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This paper is concerned with Hamiltonians that preserve the minimum value of the uncertainty

product. Using the method of time-dependent unitary transformations, we derive the most general such

Hamiltonian.

This paper deals with Hamiltonians which have
the property of maintaining the minimum uncer-
tainty product of states which are initially mini-
mal. The first attempt to deal with this question
was made by the present author, ' who in fact did
derive the most general result, but through an
oversight omitted a term in the minimality-pre-
serving Harniltonian. I remedy this here, and in

the process discuss Hamiltonians which preserve
other eigenproperties such as coherence and
"ground-stateness. " The method used here has
led to some useful insight into the structure of
eigenproperty -preserving Hamiltonians which will
be dealt with at length in a subsequent paper.

Consider a system described by a Hamiltonian
H and having a, state vector ~g(t)). The Schrodinger
equation for the state vector is i (S/St)~g(t))
=H(p(t)). The dynamical evolution of this system
is unitarily equivalent to an infinite number of
others. This fact is commonly exploited in the
use of unitary transforms to simplify problems.
Given a unitary operator V(t) we can define a
transformed dynamics by means of the relation
~g(t}) = V(t)(&P(t}). This last equation defines
~$(t)). The equation of motion for ~P(t)} in the

Schrodinger representation is

is the complex amplitude satisfying the classical
equation of motion for the oscillator and for which
n(0) =n.

I have made a detailed study"" of quantum
states which minimize the position-momentum un-
certainty product. The coherent states are mini-
mum-uncertainty packets and constitute one of
an infinite number of equivalence classes of mini-
mum packets. In Ref. 1, I demonstrated that all
the minumum packets are unitarily equivalent to
the coherent states where the equivalence is im-
plemented by the unitary operator U„
=exp[~r(a' —at' }]. Any minimum packet may be
written in the form (r, n) = U„~n), where r is a real
number. In view of this explicit unitary relation-
ship between the coherent states and the whole set
of minimum packets, it becomes easy to derive
the properties of the minimum packets from the
analogous properties of the coherent states. Using
the results of Refs. 2 and 3 for coherence, we can
derive the most general minimality-preserving
Hamiltonian by simply transforming K,.„„by means
of U„. In Ref. 1, I a.rrived at the minimality-pre-
serving Hamiltonian using this approach. The
most general result is obtained by allowing the
parameter & in U„ to be a function of time. This
yields

So when the unitary transformation is time depen-
dent the transformed Hamiltonian is not just a
similarity transformation of the original one, but
contains an additional piece which is analogous to
a, "frame energy" in classical mechanics.

The most general Hamiltonian which preserves
the coherence of an arbitrary coherent state was
given by Qlauber' and Sudarshan and Mehta. ' The
Hamiltonian which they give has the form

H
~

(d(t)ata+f(t)a~+f ~(t)a +P(t) (1)

where & and &~ are the creation and annihilation
operators of a harmonic oscillator which satisfy
the relation [a, at]=1. Under the influence of this
Hamiltonian a coherent state ~n) at t=0 will
evolve into the coherent: state

~
(t)n), where n(t)

& Ur(t)
Hiiiin = U„(t) K'o)i Ur(t) —t Ur(t) 8 t (2)

Equation (21) of Ref. 1 was derived this way. How-

ever, through an oversight, the frame energy term
in the above (i.e. , iU„&U„/&t) was omitt-ed,
making the result given valid only when & is not a
function of time. This omission was recently
pointed out in a paper by Trifonov, ' who writes
down the correct Hamiltonian by considering the
most general quadratic Hamiltonian, calculating
the uncertainty product, and deriving conditions on
the coefficients so that the uncertainty product re-
mains minimal. This, however, does not constitute
a proof that the result for 8„„„is the most general.

In deriving Eq. (2) by the method of time-depen-
dent unitary transformation, I realized that one
could arrive at the form of H,:„„ in the same way.
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=&u(t)a a+f(t}at+f *(t)a+a(i), (3)

where

f(t) = ur(t)o. (t) —in(t}

and

e(t) =P(i)+~(i)~n(t)~'+1m(~a*) .

We see that o. (i) satisfies the classical equation
of motion for this oscillator. The function e(t) is
a real but otherwise arbitrary function since P(t)

This is because the general coherent state (o.(t})
may be written as D(n(t))~0&, where D(o. (t)) is the
unitary Weyl operator exp[a(t)at —o.*(i)a] and ~0&

is the ground state of the oscillator. So the co-
herence -preserving Hamiltonian can be obtained
from the general "ground-state-preserving" Hamil-
tonian by transformation under the time-dependent
Weyl operator. The ground-state-preserving
Hamiltonian is easily found. Under its action ~0&

evolves into ~0&, , for which we require a~0&, =0.
Hence ~0&,o- (0&, which implies, since ~0&, satisfies
the Schrodinger equation, that aH, ~O&, =0 and there-
fore ~0&, must be an eigenvector of H~. This means
that H,~«. The most general expression for H,
is &u(t)ata+ p(i), where u(i) and p(i) are real func-
tions of time. Actually this form for H~ is not the
most general one which will preserve the ground
state. We can add to H~ any Hermitian operator
which annihilates the ground state, such as ga~cP
+g*a~'&. However, Hamiltonians containing such
terms yield, upon transformation under D(o. (t)),
Hamiltonians which do not preserve arri tracy
coherent states but rather only certain specific
coherent states. An example of such a Hamiltonian
was given by Mista, ' who considers H,.„„augmented
by the terms p(t}a"'+K(f)at'a+H. c. and shows
that only the coherent state ~n(0) =

(
—g (0)/K(0}}

remains a coherent state under its action. This
is a special case of an infinite class of such Hamil-
tonians which can be arrived at by the methods
employed here. So we find for the general co-
herence-preserving Hamiltonian

dD~
H, „„=D(a(t))H D. ~(n(t)) —iD

is also.
Now applying the same procedure to H,.„h, using

the relation

we get for H„„„

H„„„=Q(t)a a+ 2 Q(t)tanh2r(t)(a'+ at' )

+ ——(a' —a ')g

2 dt

+F*(t)a+F(t}at+B(i), (4)

where 0, r, and B(t) are real functions and F(t)
may be complex. The term in H„„„proportional
to r'(t) was missing from my original result in
Ref. 1. The calculations here have all been in
the Schrodinger picture so that the operators a
and a~ are independent of time. The results for
H„„„quoted in Ref. 6 are given in terms of time-
dependent Heisenberg operators, which accounts
for the fact that no term proportional to (+&~'}
occurs there. This means that the form of H„„„
given by Trifonov is valid in the Heisenberg pic-
ture but not in the Schrodinger picture. Trifonov's
operators a(p, ) and at(p) are the equivalents of S
and S~ in Ref. 1.

The results of Refs. 2, 3, and 6 are in terms of
an arbitrary number of degrees of freedom rather
than just one. Our results may be easily extended
to the multimode case by substituting

in H~ and then using appropriate products of unitary
operators to generate H,.„b and H,„,„.

Finally, it is important to note that the coher-
ence -preserving Hamiltonian H,.„„discussed here
does not really preserve coherence as such, but
rather preserves coherent states, i.e., n states.
There are other states which satisfy Glauber's
coherence criteria, ' namely, the generalized co-
herent states (GCS) and also coherent density
matrices. Using the techniques of a recent paper'
on the GCS one can see that H,.„„goeg go& preserve
the GCS or the coherent density matrices.
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