2)

g E
p D + F

p I p (3.14)

(s) y gv dz P ds (l 4m' —2(Pq)
2 (»)' e(p)~(q. ) ( v' (p-q)'-'

(,) y g ' d pd„(l (Pq) —m'
2 (»)' ~(p)s((l) } ~' (P -q)' '-

In these expressions ED is the direct interaction
energy while FL„ is the exchange energy. In the

with
1F pDs sgs'pp Ps

(3.15)
(s) y gs dzpdsp (Pq)+ m'

2 (2s)' ~(P)~((l) us'-(P-q)' '

with pP and (I)(p" given by (3.1) and (3.2); the sub-
script S is used to denote that the interaction is
via scalar meson field. Similar calculations for
vector and pseudoscalar fields give (3.14), with

~(2) &

+ y(x }~(0)pDV 2 V p V

y(&)- g p(o)/~

p(') =p

+ p, D, P

nonrelativistic or low-density limit P~ «p, , these
terms are equal to those calculated previously in
the nonrelativistic theory of interactions mediated
by fields'; in this limit the ratio of pseudoscalar
interaction to scalar or vector interaction goes to
zero. Note also that the ratio of exchange energy
to direct energy has the value —(2y) ' in this lim-
it.

In order to explore the relative size of the direct
and exchange energies, numerical computations
were done with p, =800 MeV, m=938.9 MeV for
various values of P„. For scalar or vector alone,
the ratio F,, /FD starts at —(2y) ' for Ps-0 and
decreases to —(3y) ' or —(4y) ', respectively, at
Ps=3 fm ' (corresponding to about ten times nu-
clear density). For combined scalar and vector
fields with equal mass p. =800 MeV and coupling-
constant ratio gs'/gv' = 1.5, the ratio F /FD.
starts at —(2y)

' and increases to about —y
' at

P~=3 fm '. Clearly, I', , can be as important as
FD.

IV. SINGLE-PARTICLE SPECTRUM TO SECOND ORDER

In second order, the proper self-energy part
Z(p')(p) has a contribution from HI, p

of -g(t) p
and

a contribution from the graph in Fig. 1 of

-(q )'i" f&(q -q) G, (q) q'q = q'i" ()() -(q )'q' f&(q -q)(', .(q) q'q; (4.1)

Z(')(P') = Z(')(m)+ (P' -m) Z(')'(m)

+ Z(&) (4.2)

the counterterms in Hc that are (luadratic in ( and

g renormalize Zo(')(p) to Zo('),„(p), where
Z(p", , ,v(P) = gv l'pP

3
RV

2(2)()'
(4m —2 q) ds (1

(v' (P-q)' e(-(l)
'

(4.5)

so that the total second-order self-energy part is

(4.3a)

Finally, for a pseudoscalar field

() g,' g-m ds(l
2(»)' u~' —(P -q)' ~((l)

' (4.6)

—(qq)'iq'f (p- iq)G„q( )d'q q(q.qb).
Subs titution gives

Z p",i,s(p) = -gs 4 p

gs g+m
2(27()' P, s' —(P —q)' s ((1)

(4 4)

for the scalar case. For the case of a conserved
vector field

The single-particle spectrum is given by the
values P,(p) for which the operator

p' -m-z(;)(p) (4.7)

has zero for an eigenvalue. Since Zo(') „(P) is pro-
portional to (P —m)' and (4.7) shows that p —m is
of order g, it follows that the contribution of
Zo('}„„is of order g; it is neglected in the follow-
ing. Moreover, the value of P, that makes the
operator of (4.7) vanish differs from e(p) by an
amount of order gs. Therefore, in Z(s)(P), P,
can be replaced by e(p). Now Z(p')(p, =e(p), p)
can be written in the form A(p') + 8(p')yo
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+C(p ) y P and the operator (4.7) becomes

yo[PD -B(P)]-[»+A(P)]- [1+C(p')]y P,
(4.8)

and it is clear that the exchange terms in (4.11)
are not small.

(4 9)

where, if all meson masses are equal,

2 {o)
A( 2) Zs Ps

Rs 44'v pz '~ dz q
16m' ~(q) v' - (P -&)' '

~(~2) gv I p gs + 28'v +gp{O) 2 2

i6"
d~q

p' —(P v)' '-
(4.10)

with solutions for p, given by

P.(P') =&(P )+ ~[»+A(P')]'+[I+C(P')]'P')",
V. FURTHER REMARKS

In general, the function f in (2.3) mustbe chosen
so that the proper graphs of the type of Fig. 3(a)
cancel to the order of per turbation theory desired.
In this way P p

is determined as a sum of terms
in odd powers of g. In Fig. 3(a), C stands for the
coefficient of the counterterm in'~ that is linear
in y. It is determined by an equation like Fig.
3(a) with f = 0 and all graphs evaluated using vac-
uum parameters. It follows that f is determined
by the equation shown graphically in Fig. 3(b),
where only differences (graph-vacuum graph) ap-
pear.

C(-2) Zs'+2' +a'»' P 'q d» q
$6~ 3 p2 ~(q) u' (P —~)' —'

here P, is to be replaced by e(p) in the integrands.
If the masses are unequal the appropriate general-
ization of (4.10) is obvious.

In A and B, the first term is the direct inter-
a,ction term; the remaining term in ea,ch of A. , B,
and C is the exchange term. Again the exchange
terms are of the same order of rQagnitude as the
direct terms. For example, ln the nonl elatlvlstlc
limit P» «p, , ~ P ~

«p, , A takes the value

A. =p +

(4.11)

In this limit C is smaller than A/» by a factor
P»'jg'; if C is neglected, the effective mass from
(4.9) is

VI. GRAPH SUMMATION

Once the theory is developed in terms of Feyn-
man graphs with associated factors, it is always
possible to choose various (possibly infinite) sub-
sets of the set of all graphs for selective summa-
tion. For example, the results of Ref. 3 are ob-
tained by summing all graphs that contain inser-
tions of interactions due to II12 p

and no others.
However, as noted at, the end of Sec. III, the ex-
change energy is at least (2y) ' of the direct in-
teraction energy; it certainly is not reasonable to
neglect it in such a summation.
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FIG. 3. Graphical equations to determine f. For explanation, see Sec. V.
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BThe Hamiltonian of Ref. 3 does not have this property.
If the fermion mass in Ho is replaced by an effective

mass m*(p) that depends on p, then the contribution to
(Hp p)pp (Hp p)pp from the filled negative-energy states
1s

[ ( p 2 + m w2)i. /2
( p

2 ~ m2) i/2]dp
(2m)

3

where the integral runs over all values of p. It can be
shown that the linearly divergent term in the above ex-
pression is canceled by a divergent second-order cor-
rection, but I was not able to find terms to cancel the
logarithmic divergence. In any case, it seems that a
theory in which the zeroth-order energy per particle is
infinite is more difficult to deal with than the theory
presented here.


