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We study certain classes of explicit realizations of the supersymmetry algebra, including internal

symmetry, and some of their properties.

We propose to study certain simple explicit
constructions of the supersymmetry algebra (in-
cluding internal symmetry) and some of their
properties. Instead of the full algebra of Wess
and Zumino,' we will consider the subalgebra
studied by Salam and Strathdee,? whose ideas we
mainly follow. Let us first briefly fix our nota-
tions.

We start with a 2-component spinor

+
Q=(Q1, Qs), Q*=<Ql*), (1)
Q.

such that apart from the usual Poincaré algebra
of the generators P ,,J,,, we have (with M, =J,,,
N, =J,, etc. and the Pauli matrices 7)

[T,P,]=0, (2)

[T, M]=:7Q", (3)

[T, N]=2i7Q", 4)
and

{1, Qt=1P°+%-P. (5)

To complete a 4-component Majorana spinor
(Q,, @5, @5, @,) we can introduce

Q'=(Qs, Q) =@, - @) (6)
such that (4) and (5) are changed to

(@1, N]=-2i7Q"", (7)

{f,Qt=1P°-7-P. (8)

Equations (2) and (3) hold also for @’. For the
present we will consider only @ and will introduce
internal symmetry only later on.

As in Ref. 2 we introduce two fermion creation
operators (a,, a,) so that we have

{ai,a,.}=0={a,'*, a.;'r ’ {ai,a}r}zéu
(i=1,2), (9)
or

{a,a*}:‘ro. (10)

(N.B. Please note that, in order to follow the no-
tation of Salam and Strathdee, contrary to con-
ventional notation we are denoting the annihilation
operator with a dagger.) Let

2::%(alaf-a2a;),
f=3F+izf=q,af, (11)
F=zF_izf=qa,a];
thus with ¥ =3(a%a"), we have
[ZF,a')=-3Fa’, (12)

and =¥ are generators of the SU(2) algebra, acting
on a space of spin 3 given by

(o)
a,| 0)

We now make the simple observation that the
inverse of the 2X2 spinor matrix corresponding
to any one of the well-known transformations
which transform the spinor representation to a
unitary one,®*-5 applied to (a,, a,) will lead to the
anticommutators (5) [or (8) according to the type
of fundamental 2-component spinor representa-
tion chosen]. Along with this we will combine a
simple modification of the unitary Lorentz gen-
erators to achieve our goal.

Let us immediately give an example using the
canonical case. Here the 2X2 transformation
matrices are (for a space with P°>0)

[PJ§= m[(Po-f-M)i?‘P]. (13)

[Here M= (P*P ,)"/2, the positive square root. To
include the case P°<0 we have only to write
throughout € M where € =P°/|P°.] Thus, defin-
ing

ay
QT =¢A7[PL< ) , (14)
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or

Qf =[2(P°+ M)]"2[(P° + M + P%) a] +(P* - iP?)a]],
(15)
QI =[2(P°+ M)|"V2[(P* +iP?)a} + (P°+ M=-P%)a]],

we obtain
{Q,QT=1P°+%-B. (16)

Let us now define a modified J ,, as

M=-i(Px3)+(Z+3F),
(1
- o —I;X(-f+-fF)
= - 0 —_—
N=-iP"8 - —peim

We have simply added to the usual (2s +1)
X (2s +1) spin matrix T of the canonical repre-
sentation the =¥ , defined in (11), to constitute
a total spin

Tr=Z+ZF.

The Poincaré algebra is evidently satisfied.
From (15) and (17) one obtains (3) and (4), namely

[ﬁ5 QT] == %?QT )
. (18)
[N,QT]=-2i7Q".
Thus, we have an explicit realization of the entire
supersymmetry algebra acting on arbitrary mo-

mentum states.
We have, from (6),

T Q a
3 _ 2 _ . 1 . 1
< ;*)‘ <_Q>_m[p]_(zfz)<az> (19)

Evidently we might have interchanged the roles
of [P], and obtained (7) and (8) to start with by
directly transforming with [P]_.

We would like to emphasize the following point.
If we modify the Lorentz generators of the spinor
representations in an analogous fashion and write

-

M=-iDPxd+E+2F),

. (20)
=-iP°3+i(Z+2F),

we obtain, evidently, directly for the a’s,

[a,M]=3%a",
(21)

[a*",N]=+3iFa",

along with
{a,a"t=1,. (22)
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Since in (20) TF appear as a direct sum only,
here the Poincaré and supersymmetry transfor-
mations remain effectively decoupled. The sys-
tem (20)-(22) is not equivalent to the one given
by (14)-(17). Considering the case =37 as an
example and transforming (20) with [P],, respec-
tively [for the two signs in N in (20)], we obtain

-
1 PX7 RF

T 0-5__—
N iP 3 poam T

(277
and not (17) (with £ =37).

Thus the combination of the two simple Ansdtze
(14) and (17) permits us to obtain the necessary
properties. One may, of course, add more sets
of anticommuting @’s as an evident generalization.

As we have already mentioned, we can use the
[P], matrices corresponding to other representa-
tions also. We have studied elsewhere® many in-
teresting properties of the null-plane (or light-
cone) formalism. Let us illustrate the introduc-
tion of supersymmetry and internal symmetry in
that context, which also leads to some special in-
teresting features.

We have now the fermion creation operators with
with an internal symmetry index o (see Ref. 2):

ad (i=1,2; a=1,2,...,n), (23)

with

{a%,alTh=06;; 045
and (24)

o 3
VM([P],= (P°+ P~/ PP 0
P*+iP?®) M

Hence,

Q?t =(P°+P3)‘/2 agt‘r ,

(25)

(P1+iP2) ot M

Q?* = (P°+ P32 a, + (P°+ P2 a.; .

Here it is particularly evident that for M=0, a,
drops out. Let

TF=3" (3, (26)
[+3
where
f{a) =3(a*Tat). (27

In the notation of Ref. 5, the independent com-
ponents of P, being p*, p?, and p,= ANZ)(p° +p°),
the modified generators can now be written as
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Jy=-i(P'9, - P?%,) +(Z, +=F),
K3=_ iPnany
B;=-iP,9; (i=1,2), (28)

. . Pp? M

S,=-1i(P,8 +P',) -5 (Z,+ZF) _F(E”Z:)’
1

Sy=—i(P,8+P%,)+ I;—(za+2§)+ Pﬂ(z1 +=F).
n n

It may be verified that @7 satisfies

(@, Q8 =(P°1°+ B F)6,4 (29)
and

(@, M]=27Q*", [@, N]=2i7Q". (30)
Let

Afs=ai af', A%yg=afaf'. (31)
Then

[A%iy8, ATj18']=04;(0 g ATiygr = Bagr A yo)
(¢,7=1,2), (32)

and we have an algebra U(r)®U(n) [or SU(n)
®8U(n)]. Defining

Aj=Afs+ Alyis (33)
we have
(4%, 5F]=0. (34)

Hence, these are the generators of the internal-
symmetry group [the “diagonal U(z)”] commuting
with the Poincaré subalgebra and transforming
the supersymmetry generators as

[ %) Q”]:GByQa ) (35)
since [Afiys, a]]=6;; 65,07 . Let us also note that
[Zf, ((xi )ﬂ] =0. (36)

Hence, the entive Un)® UMm) commutes with the
Galilean subgroup,® or rather, with all the Poin-
caré generators except S,,S,. Since the gener-
ators K, B; suffice to transform any p, to any
other p; on the same mass shell, we are far from
a rest symmetry though it is not totally Poincaré
invariant either. This is a special feature of the

null-plane formalism, and it is not true in general.

We will come back to this point at the end. Our
type of introduction of internal symmetry may
now be compared with that of Ref. 6. While the ¢
transform as spinors, the a® undergo Wigner ro-
tations under Lorentz transformations. The only
nontrivial ones are, in the present case, those
corresponding to transformations e *%'S and are
given by (in the notation of Ref. 5)

D/2(R 5, (u, P)) . 37

Here the momenta are to be considered as oper-
ators as in formula (2.15) of Ref. 5. Similarly,
for the generalized canonical or helicity repre-
sentations the a’s will undergo the corresponding
well-known Wigner rotations.”

In fact, in many respects it is convenient to dis-
card the @’s and consider directly as the super-
symmetry generators the af* which have the usual
fermion anticommutation relations but undergo
some suitably chosen Wigner rotations under
Lorentz transformations.

They are, of course, to be combined with the
usual Poincaré states defined through the corre-
sponding boost.

Let us now consider the construction of states,
using directly the a’s. The usual basis of the
Poincaré algebra using null-plane spin projection®
will be written as

|p, V) =e "B iwky (1) | (38)
where

e“=(p°+p%) /m, v=p/(p°+p?),

p=(p, p,),B=(B,, B,) .

Let f(af) be any polynomial of the creation oper-
ators (only the fully antisymmetrized component
surviving). Then starting, not only from rest
states, but from a state of arbitrary momentum,
and defining

U(A)=e B emi Ky

(39)

we obtain
UA) f(a)|p, v =f(ad) | p', v
(A-p=p") . (40)

This “enlarged invariance” is again a special fea-
ture of the null-plane formalism. For the canon-
ical states we have an analogous behavior for pure
Lorentz transformations such that pxp’=0.

Applied on rest states, the @f coincide with the
vmag. But their transformation properties are
quite different.

The technique of construction of basis vectors
using fermion operators is well known and is de-
scribed in detail in Ref. 8. Let us only note that
because of (37), if an eigenstate of the total spin

(E=(Z+ZF)p

is constructed by using the rotation group Clebsch-
Gordan coefficients in the building of f(a®)|p, v),
then it has indeed a Lorentz invariance signifi-
cance.

Again, since we can consider the a&' directly
as the generators of supersymmetry, their action
on the states f(a)|p, v) is seen to be given simply
by commuting with f(a) since
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ai|p, =0

Once we have constructed the eigenstates of P,
(£1)?, and T3 [the basis being spanned by the
eigenvalues of (£)?, (£F)?, and other internal-
symmetry quantum numbers], the reduction of
the direct products of states with respect to the
Poincaré group can be carried out using standard
techniques.’™” We have to bear in mind the fact
that the fermion operators attached to particles

1 and 2 (ag}yi, @i, and their adjoints) are sup-
posed to anticommute totally for different particle
indices [(1) and (2)|. The operators such as £,
and £{,) mutually commute, as they should.?

As for the internal-symmetry indices, it would
be interesting to study the matrix elements on a
suitable basis of all the generators of the inhomo-
geneous symmeltry group 1U(n) with “anticommut-

ing translation generators” (formed by A, e.a{.a”)~
i

Elsewhere,® we have given a simple construction
for a basis and the matrix elements for usual
(commuting) translation generators. Our present
case is quite different. But in practice we will be
concerned only with low-dimensional representa-
tions. Direct computation for each particular case
will not be too difficult. Once the matrix elements
of this particular type of IU(xz) are obtained, one
may proceed to extract their consequences con-
cerning the matrix elements of operators of phys-
ical interest, assuming that we can atrribute to
these operators definite transformation properties
under the group. One may attempt to do this
through the construction of suitable Lagrangians
or directly through phenomenological postulates.

Let us close our discussion with two more re-
marks.

Elsewhere,'® we have constructed Poincaré gen-
erators for zero-mass continuous spin and space-
like representations which involve the generators
of E, and O(3, 1) apart from P, and 9,. With a
finite number of fermion operators one cannot gen-
erate infinite-dimensional unitary representations
of E, and O(3, 1).!' But we also mentioned that an
analogous construction for the timelike case is
possible with O(4) generators. Thus, for example,
we may write (for M2>0, P°>0),

M=-iBx3+8,
1
(P)

(41)

N=-iP°5+ (P°S +MK) xP ,

where
[su Sz] = isa ’
[SnKz} =iK, , (42)

(K, K,]=1S, , etc.

We have
(_I;% (P°S + MK) = }T_l-ﬁf(,,) + F,—iﬁfm ,
(43)
where
S =3@+K),
(44)

S(.z) = §(§ - ﬁ)

are the generators of two commuting SU(2).

It may be easily verified that a generalization
of the construction (14)—(17) is obtained on intro-
ducing two sets of fermion operators a;, b; and
then defining the corresponding #¥ and @ such that
Q(s) is given by (15) and Q[,, by (15) with M re-
placed by —M. For P°<0 the sign of M is re-
versed in Q;ra), Q?,,). The modified forms of (41)
are, as before, given by the substitution

- . xp
Z(a) = Z(a) +2Z(a) »

- <r
Em~Zwm+Zh) -

We conserve the Poincaré algebra, and Egs. (16)
and (18) hold for both @, and @;). Internal-sym-
metry indices can now be added to both as before.

Lastly, let us consider again Eq. (36). In view
of such a symmetry it would be desirable to be
able to construct states which exhibit representa-
tion mixing of a prescribed type with respect to
the irreducible spaces spanned by the states
(@) |p, ). Inthis context it may be interesting
to introduce operators @ (i=1, 2, 3,4), which are
defined, for example, by a Melosh type of non-
covariant transformation'? instead of a 4-com-
ponent version of (24) and (25). Here we note just
one point. Apart from other problems there is the
fact that transformations of the Foldy-Wouthuysen
or Melosh type violate the Majorana constraint.'
Thus, we will have to deal with 4-component “com-
plex” noncovariant operators.
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