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Hamiltonian embedding is proposed for Nambu’s new mechanical equations. This embedding is studied
in classical and quantized versions, utilizing Dirac’s singular formalism. Nambu’s canonical
transformations are then compared with those of the embedding Hamiltonian.

I. INTRODUCTION

Some time ago, departing from Hamiltonian
mechanics, Nambu® proposed in a very original
paper a new mechanics in a three-dimensional
phase space. After a study at a classical level of
the main features of this mechanics, he investi-
gated the problem of quantization. The purpose of
this paper is twofold: 1. to prove that in the
classical case this mechanics is equivalent to a
singular Hamiltonian mechanics, and 2. to show,
therefore, that the fact that Nambu gets more or
less only the usual quantization scheme for his
generalized mechanics is not so astonishing.

We therefore utilize here Dirac’s? standard pro-
cedure for singular theories. We shall be mainly
concerned with Nambu’s equation:

dr

d—t=$H(F)XEG(F). (1)

We only indicate how to handle Nambu’s various
generalizations of Eq. (1). When faced with such
classical equations the thing to do is to see if it
has any connection with a variational problem.
More precisely, is it possible to embed Eq. (1) in
a system of 27 Hamiltonian equations? Here
embedding implies that any solution of the 2n
Hamiltonian equations will provide us with a solu-
tion of (1). This embedding has to be defined in a
minimal way: The number of auxiliary variables
ought to be minimum. A link between the gauge
and canonical transformations of Eq. (1) and those
of the corresponding Hamiltonian or Lagrangian
should appear. We denote by 3¢ any Hamiltonian
corresponding to such a possible embedding. In
what follows we shall also denote by

T = (%, %y %)

Nambu’s dynamical variables and by ¢ =(q,, - . . ,q,),
p=(p, ...,P, the usual phase-space variables of
JC. The partial derivative with respect to ¢; and
p; will be denoted by D; and D;.,, respectively,
where 7 ranges from 1 to n. The ordinary Poisson
bracket of A and B will be denoted as (A, B).

We can already exclude the case n=1 unless G

11

(or H) is a function of x, only. In this case a
trivial embedding is always possible:

aG
fm(‘lpi’l,)\) = a (A)H(ql,i’p)\) .

Here X denotes a parameter independent of time.
At first sight #=2 could be a possibility: Eq. (1)

would be “three quarters” of a Hamiltonian system
corresponding to ¥(q,, ¢,, P, ,). We formulate
this possibility as follows, denoting by «, v two
variables chosen among q,, q,,0,,p, and by
©(g,, g5, P1, P,) a function. Does there exist 3¢ and
@ such that the following equations hold identical -
ly:

(VHXVG), (4, v, ¢)=(u,5) ,

(VHxVG), (1, v, )= (v,50) ,

(VH XV G),(u, v, @)= (¢, 3) .

We assume in order to have a simple physical
connection between the x; and the ¢;,p; that ¢ is
a linear function. We further suppose that ¢ is
not a function of ¥ and v only. Then, as can be
easily checked, this is impossible for arbitrary
H and G. It seems that this situation is typical
even for a more general choice of ¢.

We are thus naturally led to try #»=3. It is not
clear at all a priori whether Nambu’s variables x;
are to be considered as the position variables ¢; or
as the momentum variables p;. The subsequent
discussion will motivate their choice as position
variables. In both cases the embedding forces H
and G to be constants of motion of the Hamiltonian
system. If x;=¢q;, ¢=1,2,3, an easy computation
shows that 3C is degenerate in the usual sense,

det(D; . ;D;,;3¢)=0 .

This is in general not true if x; =p;. The de-
generacy of ¥ in the first case shows that we have
a singular Hamiltonian theory, i.e., a theory with
constraints. This will decrease the number of in-
dependent variables of the Hamiltonian 3¢ which
are missing in Eq. (1). In both alternatives in-
tuitive Hamiltonians may be readily written:
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*@, D=5 [VH@*V6@®)] , @)
X'@G ) =-4' [VHB)XVGH)] . ®)

Ignoring for the moment the degeneracy of 3¢,
both 3 and 3¢’ give an obvious embedding of Eq.
(1). These two Hamiltonians have a quite different
structure. 3’ is in general not degenerate.
Legendre’s transformation may be applied to 3¢/,
yielding a Lagrangian £’. In the case of 3 the
Lagrangian is 0 if one performs formally
Legendre’s transformation. Referring to the
minimality requirement erplained above, these
consideration seem to indicate that x; =¢; with 3¢
given by (2) is a better choice.

Now one possible way to treat a theory with
constraints is to use Dirac’s method. Dirac
starts with a degenerate Lagrangian and obtains
a total Hamiltonian 3¢;. This explains why if one
uses Dirac’s method it is impossible to start with
the Hamiltonian (2). In Sec. II we find a suitable
Lagrangian giving rise to a total Hamiltonian

3@, D) =v(t, D [VH@) X VC@)] )

for which Dirac’s singular theories do apply.
Here v is an arbitrary function.

We finally remark that in the case of the rigid
rotator, the only physical example quoted by
Nambu, the variables x; are neither position nor
momentum variables. However, if one does not
refer to the physical origin of the problem and
considers these equations by themselves, it is not
confusing to treat these variables as generalized
position variables of a certain Lagrangian.

II. CLASSICAL EMBEDDING OF NAMBU'’S EQUATIONS

We assume that H(q) and G(q) are given C*func-
tions in an open set 2 CR® such that

[VH@ xVG@)],#0 .

To begin with, we exhibit a Lagrangian LN(&,é)
such that for any solution of Euler -Lagrange equa-
tions H =const and G =const

L@ 8 =H@)_ §,0,6@), (5)

the Euler-Lagrange equations of which may be
written as

aG = dH -

a VH = T VG . (6)
For any solution of (6) we have H =const and G
=const, as required. We now follow Dirac’s
method. The rules of the game are well known:
One has to be careful in working with Poisson
brackets and one must not use the constraints be-

fore computing a Poisson bracket.
We obtain three primary constraints

¢,@, D) =p; -H@D;G@), i=1,2,3 (7

a Hamiltonian 3¢, which is 0, and the Hamiltonian
equations of motion

q;=u; ,

bi= iujDi(HDjG) . ®
7=l

Here u; are unknown coefficients to be determined
later. For consistency ¢; must be 0:

¢i=(¢i’:}cl)+i:uj(¢i9¢j)' 9)
Hence
23: u,(D,-HD,-G —DjHDiG) =0, (10)

i=1

Note that Eq. (10) proves that there are no sec-
ondary constraints in the sense of Dirac.? The
most general solution of (10) is

uy = o(t, PIVH@ X VG@); 1n

where the function v is an arbitrary function.
From Egs. (8) and (11) one gets

d=0(t, DIVH@) X VG6@)] . (12)

Let us fix v(f, q) and suppose that, for any §(t)=8,
v(t,q(1))#0. By rescaling the time axis in a posi-
tion-dependent way

¢
m= [ 06,6, ,Ms (13)

where q(¢, q,) is the unique solution of (12) with the
initial condition q(0)=§,, (12) becomes

98 -3n@xTe@) -
=
We therefore have established for a fixed v a one-
to-one correspondence between solutions of (12)
and those of (1). Moreover, by the time rescaling
(13) the correspondence becomes the identical one.
Since v(¢, ﬁ) is an arbitrary function in our
formalism, this means that Eqs. (8) will formally
have more solutions than Eq. (1). However, since
the choice of the time axis is arbitrary, Egs. (8)
and (1) will contain the same dynamical informa-
tion.
The total Hamiltonian will be

1@ )= Y G p)
T=1

=o(t, PIVH@) X VG@)] P . (14)

¥ is merely proportional to the primary first-
class constraint
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@, D) =[VH@ X V@) [p - HEVGC@)]
=[VH@)*VG@)] P (15)

and vanishes weakly.

We now examine the link between the gauge and
canonical transformation of Nambu and those of
3p. If one performs on H and G Nambu’s trans-
formation

- ‘e 8(H',G') _
_h(H, G)y G _g(H7 G)y a(H, G) _1 ’
one obtains a new Lagrangian
dG’
Ly=H'— i

The Euler -Lagrange equations of Lj

G’ =, dH' =
=5 VH'==5 V6

may be written as

9(H',G') dH

,G’) dH 9(H',G') dG =
o, G) dt

-— VH |

VC=3@. ¢ a

and the total Hamiltonian becomes
5@, B) = v(t, a)WH'(ci>x€c'(a>] ‘P
(H', G')
B3H, G) G) JLT(.

Thus the equations of motion are invariant and the
total Hamiltonian is invariant under Nambu’s
gauge -transformation group. We now perform
Nambu’s canonical transformation on the triplet

->

T:
x;Z(Pi(F), det[Di(p,»G)]=1 . (16)

To obtain a corresponding canonical transforma-
tion on the six variables, (g;,p;)~ (gi,pi), such
that

= (Pi(a) ’
we choose as generating function

3
F(E,5)=2_ p{ 948
i=1

This defines the transformation completely:

q -+3F(-‘iy5')
=¢i(q)7
(17)
p|{=DiF(" 61)
=2Di‘/’j@)ﬂj

The generating function F being time-independent,
the transformed Hamiltonian will be such that

}r@', p')=%,@, D) . (18)

Nambu’'s canonical transformations are therefore
a subgroup of the group of canonical transforma-
tions of the g;,p;. The sense in which Nambu uses
the notion of form invariance is the following:
Under (16) Eq. (1) goes into

av’

v =VH'(F')XVG'F") ,

where H'(t')=H(t), G'(t'

tation shows that
be written as

:}CT(-’I *') v'(8,

)=G(r). A trivial compu-
37 being defined by Eq. (18) may

/)[eH/(al)x 66’(&’)] ,I’)/ .

Here VH'(§’)=[(3/0¢))H'(")] and v’(t, ") = v(t, §).

We may now summarize the results of this sec-
tion: Equation (1) may be embedded into a six-
dimensional degenerate Hamiltonian system with
three constraints, the Lagrangian of which is
homogeneous of the first degree in the velocities.
Modulo a time rescaling, any solution of (1) gives
a unique solution of the Hamiltonian system and
conversely. Nambu’'s gauge group leaves the
Hamiltonian invariant. Nambu's canonical trans-
formations are a subgroup of the group of canon-
ical transformations of the Hamiltonian system.
The two theories may therefore be considered to
be equivalent in a certain sense.

Before comparing the quantization of both theo-
ries we briefly show how to generalize this embed-
ding to the other cases exhibited by Nambu.

In the case of n — 1 “Hamiltonians” the equations
of motion are

d
—x“"- Z eiil---i

dt

Assuming that # is odd (n=2s +1), choose

. dH,;
L )= Y By, o
T=1
Then n primary constraints and a total Hamilto-
nian are readily obtained:

¢ilg,p)=p; - KE : HzK-x(‘l)DinK(q) ,
=1
i=1,2,...,n

¥rlg,p)=vt, q) Z o Ciigig, P
Byipee e eniy )

XD; Hy***D; H,. .

If » is even, a similar treatment is possible.
In the case of z pairs of “Hamiltonians” Nambu’s
equations of motion are
dx,- Ay > - - .
5= S [VH,F)*VG, @), i=1,2,3.

J=1

We choose
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nim By e =y dG;
Ly@, Q)= H,@ =4 ,

and obtain three primary constraints and the total
Hamiltonian:

¢;(?1, 5) =p; - i H;@Dan(d) s

n

K2 @, B) = m&){}jﬁ- (58,@) <96, @]

]

+ D (H,VH,-H,VH,)"(VG, x 'v‘G,»}.
1=j<k=n
Furthermore, Nambu’'s gauge transformation [Eq.
(26) in Ref. 1] leaves the Euler equations of L}
invariant.

In the remaining case of two “Hamiltonians” in
a 3N-dimensional phase space the equations of
motion are

dx"_ 9(H, G)
t o 3(ya,2,)

These equations do not seem so easy to handle
lacking a suitable Lagrangian formalism, although
an intuitive Hamiltonian may be easily constructed
(see the Introduction):

o, G) o, G)
Vs Za)= Z(p,n 20 P e
a(H, G)
*Pe, am,_yn)) '

III. QUANTIZATION

Nambu’s procedure was based upon the trilinear-
ity of the generalized Poisson bracket. Difficulties
arose when trying to respect both the alternation
law and the derivation law. In order to find a solu-
tion to the problem of quantization Nambu weakens
the previous laws. In the case called by him (a)
+(b’), he recovers the Heisenberg equations. The
proof is not rigorous since he supposes that some
commutators are invertible. Furthermore, his
assumption implies that H=aG + 8 (in such a case
his classical theory is trivial). In the case (a’)
+(b’) he also obtains the Heisenberg equations.

The problem of quantization of a singular theory
is not yet completely solved. However, in the
case of a simple Lagrangian like Ly it is easy to
find a trick which explains Nambu’s result. Let us
first describe the Poisson-bracket Lie algebra of
this singular theory. We have already found a
first-class constraint ¢ given by Eq. (15). The
commutation relations

(¢i ’ ¢,) =€ijn(-V.HX€G)h

show that the even number of second-class con-
straints is 2. We choose ¢, and ¢, to be those
second-class constraints. Dirac’s new Poisson
bracket may be written as

&, m*=E,n+clE, )0, ¢,) - &, ¢,)n, ¢,)] ,

where ¢=-(D,HD,G -D,HD,G)™. The Lie-algebra
structure obtained in this way is defined on the
vector space of C” functions in the open set

QX RICR®

in the phase space parametrized by (§, ). One can
ckeck that Dirac’s new Poisson bracket is a de-
formation of the usual Poisson bracket given by a
scaling of the Lie algebra generated by the con-
straints.

We now consider the Hilbert space L?(R®), and
we denote by (£, 7). the usual commutator of two
operators £ and 7 defined in L?(R®). We define
between two such elements a new commutator:

(€,m)x=(&,n)_ —ic[ (&, D,+iHD,G)_(n, D, +iHD,G).

- (¢, D, +iHD,G)_(n, D, +iHD,G)_].

Suppose that we do not change the usual corre-
spondence ¢ between the classical variables q;,
P, and the skew-adjoint operators on L?(R%):

¢: pi~P;=-D; .
[The corresponding observables are here as usual
the self-adjoint operators (1/i)A and iP;.] Then
it is easily checked that this new commutator gives

rise to a representation of Dirac’s Poisson bracket
between the g; and the p;:

(0lg), e(p )x=ollg;, p;)*) .

Thus the transition between our (singular) classi-
cal theory and a quantum theory is the ordinary
one. The classical relation [for the observable

F@)]

F :"(F,JCT)*

becomes in our formalism

iF=(F,30)* .
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To conclude, it is therefore not at all surprising
(from our point of view) that Nambu gets as a
quantized version of his generalized mechanics
the ordinary Heisenberg quantization scheme.
Obviously, in full accordance with Dirac,? the ¢,’s
and ¥¢; commute among themselves under the
operation ( , )*. Therefore we can proceed as
usual and find representations of the structure
defined by (, )* in an algebra of differential op-

3053

erators under the usual commutation relations,
where ¥, will be represented by id/dt. We shall
then get an integrable system of equations and a
final solution to our quantization problem.
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