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Lorentz-invariant Newtonian equations of motion for three or more interacting particles can be
constructed just as for two by assuming that the center-of-mass acceleration is zero when the
center-of-mass velocity is zero. But two-particle systems are not obtained from a larger system of this
kind when the other particles are widely separated in space. The same is true if the total relativistic
kinematic particle momentum and its time derivative are used in place of the center-of-mass velocity
and acceleration. The assumption that the center-of-mass acceleration is zero when the center-of-mass
velocity is zero does not hold, in particular, for parity-conserving forces for three or more identical

particles as it does for two.

A recent paper! showed how Lorentz-invariant
Newtonian equations of motion for two interacting
particles can be constructed, by making global
Lorentz transformations, from a specification
of the relative acceleration as a function of the
relative position and relative velocity at zero
center-of-mass velocity, if the center-of-mass
acceleration is assumed to be zero at zero center-
of mass velocity. The same can be done for three
or more interacting particles, on the assumption
that for the entire system of particles the center-
of-mass acceleration is zero when the center-of-
mass velocity is zero. The conditions to be met
in specifying the relative accelerations in the
center-of-mass frame are completely analogous
to those for two particles. Nothing is different
enough to need to be described again.

A problem arises, however, if we require
separability or cluster decomposition.? This is
the requirement that when the system of particles
is split into groups that are widely separated in
space, each group is a system that is independent
of the others and satisfies all the postulates itself.

There is no classical-mechanical system of three
or more particles in which

(i) for the entire system the center-of-mass
acceleration is zero when the center-of-mass
velocity is zero, and

(ii) when all particles except two are widely
separated in space, their accelerations vanish
and for the remaining two we have Poincaré-in-
variant Newtonian equations of motion with-ac-
celerations that describe an interaction in the
neighborhood of zero center-of-mass velocity
for the two particles and are independent of the
other particles.

For under these conditions, when the center-of-

mass velocity for the entire system is zero, and

11

all particles except two are widely separated in
space, the center-of-mass acceleration of the
remaining two-particle system must be zero, for
a range of values around zero of the center-of-
mass velocity of the two-particle system depending
on the masses and velocities of the other particles.
It is known that there are no Poincaré-invariant
Newtonian equations of motion for two interacting
particles such that the center-of-mass acceleration
is zero over the range of values of the velocities
and relative position,®

Everything said here remains true if instead of
the center-of-mass velocity we use the total rel-
ativistic kinematic particle momentum

6=2mn5n/(1 —v2/c2) /2

where m, and '\7,, are the mass and velocity of the
nth particle. Lorentz-invariant Newtonian equa-
tions of motion for three or more interacting par-
ticles can be constructed by assuming that for the
entire system dﬁ/dt is zero when U is zero. But
two-particle or three-particle subsystems cannot
be separated out of a larger system of this kind;
it is known that there are no Poincaré-invariant
Newtonian equations of motion for either two or
three interacting particles such that du/dt is zero
over the range of values of the momenta and
relative positions.*

For two particles there is some justification for
considering those Lorentz-invariant Newtonian
equations of motion for which it can be assumed
that the center-of-mass acceleration is zero when
the center-of-mass velocity is zero, because this
assumption holds in particular for parity-con-
serving forces for two identical particles.! For
three or more particles this is not so; for parity-
conserving forces for three or more identical
particles it is not necessary that the center-of-
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mass acceleration be zero when the center-of-
mass velocity is zero. For example, the center-of-
mass acceleration may be nonzerowhen the center-
of-mass velocity is zero for the parity-conserving
Poincaré-invariant equations of motion that we

can construct for three or more identical particles
on the assumption that dU/dt is zero when U is
zero, and conversely dU/dt may be nonzero when
U is zero for the parity-conserving Poincaré-
invariant equations of motion that we can construct
for three or more identical particles on the as-
sumption that the center-of-mass acceleration is
zero when the center-of-mass velocity is zero,
because the center-of-mass velocity and U are

not zero together for three or more identical par-
ticles as they are for two.

This point can even be seen by considering two-par-
ticle forces in a system of three or more particles.
Translation, rotation, and parity invariance imply
that the force on particle 1 from particle 2 pro-
duces an acceleration of the form

Tiz_ a4 21 =2 - -
f12=A,(x' =x%) +B,v! +C,v?

where A,,, B,,, and C,, are functions of (x* —X?)?,
@12, (), (x'-X3)vY, (X' -X2)V2 and V':V?
Suppose the particles are identical. Then 2 +72

is zero when V! +¥2 is zero. But when the total center-
of-mass velocity for the three or more particles is
zero, v'+v? may be nonzero, I'?+¥2! may be non-

zero, and the total center-of-mass acceleration
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m,n
m*n

may be nonzero. Note that Galilei invariance,

in contrast to Lorentz invariance, would imply
that T'2 can depend only on X! — X% and v = V%

then T12 +T2! would be zero and therefore the total
center-of-mass acceleration would be zero.

On the other hand, Lorentz-invariant two-par-
ticle forces do not give Lorentz-invariant equa~-
tions of motion in a system of three or more
particles. For equations of motion
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d %"
A" 2y = = - =1 2 -y
PTE =T xhx%, ..., x",vh,ve o v

for N particles, n=1,2,...
Lorentz invariance®® are

Z Z(x"k—x k)(f ,afv + v ,g’;‘-)

=1 m=1

, N, the conditions for

=1 m=1 I m=1
n n n n _
+20°, "+ V" (", =0

for j,k=1,2,3 and n=1,2,...,N. Suppose the
force on each particle is a sum of Poincaré-in-
variant two-particle forces, that is,

N

L BF Ld- -k
=
where T™ and ™" are rotational-vector functions
that satisfy the Lorentz-invariance conditions for
a system of two particles. By comparing these
Lorentz-invariance conditions for the two-particle
forces to those for the total " we find that

rs a
"= X" f ’a{; =0

for j,k=1,2,3 and n=1,2,...,N. Since the dif-
ferent two-particle forces are functions of dif-
ferent variables, we can see there are no inter-
esting solutions. If
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for j,1=1,2,3, the Lorentz-invariance conditions
for the two-particle forces imply that also
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for j,1=1, 2,3, which means the acceleration of
particle » is independent of particle 7.
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