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Operators for the creation and annihilation of quantum sine-Gordon solitons are constructed. The
operators satisfy the anticommutation relations and field equations of the massive Thirring model. The
results of Coleman are thus reestablished without the use of perturbation theory. It is hoped that the

method is more generally applicable to a quantum-mechanical treatment of extended solutions of field

theories.

I. INTRODUCTION

Q —Q+2mnP (1.2)

so that the vacuum possesses a discrete degener-

The two-dimensional classical sine -Gordon field
is probably the simplest nonlinear field which
possesses extended solutions of the type currently
under investigation, the so-called soliton solu-
tions. ' ' Coleman' has extended the results to
the quantized theory by relating the sine-Gordon
field to the massive Thirring model, i.e. , to a
two-dimensional self-coupled Fermi field with vec-
tor interaction. It is the purpose of this note to
construct operators for the creation and annihila-
tion of bare solitons; we shall thereby obtain a
simple rederivation of Coleman's results. Oper-

atorss

analogous to ours have been obtained for the
massless Thirring model by Dell'Antonio, Frish-
man, and Zwanziger, ' but they do not possess a
similar physical significance. The treatment of
the massive model is in some respects simpler
than that of the massless model as there are no in-
frared divergences. We shall therefore attempt to
keep our treatment self-contained, at the risk of
repeating some of the analysis of Ref. 5. Our work
will also be logically independent of that of Cole-
man, though we shall be motivated by some of his
results.

The sine-Gordon field satisfies the equation

P(x, t) -@"(x, t)+ (p'/P):sin[Pal(x, t)]:=0 . (1.1)

The equation is invariant under the transformation

acy, characterized by an index n which can assume
any integral value (positive, negative, or zero).
Solitons are solutions of the field equations where
the vacuum well to the left of the disturbance is
different from the vacuum well to the right. We
shall define a soliton and an antisoliton by the
boundary conditions

(y(x)) - 0, x-+ ~,

({{{x))-+2vp-', x-—
(1.3)

The sign is negative for a soliton, positive for an
antis oli ton.

Solitons may be compared with certain types of
extended solutions of classical equations in three
or four dimensions, where the degenerate vacuum
is characterized by a continuous parameter which
varies with the direction in which one recedes from
the disturbance. The two-dimensional model has
only two asymptotic directions and a discretely de-
generate vacuum, but it nevertheless possesses
the essential features of systems such as vortices
or monopoles.

Most treatments of extended solutions have been
classical or semiclassical, but the work of Cole-
man, referred to above, is fully quantum-mechan-
ical. Coleman showed that the sine-Gordon field
is equivalent to the massive Thirring field, the
solitons corresponding to the states with a fermion
number of unity. He found the following relation
between the constant P in (1.1) and the coupling
constant q of the Thirring model:
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g/x =1 —4xP ' . (1.4) a, = —(4a) 'ln(c'g'[x' —(dt+te)']}+0(x'). (2.3)

ll. CONSTRUCTlON OF SOLITON OPERATOP. S

The quantized sine-Gordon system is described
by Eq. (1.1), with the Q's satisfying the canonical
commutation relations. Since all renormalization
constants a.re finite, we can eliminate the infinities

by normal ordering with respect to bare-particle
creation and annihilation operators. We therefore
write

P(x, t) = Q'(x, t) + Q -(x, t), (2.1)

where (II)' and Q satisfy the commutation rela-
tions

[4 '(x, t+dt), y-(y, t)] = ~+((x -y)' (dt+ie)2) . -
(2.2)

For small separations

For P'&4n the coupling between a soliton and a.n

antisoliton is attractive, and sine-Gordon particles
probably appear as soliton-antisoliton bound states.
For P &4m the coupling is repulsive, and stable
sine-Gordon particles probably do not exist. For
P'=4n, we are led to the remarkable result that
the sine-Gordon model is equivalent to a free
Fermi field.

The results of Ref. 4 were obtained by comparing
two rather unconventional perturbation series,
and it is doubtful whether the methods could be
extended to four dimensions. We wish to show that
"bare" soliton creation and annihilation operators
can be constructed fairly simply from sine-Gordon
operators; the construction is motivated by the

physical characteristics of solitons discussed
above. The operators will be shown to satisfy the

commutation relations and field equations of the
massive Thirring model. The relations between
sine-Gordon operators and bilinear functions of
the Fermi operators will agree with those found

by Coleman; they are genera. lizations of relations
for the massless case which have been used to
solve the Thirring model. ' The correspondenees
have been listed in a recent paper by Kogut and

Susskind, ' who suggest applications to massive
quantum electrodynamics.

Since our operators are local, the bare solitons
which they create mill be point particles. Physical
solitons become spread out by the interaction in
the usual way. It is, of course, not guaranteed
that there is any relation (other than that of fer-
mion number conservation) between soliton oper-
ators and actual particles, except for the interac-
tion-free case ti'=4m. Nevertheless, it is very
plausible that such a relation exists, at any rate
for a range of P around this value.

The value of the constant c need not concern us.
It will be convenient to use the quantity cp, as our
unit of mass in defining dimensionless quantities.

An operator g(x} which annihilates a soliton at a
point x must increase the value of Q by 2zP ' in
regions well to the left of x, but it must have no
effect in regions well to the right of x. We there-
fore expect the operator to satisfy the commuta-
tion relations

[4(y), O(x)]=»P 'O(x) (y&x),

[4 (y ), 0(x)] = o (y & x) .

(2.4a)

(2.4b)

Such commutation relations will hold if g has the
form

X

el*)=:&( )mu -2:s 'f &ri(():, (2.5)

where the operator A is yet to be determined. At

the moment we leave it open whether (I is a boson
or fermion operator.

We ca,nnot take &(x) equal to unity, since 4 would

then be a, boson operator, and the commutator
between ti(x) and t)t(y) would not be simple when

x=y. Taking A to be a polynomial in Q, Q, or Q'

merely complicates matters. We therefore try
modifying the exponent, and the simplest dimen-
sionless term we can add is CP(x). Thus,

P(*}=:ep 2(i 'f 4 g'-I&I ~:C-gt»): . t2.6l

From the formula

e"e =et"' le e" ([&, B] a c number), (2. t)

it follows that g(x) and g(y}, defined by (2.6), do

not in general commute or anticommute if xwy.
However, if C =NiP they commute, while if C
= (N+ —,')iP they anticommute. The simplest pos-
sibility is C =-,iP so that, with hindsight from the

results of Refs. 4 and 7, we are led to suggest the

operators

(t', (x) = (cg/2x)' '
X

xe"~":exp -2wiP ' @j ( --,'iPy x

(2.6a)

&,(x) = i(ctt/2x)-'t'
X

&e" ":exp -2niP ' d( @(()+-,'ipse(x)

(2.8b)

An adiabatic cutoff e "is implied in the inte-
gration. The constantfactors have been inserted for
convenience in our later work; in pa, rticular, the

phase factor -i in (2.8b) will be necessary if our
operators are to correspond to the canonical y
matrices
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y'=(x', y'=io, y'=y y'=-o, . (2.9) Alternatively, we may define

111. COMMUTATION RELATIONS
AND CURRENT DENSITIES

We have already shown that two q's anticommute
when x+y. When x=y a more detailed investiga-
tion is necessary, both because the commutator
in (2.7) is not well defined and because the product
of two $'s becomes singular as their arguments
approach one another. First let us decide how to
formulate the commutation relations between re-
normalized g's when Z is infinite. Formally we
wish to show that

(y, (x), y~t(y)j =Z5(x -y) . (3.1)

We note that the reflection operator interchanges
(J'j, and g, and, at the same time, changes the vacu-
um index n by one unit.

It remains to find the commutation relations and
field equations satisfied by the g's, and to show
that they correspond to those of the massive Thir-
ring model.

j "(x)=Z 'y(x)y" i(x)+const. (3.2)

.eA, .eB, e[A+, B ] .eA+ B.
~ ~ (3.5)

which is true if [A, B J is a c number. It follows
by straightforward calculation from (2.2), (2.3),
(2.8), and (3.5) that

We then have to verify the commutation relations

[j"(x), 4(y)] = (Z-"'+e"'y')N(x)5(» -y) . (3.3)

Our procedure will be to replace (3.2) by the
equation

j "(x)= »m [I cI {x y)I-I'4(x}y "0(y )++(x y)]-,
(3.4)

where the constant a and the c-number function E
are chosen so that the right-hand side approaches
a finite limit as y-~. The function ~x —y~' re-
places the constant Z. We shall then verify the
commutation relations (3,3), with j replaced by j.

We evaluate the product g(x)g(y) (x=y) using the
formula

O'. (x)0.(y) =+i[»(x-y)J 'lcI (x-y)l ' ' ""'
x:exp 2xip ' -dk P(g) v —,'iiI[P(y) -g&(x)]+ 0(x-y)' ~: (no sum over a),

x
(3.6)

where the + sign is —for +=1, + for o. =2. The
exponential in (3.6) may be expanded up to terms
linear in x —y, and the result compared with (3.4).
We find that

{3.7)

On inserting (2.8}and (3.7 I in (3.3), we confirm that
that our operators satisfy the required commuta-
tion relations.

Equation (3.7}shows that the two operators j'
and j ' are not components of a vector and that they
do not satisfy the equation of continuity. We there-
fore replace (3.4), (3.3), and (3.'I) by the equations

j"(x) =lim & [&," + (4v) 'P'tI,"]IcV (x -y)II'I(x)y "a(y)
y~x

+E(x-y)I, (3.8)

[j"(»), 0(y)]= [8 "'+(4v}-'p' "'e]0y( ) x( 5-x)y,

(3 9)

finities in the Thirring model requires the extra
factor {4v) 'P' in (3.8) and (3.9).

IV. FIELD EQUATIONS

Rather than expressing the Hamiltonian in terms
of the q's we shall show that our operators do sat-
isfy the field equations of the massive Thirring
model. We thereby reduce the appearance of in-
finite quantities to a minimum.

We wish to establish the equations

( iy &„—mo)g(x}—

= lim —,'gy" [j„(x+6»)+j„(x-5»)]y(x) .
hx~o

(4.1)

The limiting procedure on the right-hand side of
(4, 1) is fa.miliar in the Thirring model, and we
shall find that no singular terms appear when 6x
approaches zero.

The only infinity in (4.1) is that associated with
mass renormalization, and it will be treated in
the same way as before. We write

(3.10)

It is well known that a correct treatment of the in-

-m, O
- [S,y'{I'],

where, formally,

(4.2)
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S=Zm dxg xg x (4.3)
with

m =pa/(cp') . (4.9)
We then replace (4.3) by the equation

S = dxitm Ice(x-y)l '~lj(x)(j(y),
eo 3l ~x

(4.4)

As we are aiming at Eq. (4.1), we calculate P,
'

as well as g, :

q, '(x) =:{[ 2vi-P 'j (-x) ——,'iP4 '(x)], y, (x)): .
where 5 is chosen so that the limit is finite. The
constant m is a finite mass.

From (2.8a), we find that the time derivative of

g, is given by the equation
P x

j,(x) =: -2viP ' g y(t) ——,'iP j(x), g, (x)
~ OO J

2vi-p 'p'(x) ——,'ipse(x)

x

+2ivp'P ' d&:sinP&($):, y, (x) I

(4.10)

From (4.5), (4.10}, (4.8), and (1.4) we obtain the
equation

j,(x) + g, '(x) + i[S, y'y, (x)]

= ——g:{[p'(«) -4 (x)], g, (x)j: . (4.11)

The operators Q' and Q may be taken outside the
normal-ordering signs by using the formula

A:e' =:{A.+[A', B-])e'. , (4.12)

P

=-ip'P ' d(:cosPQ g:, g, x . 4.6)

Equation (2.8a) now shows that, apart from fac-
tors due to normal ordering, the operator cosP(II
is just 2m|I}$. Taking into account the normal or-
dering, we find that

0.'(«4 (y}=(cv/2v)lcw(x y)l':e -"':, «=y,
(4.7a)

0,'(x)0.(y) =(cu/2v)lcm(x y)l:e'-":, x=y,
(4.7b)

where

1+—
2m 4n

(4.7c)

Comparing this equation with (4.4), we may write

S =cyme ' 4:cosPP(k}:
~ oo

Equation (4.6) thus becomes

x
N' i 2ivp, 'P ' dt sinPP($), g, [ = i[S,y'4, ],-

~00

(4.8)

(4.5)

by (1.1). Normal ordering is always understood to
be with respect to sine-Gordon operators, not
Thirring operators. The symbol N' indicates that
the terms in the expansion of sinPQ are treated as
units; their individual factors are not normal or-
dered with respect to those of $. The term involv-
ing sinPP may then be written as follows:

x
N' 2ivp'p '

, dt sinpp(t), y, (x) .

va. lid when [A, B ] is a. c number. If A = Q'(y)
—P(y) and e =g, (x), we find from (2.2), (2.3), and
(2.8) that the commutator [A', B ] is an odd func-
tion of x-y, so that it gives no contribution to
(4.12) if we take the average of terms with y = x
+Ox, y =x —bx. Thus, expressing the operators
P' and g in terms of current densities by (3.10),
we obtain the final result

i, + e, '+ i[S,y'0, ]

= lim ~ig[ j'(x+ Cx)+j'(« —Ox)
hx~O

+ j'(x+ 6«)+j'(x —5«)]l(, (x) . (4.13}

Equation (4. 13) is precisely the second component
of Eq. (4.la). The first component can be obtained
in a similar way, and all required properties of
our soliton operators are established.

V. CONCLUD1NC REMARKS

It is hoped that the methods presented here can
be applied to extended solutions of four-dimension-
al field theories. For example, one might attempt
to construct operators which create bare Nielsen-
Olesen vortices. Just as our soliton operators
create point particles, vortex operators would
create infinitely thin strings. Interactions between
strings would give the vortices a finite thickness.
Vortex operators would depend on the shape of an
entire string rather than on a single coordinate,
and one might hope to identify them with the oper-
ators of the second-quantized dual model. '

It may therefore be possible to establish a
"duality" between quantized Nielsen-Olesen sys-
tems and dual models, analogous to the duality be-
tween the sine-Gordon field and the massive Thir-
ring model. The Higgs scalars may cause diffi-
culty, since one cannot construct models of strings
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interacting with "elementary" particles. It will
probably be necessary to start from a non-Abelian
Nielsen-Olesen model without a Higgs field.

The relationship between the sine-Gordon field
and the massive Thirring model does not in itself
provide a practical approach to quantized solitons
except when P' is approximately equal to 4m.

Nevertheless, it suggests that we might approxi-
mate a physical soliton by suitably spreading out
the operators in the exponents of (2.8). A similar

approximation may be possible for Nielsen-Olesen
vortices, even if the limit of taking an infinitely
narrow bare vortex cannot be carried through con-
s iste ntly.
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