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%e study the causality constrain':s on the structure of the Lorentz-antisymmetric component of the

commutator of two conserved iso~ector currents between fermion states of equal momenta. %e discuss

the sum rules that follow from citusality and scaling, using the recently introduced refined

infinite-momentum technique. The complete set of sum rules is found to include the spin-dependent
fixed-mass sum rules obtained from light-cone commutators. The causality and scaling restrictions on

the structure of the electromagn:tic equal-time comrnutators are discussed, and it is found, in

particular, that causality require. the spin-dependent part of the matrix element for the time-space

electromagnetic equal-time comrriutator to vanish identically. It is also shown, in comparison with the

electromagnetic case, that the corresponding matrix element for the time-space isovector current

equal-time commutator is requir=d, by causality, to have isospin-antisymmetric tensor and scalar

operator Schwinger terms.

I. INTRODUCTION

Fixed-mass sum rules have recently been de-
rived" on the basis of light-cone commutators'
extracted from the quark model with vector-gluon
interaction. In particular, Dicus, Jackiw, and
Teplitz' obtain six sum rules for the structure
functions which characterize the I' our ier trans-
form of the matrix element of the commutator of
conserved vector currents between fermion states
of equal momerta. Three of these sum rules are
spin-independent whereas the other three are spin-
dependent. The sum rules so obtained were found

to correct the sum rules of current algebra de-
rived by use of the conventional infinite-momentum
procedure. '

In the belief that these corrections to the sum
rules of current algebra amounted to a criticism
of the conventional infinite-momentum procedure,
rather than equal-time algebra, a refinement'
of this procedure was introducei9 and was shown'

to yield, in the forward case, f:corn equal-time
current algebra the same spin- independent fixed-
mass sum rules as obtained in Ref. 1 from light-
cone commutators. In this paper we examine the
derivation of the spin-dependent fixed-mass sum
rules using the methods of Ref. 6.

To begin with, we discuss, in Sec. II, the
causality properties of the spin-dependent struc-
ture functions and demonstrat=" that they are
causal. Then using the causa. .'. Jost-Lehmann-
Dyson (JLD) representation' we write, for these
structure functions, the sum rules implied by
causality and a certain assuription on the asym-
ptotic behavior of the JLD spectral functions. This
part of our work is an extension of an earlier
analysis by Meyer and Suura' on the spinless case.

In Sec. III we make use of a theorem in Ref. 6

on the refined infinite-momentum limit in order
to obtain the scaling ""form of the variable-
mass causality sum rules. On passing to the
fixed-mass limit we find that three of the fixed-
mass sum rules so obtained coincide with the
spin-dependent fixed-mass sum rules derived by
Dicus et a/. ' from the (+, v) light-cone commuta-
tors. These sum rules are then consequences of
causality and scaling alone.

Toward the end of Sec. III we discuss the electro-
magnetic time-space and space-space equal-time
commutators (ETC's) and observe that their
structures are severely restricted by our causality
and scaling results. In particular we find that,
according to causality, the spin-dependent part
of the matrix element for the time-space electro-
magnetic equal-time commutator should vanish
identically. In contrast with the electromagnetic
case we also show that causality requires the
corresponding matrix element for the isovector
current time-space ETC to have both tensor and
scalar operator Schwinger terms, antisymmetric
in the isospin indices. Finally, we devote Sec. IV
to some concluding remarks and a summary of the
results which we claim to be new.

The necessary conventions, normalizations,
and some definitions are collected together for
convenience in the Appendix. We a1.so discuss in
the Appendix, for the sake of completeness, the
causality properties of the spin-independent
structure functions. As remarked earlier the
original discussion of this topic was previously
given by Meyer and Suura. '

II. CAUSALITY OF THE STRUCTURE FUNCTIONS

Consider the Fourier transform of the connected
diagonal matrix element of the commutator of two
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conserved isovector currents between fermion
states of momenta P (P' = m' = 1),

iqX(' + ~f, tf, .
~ ~..yf'P, '11(f

I

Introducing the equal-time commutator

E„".= J e"*5(x,)(P, s][V'„(x), V',(0)] g, s) d'x,

(2 (., 'i

one finds, on using (2.5), that

where s„ is the fermion spin axial vector

s„= u(P)fx„r, s(fp) . (2.2)
Z" = — C" dq00 2~ 00 0

In terms of the fermion momentum and the polar-
ization unit vector 8 specifying the direction of
spin quantization, s„ is given by

V", dq, = 0. (2.5)

so= p'ply s=?l+ ppo+ 1

(s'= -P'= -1; s.P= 0). (2.3)

The tensor Cz'„may be written in the form'

Cvv = (qvqv —q gvu)VI'

+ [v(f,q. + q „P.) - q'f „f.- A „.] V."
+ e„, 8s qsV,

' + q ~ se„„sp qsV,", (2.4)

where the structure functions V," (k = 1, . . . , 4)
depend on v= P q and q only and V,", V," are re-
lated to the usual functions W~", W", by V," = W'~/q',

Meyer and Suura' have shown that the function
V', is causal and satisfies the causality sum rule"

=
2, lP'i -(i *C)*lf &l'de. . (2 'f)

Thu provided the causal part of the function V,"
satisfies a causality sum rule of the type (2.5) the
nonvanishing of the left-hand side of Eq. (2.7),
i.e. .. Fo'o t 0, would imply that V," must possess a
nonvanishing noncausal part. ' However, this equa-
tion does not constrain V,' and V4' since these
functions do not contribute to Co, in any case. In
this section we aim to demonstrate that these
functions are in fact causal.

We start by considering the commutator C„", de-
fined by

C'„'', = ( P, s ][V'„(x), V'„(0)J &, s&. (2.8}

Although C'„'„ is causal, i.e., vanishes for x'&0,
the invariants V~", 4=1, , 4, need not, in gen-
eral, be causal. However, any noncausal parts in
their Fourier transforms must be annihilated by
the operators acting on them to give C&', . Denot-
ing the Fourier transforms of V,' by V„" we,
therefore, write

(-a„s, +g„,z)v -[p s(p„s„+p„e„)+p„p, o+g„„(p e)']v,"+Ze BS &sV —E„,.pss'BB V 8= 0,

x' & 0. (2.9)

From the causality of the spin-averaged matrix element we have

(-s„s, +g„, ')V,"—[p s(pp, +p, s„)+p„p„f:l+g„,(p s)']V,' = 0, x'&0. (2.10)

Hence (2.9) gives

c„„8is 88V3' —e„„8p s &88V~" = 0, x &0.

rest-frame spin direction we can choose 8
=—(0, 0, n, ), n, ' = l. This enables us to write Eq.
(2.12) in the form

(2.11) &„„8288'' + e~ 88 88V' = 0, X & 0. (2.13)
Alternatively, Eqs. (2.10) and (2.11) can be attri-
buted to causality of the Lorentz-symmetric and
-antisymmetric components of C'„~„respectively.

As Eq. (2.11) is invariant we may analyze it,
for convenience, in the fermion rest frame p = 0.
The equation then becomes (k = 1, 2, 3)

&q,„8in+8V" + eq, 8n 7'88V' = 0, & 0.
(2.12)

Since n is an arbitrary unit vector specifying the

As the causal parts of V~", k = 3, 4, vanish for
x' &0 Eq. (2.13) is equivalent to

Pv38 8 3 jlfj08 8 4

(2.14)

where V,"'"' and V'4'"' signify possible noncausal
parts in the respective functions.

Since Eq. (2.14}holds for all p, v = 0, . . . , 3 we

have for the following different choices of these
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indices (x' & 0):

p=0, v=1: B, V,""' =0, (2.15)
V„'dq =0, k=3, 4. (3.2)

» —0 v —2' 8 V"'"' —01 3 (2.16)
It has been shown by Meyer and Suura' that such a
causality sum rule holds provided that

p. = 1 v= 2' IB V' '"' —cPV '"' = 0
7 ' 0 3 3 4 7

p, = 1 v= 3: 8 & V'~'"'= 02 3 4

p. = 2, v= 3: 8,83V,
"'"' = 0.

(2.17)

(2.18)

(2.19)

a Vl'"' = f(x.). (2.20)

Integrating this equation with respect to x„one
obtains

V,"' "' = x,f(x,) + g(x„x„x,) . (2.21)

Equations (2.15) and (2.16) imply that V,""'
= f(xp, x,}. But V,

' ' "' can only depend on the in-
variants x P and x'. Hence it is a function of
x P = x, only. Consequently on imposing the boun-
dary condition'" V,"'"'-0 for ~x~-~ we deduce
that V, '"' must vanish identically for x'&0.
Therefore, V,' is causal.

Setting V,
'~'"' = 0 in Eq. (2.17) the resulting equa-

tion, together with (2.18) and (2.19}, will imply

lim (J,"(u, s) = 0.
We remark that this condition is not equivalent
to the interchange of the order of integration be-
tween (3.1) and (3.2) and is, moreover, a sufficient
as well as a necessary condition for Eq. (3.2) to
hold when this equation is interpreted as'

lim e 'o ' V,"dq, = 0.2 fi2

A» pO

A detailed discussion of this point is given in the
appendix of Ref. 8. We also note that a model in
which Eq. (3.2} holds is the original quark model
of Gell-Mann, as is verified by considering the
explicit equal-time eommutators of this model.
It then follows that insucha model the above asym-
ptotic condition on g,"(u, s) is satisfied.

Next we observe that in addition to Eq. (3.2) one
also has (I(= 3, 4)

Since f(x, ) and g(x„x„x,) are arbitrary constants
of integration the two terms on the right-hand side
of (2.21) should be independently invariant. But
V4'"' ean only depend on x p and x'. Therefore,
we must require

gp Vi, dqp = upgp (u, s)d u ds,

(3.3)

(3 4)

f(x,) = 0, (2.22}

III. CONSEQUENCES OF CAUSALITY AND SCALING

A. Causality sum rules

Having shown in the last section that V,
" and V,'

are causal we ean, therefore, write for them the
JLD representations' (k = 3, 4}

g(x„x„x,):—g(x P = xp),

i.e. , V", "' depends on x.P= x, only. Thus if it
is to vanish as (x(-~ (see Refs. 8 and 12) it must
vanish identically for x'&0. Hence V4' is causal. "

The above arguments can also be applied to Eq.
(2.10) in order to show that V", is causal and that

V,
' can have a noncausal part. This is done in the

Appendix. Although these results on V", and V2'~

were previously obtained by Meyer and Suura, '
we have elected, for the sake of completeness, to
prove them using the above procedure.

provided that lim, „s((,"(u, s) = 0. Since the
spectral functions g„"(u, s) are Lorentz-invariant
the right-hand sides of (3.3) and (3.4) must trans-
form like a scalar and a time component of a
Lorentz vector, respectively. " These equations
may therefore be written in the form

(3.5)

qp Va dqp = cI Pp ~ (3 6)

y'"(-u, s) = y',"'(u, s},
~((il( u s) q

Ill(( us)

implying that b," = 0, c," = 0;

(3.7)

where b,' and c,' are constants. Note that b," = 0
if g,"(-u, s) = -g~" (u, s) and c~" = 0 if p~" (-u, s)
= (t~~(u, s). In fact (the brackets (ij) and [ij] denote
ij-symmetric and -antisymmetric parts, respec-
tively)

Vg"= ds d uc qp —u, 5(q —u' —s $g' u, s
p

g(ii )( ) g
ii(( l)

g~a

'

l( ) pl"il( )

(3.8)

Assuming the possibility of interchanging the
orders of integration we then find that

(3.1)
implying that b4' = 0, c,'" =0. These results can
be arrived at upon writing the JLD representations
(3.1}in the form
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v,"(v, q )=-,' J (q(q. — .—( ~ (q — ) )"*&—q(q, —,~ (q ~ (t)-u&']'"))&,"(,
0 0

Hence we can write

6(q, + u, —s+ j+ u "')—5(q, + u, + s+ {q+u)' '") g,"{-u,s d'uds.
0 0

V,"(v, q') = —,
'

(6(qo —u, —[s+ (g —u)']'"}-5(q,—u, + [s+ (q —u}'])&' }})}),"(u, s)
qo —uo

+ (6(qo+ u, —[s + (q+ u}']&"}—5(q, + u, + [s+ (q+ u}'])") }(}),"(-u, s) d'uds.
qo + uo

(3.9)

Using the crossing relations

V,' '(v, q') = ))(» Vo'"(-v, q'),

V&)' (vv q') = —tt» V, (-v, q')
&

(&b) = —n(. )
= —1}

in Eq. (3.9) we immediately get the results (3.7)
and (3.8}.

Thus, in summary, one has the causality sum
rules (h = 3, 4)

vV,"-Ft ((q&),

v'V" F"(0)-)

(3.16a)

(3.16b)

We mention at this point that a theorem due to
Leutwyler, Otterson, and Stern" states that the
scaling laws for causal functions scaling as in(3. 16)
arevalidfor q'-~ as wellas q'- -~, provided
that these laws reflect canonical leading light-
cone singularities of the type (3.15).

In order to incorporate scaling in Eqs. (3.11)-
(3.13) we first start by introducing the variables

Vu'dao = o,

qoV~ dqo = b~

(3.11)

(3.12)

~=P. ', (=-p. 'p q, n=q' —p. '(p q)'.

(3.17}

These parameters vary such that

(3.13}
0 - o - 1, — & g &, )7- g'/(I —(x'}, (3.18)

with

b[i'] b(' ') ~!i )
~[i

'l
03 4 3 4 (3.14)

The sum rules (3.11}-(3.13) are general causality
sum rules which do not depend on any specific
assumption about current commutators. In parti-
cul.ar, they are not in any sense, model-depen-
dent. In the next subsection we apply the methods
of Ref. 6 to obtain the scaling form of these sum
rules.

V,
'

(v, a'v' —2(v —)})dv = 0, (3.19)

a' vV,"v, . . . dv= b,", (3.20)

and when n= 1, E= 0, and g~0.
Changing the integration variable in Eqs. (3.11}-

(3.13}from qo to v we may write these equations
as (k = 3, 4}:

Q v Vg vy. . . v= 2)bp +cg (3.21)
B. Scaling

On the grounds that V," and V," possess canonical
leading light-cone singularities of the type

V", (») - .(».)5(S)h",(» P, 0)
V v, Q|'v —2)v —g dv. (3.22)

In the method of the refined infinite-momentum
limit' one considers an integral of the form

+ less singular terms,

V,"(») -~(», )e(»') h,"(» P, 0)

+ less singular terms,

(3.15)

Dividing the integration region into the intervals
(-~, -R), [-R, R], and (R, ~), one assumes that
it is possible to interchange the limit n -+ 0 and
the integration in the range [-R,R]. In the other
intervals the variable v is changed to (', where

where ht, '(h = 3, 4) are matrix elements of non-
singular bilocal operators, one can'"' deduce
the scaling behavior (v-~ with -q /2v = (q& fixed);

v= -» '((' —5)

One then obtains

(3.23)
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R 4-{I/2) n2R

lim I = V(v, -2(v —t))dv+ lim +
a ~ 0 g + {1/2) a2 8-

[»-'V(-2~-'(f. '-5), 4o '5'(('-h) -n)~d('.

(3.24)

lim I=
c2 ~p

V(v, -2t'v —q)dv-P, d$',+(h ')
p

/

In the second term the integral is evaluated in the
scaling region. %e may therefore use scaling
behavior in this integral. Since the lowest value
of ~v~ in this term is ~van= it we must choose
R ~R „where R, is the value of v at which scaling
behavior sets in. Thus letting a2 - 0 and then
proceeding to R-~, we obtain

b4J = 0.
Then (3.20), for k=4, will give

+."(z')
vV4'~{v, -2Ev —g)dv = P

(s.ss)

(3.34)

Considering the V,'~ sum rule in (3.21) we observe
that as n2 0

(3.25) v'V,'~(v, . . . )dv- v'V, (v, -2t'v —q)dv

where vV-E in the scaling limit.
Next we apply Eg. (3.25) to the sum rules (3.19)-

(3.21), taking the scaling behavior (3.16) into
account. From Eqs. (3.19) we obtain -~- (2~~~&+ c&&). {3.35)

-4 -' (&'-&)+,"{&')«

F!'«)
V,"(v, -2t'v -t))dv=P

(
', dt',

V,'~(v, -2t'v —t))dv = 0.

{s.26)

(s.27)

Assuming that the integral

(3.36)

Turning now to Eg. (3.20) for V," we observe that
as o.'-0

exists, we have

2(ply ~ co 4 (] gl)Fry((r)d(i (3.37)

vV,'~(v, -2)v —q)dv which gives again Eq. (3.30) for b,'~ as well as

P&g (g I)d( r
c,"=-4 &'+"(~')« . (s.s8)

Thus the assumption that the integral

vV,'~(v, -2Ev —g)dv

(3.28)

(3.29)

From (3.37) and (3.35) we then have

v'V,'i(v, -2)v —ri)dv =0. (3.39)

exists gives
Finally Eq. (3.21) for V4" gives, on assuming that
the integral

Fu((i)d(i (3.30) v'V,'~ (v, -2 f v —q )dv (3.4o)

vV,'~(v, -2tv —g)dv = 0. (s.s1) exists, the result (3.33) as well as

c"=0,4 (3.41)
Next we consider the V,' sum rule in Eq. (3.20).
We get F,'&(g') d~' = o, (s.42)

lim vV4~(v, . . . ) dv =
2~ p

vV4'~(v, -2(v —g)dv

I"' (8')dg'

v'V4i(v, -2f, v —q)dv =0. (3.43)

(3.32)

The assumption that this limit exists implies that

C. The fixed-mass limit

The main sum rules derived in the previous
subsection are
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V~~(v, -2/v —g)dv = 0, (3.27}

vV4~(v, -2t'v -q)dv =P, , (3.34)

(3.31}

v'V,"(v, -2t'v —q)dv = 0, (3.39)

v'V4'i(v, -2)v —q)dv = 0. (3.43)

In addition we also had

b,'~ =2 E,'~ (u)d(u) (3.30)

Fli
VP(v, -2(v —q)dv =P,' d$', (3.26)

(3.31) and (3.43}are less likely to converge on the
basis of the Regge model. ' The expectation for the
Regge convergence of the sum rule that results
on setting $ = 0 in Eq. (3.39) is even more remote
than that for the sum rules from (3.31) and (3.43).
This could be an indication that the assumption
made in connection with the existence of the inte-
gral (3.36) is unjustifiable. Since the relation
(3.38}follows also from this assumption, its val-
idity is equally doubtful. But in any case these
latter results which depend on the existence of the
integral (3.36) will not be needed for later use in
this paper.

Finally, considering Eqs. (3.42) and (3.30) we
first remark that (3.42) is the scaling version of
(3.45).""The significance of Eq. (3.30), on the
other hand, will be explored in the next subsec-
tion.

b' =04

c,"= -4 ~E,"(co dro,

c"=0

I""(cu)du) = 0.

(3.33)

(3.38)

(3.41)

(3.42)

D. Electromagnetic equal-time commutators

Considerable attention is being currently de-
voted to the study of the structure of the electro-
magnetic equal-time commutators. Here we aim
to investigate the restrictions imposed by the re-
sults obtained so far, on the structure of these
commutator s.

Define

V3l" l(v, q')dv =P
j'8/l(~)

{3.44)

V40jl(v, q')dv = 0,
0

(3.45)

To obtain the fixed-mass sum rules one pro-
ceeds to the limit $-0. If one simply sets' $ =0
in Eqs. (3.26), (3.27), and {3.34) one gets the non-
trivial sum rules

E» = e""6(xo) P, s V&(x), V, (0) P, s d~x,

~(]f 1 ) +
f.P ~j ~

(3.48)

(3.47)

where V„(x) is the electromagnetic current and

~P, s) denotes, for definiteness, a nucleon state.
In terms of p, v-symmetric and -antisymmetric
components,

r vV~" j(v, q')dv = I
0

1 FSJj(~)
d(d ~

(d
(3.46) where

where q' «0. These relations are the spin-de-
pendent fixed-mass sum rules derived in Ref. 1
from light-cone commutators. " Setting ( =0 in
Eqs. (3.31), (3.39), and (3.43) gives an additional
set of three fixed-mass sum rules. Whereas the
sum rules arising from (3.31) and (3.39) are not
satisfied in the free-quark-model Born approx-
imation of the amplitudes, where"

V' = —f' "A. [6(q'+ 2v)+ 6(q' —2v)]3 2

+ —d'" Z, [6(q'+ 2v) —6(q' —2v)],

Vfg 0

the one from (3.43) is trivially satisfied. Com-
pared to (3.44)-(3.46) the sum rules obtained from

(3.49)

C[ji pj E~ p as qBV3 + q' sEIf p Q q&V& (3.51)

With these preliminaries out of the way we now

discuss the time-space and space-space ETC's.

Time-space ETC

The restrictions placed by the causality and

scaling properties of V, and V, on the structure of

E~~~ have recently been studied by Taha, '9 who

with

C(„~= (q„q, —q"g»)V

+ [v(p„q„+ q„p„)—q'p„p, —v'g„„]V„(3.50)

and
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found that (a) causality requires E&~» to be of the
form

2
E&0» = -p qs, p]) + (s i + po s2) 7]

where s, and s, are constants; (b) if W~ scales

1 E~ ((u)s = — duo4' (d

and if vW, scales s, =0. In what follows we dis-
cuss the restrictions imposed by our results on
the structure of E~~&.

From Eqs. (3.49) and (3.51)

1
E(~) = —cg)~ s) q~ V3dqo —q' sP) qm V4dqo

in which one observes that the first and second
terms correspond to tensor and scalar operator
Schwinger term contributions, respectively.

Lastly, an identically vanishing right-hand side
in Eq. (3.56) is obtained if 54["» =0. As is clear
from Eqs. (3.32) and (3.33) this would be the case
if one makes the assumption that the a'- 0 limit
of the integral,

vV~~(v, . . . }dv,~ ~ ~

exists.

Z. Space-space ETC

+ sop~ q qoV~dqo (3.52)

Using the causality sum rules (3.11) and (3.12) in
this equation, we have [note 54[' =0 from (3.14}]

E(oa) = 0 (3.53)

which means that causality implies for E~ the
structure it requires for E~~~, i.e., the form
given in (a) and discussed fully in Ref. 19.

Let us next consider, for the sake of comparison
with the electromagnetic case, the equal-time
commutator E~~&, i &j. The equation correspond-
ing to (3.52) will then give, on using the causality
sum rules (3.11) and (3.12) with 5 P =0,

1-
E[]~»= —~(p)r, (r]r, —@&) +,((d)(f(d u(p).

On use of the identity

(s.5v)

yoy& yf —y @graf
= ZE]fgygy»

Eq. (3.57) can be rewritten as

(s.58)

Using Eq. (A10) of the Appendix and the causality
and scaling sum rules (3.11)-(3.14), (3.41), and
{3.30) we obtain

if 1
EI.aa]= ~ai so&i q ~4«f] .

7r
(3.54)

1
E«f &

= e&f& s& F&(co dc@ . (3.59)

i.e., unlike E~~~ the ETC E~~~~, i &j, does not
vanish identically on the basis of causality alone.
Further elucidation of the structure of this ETC
can be gained upon using the identity (see the
Appendix)

~ ».».», =r]».r. +rW» Y]g k r&g( (3 55)

This enables us to write Eq. (3.54) as"

E['~» = —u(P)I(» p)(» q)r& p'q&] b.'"'u(P),—
(s.s6)

Note that this result is a consequence of causality
and scaling.

Now in the algebra of fields E«f&=0, implying
that

(3.60)

which is the sum rule of Hey and Mandula. "
On the other hand, according to the free-quark

model, or the quark model with local four-fer-
mion interaction, "

()( )[( (Ã) Vj(0)] ()( )[(y(xl ) (0)] = 2(f y 1( +
~3 d ) d .)~; (0)ll
2 1 {3.61)

with

c=0, . . . , 8;

d.~a= (k)'" ~.~

Hence in this model

2 1
lr&='~u t(- ~3 4 +) ~ )

x &p, a[A;(0}~p, a}

f "+ 3
+

3
r's. 3-62)

2 1
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Combining this equation with (2.59}we have

(2.52)

which relates the axial-vector coupling constant to
the spin-odd deep-inelastic electroproduction
cross section. This result, which was originally
derived by Bjorken, "corresponds to Eq. (5.12}
in the work of Dicus et alt. '

IV. CONCLUDING REMARKS AND SUMMARY
OF RESULTS

In this paper we have found that a study of the
causality properties of the spin-dependent electro-
production structure functions not only sheds light
on the origin of results that have previously been
obtained in the light-cone approach but also furn-
ishes information which allows one to constrain
the forms of the equal-time commutators. We
summarize in the following what we regard to be
the new results of our investigations:

(1) First, we have demonstrated" that the spin-
dependent electroproduction structure functions
V," and V4' are causal. To our knowledge, this
has not been done before.

(2) Next, we have shown that a number of the
polarized electroproduction results which have
recently been obtained from the analysis of the
(+, v) light-cone commutators, e.g., the spin-
dependent fixed-mass sum rules involving V,'~ and

V,'~, do in fact follow from causality and scaling
alone pyovided the conventional infinite-momentum
procedure is abandoned in favor of the recently
introduced refined infinite-momentum technique
of Taha. ' Thus with this proviso one would also
deduce these light-cone results from any causal
formalism such as that of equal-time commuta-
tors. This not only confirms the conclusions
reached by Taha' in connection with the derivation
of the spin-independent electroproduction fixed-
mass sum rules but is also in agreement with
the recent work of Keppel-Jones" and Ward. "
These authors have proposed a treatment of the
equal-time commutator, in which the difficulties
of the conventional infinite-momentum limit are
circumvented. Their considerations show that
the neutrino-nucleon scattering fixed-mass sum
rules of light-cone commutators are already con-
tained in equal-time algebra. Further work by
Ward" investigates the assumptions under which
the refined infinite-momentum limit is valid. It
is shown that while the refined limit satisfactorily
handles the Z graphs that are neglected in the
conventional limit, it, nonetheless, misses the
class II states, as does the light-cone approach. "

Consequently, according to causality, the struc-
ture of the time-space electromagnetic ETt." be-
tween spin--, states of equal momenta is identical
to that between spinless states and is therefore
given by the form of Ref. 19, i.e.,

E = -p qp s, + (s, + p, 's, )q, , (4.2)

where s, and s, are constants. In comparison with
Eq. (4.1) we have also shown that causality re-
quires EI'~~j, i 4j, to possess both tensor and
scalar operator Schwinger terms, antisymmetric
in jij). Specifically we obtained

(4.3)

in which the first and second terms correspond to
tensor and scalar operator Schwinger term con-
tributions, respectively. Furthermore, we have
noted that the right-hand side of (4.3) would vanish
if the a'-0 limit of the integral

vV4~(v, o.'v' —2fv —q)dv (4 4)

exists.
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APPENDIX

1. Conventions and normalizations

In this article the y matrices obey

yp yv + yilyp 2' v ~

yp ypyjI yp &

(A1)

(A2)

=-4t (AS)

It is, however, noted" that in principle the refined
procedure allows the inclusion of all classes of
intermediate states and the formalism is extended
to explicitly demonstrate this.

(3) Finally, we have used the causality proper-
ties of V,' and V4' to study the structure of the
spin-dependent part of the matrix element of the
electromagnetic ETC. Denoting the Fourier trans-
form of this matrix element by E~„„&we found that

(4.1)
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(P'- 1)u(P}=0,

and is normed so that

u(P)u(P) =2.

From Eqs. (A4) and (Al) one readily shows

(A4)

(A5)

u(P)r„u(P) =P„u(P)u(P) . (A6)

Using Eqs. (Al)-(A3) one can deduce the identities
I

The positive-energy spinor u(P) satisfies the Dirac
equation

where

p va8~5 +p v~a8 + ~8p ~av + ~v 8+ay

+ &apov8+ Og 0'vp + 0'va&p8r

p va8~a~5 +p v~8+ ~v8~, + ~8@~v r

(A7)

(A8}

(A9)

Choosing p. =0, v =0, n = 1, P =m in Eq. (A7) and
multiplying by r, one gets Eq. (3.55) of the text.
Making use of Eqs. (A7)-(A9), (Al), (A4), and
(A6) in Eq. (3.51) of the text one obtains

[fl ] u(p}].(4 rp Y ugly Pfl f VpP ) 3

+ [(~4- e')r„r, + (e' —u')g„. + ~(p„q. —e„p.) + 4(e„r. - r„e.)] v}u(p) . (A 10)

2. Causal properties of V'( and VP

Consider Eq. (2.10) of the text. Since the causal parts of V", and V',~ vanish for x'& 0 we can write

( a„a„+g„,o)v', " —[p a(p„a„+p„a„)+p„p„&+g„„(pa)']v', "'=0,

In the rest frame p=0 this equation reduces to

(-8„8,+ g„, )Vp "—[8,(g„,a„+g„,a„) + g„~„, + g„„a,'] V,'~' " =O, x'& O.

(A 1 1)

(A12)

For the following different values of p, and v we
then obtain

V,""' =x++ C (x„x„x,) . (A22)

=]. v=2 8 8 V'~'"' =0
2 I 1 7

p. =1, v=3 & & V'~'"' =03 1 1

(A13)

(A 14)

Now the two terms on the right-hand side of this
equation can be separately Lorentz-invariant,
Viz .,

which together imply

8PiP"' =f(x„x,).
Integrate with respect to x, to get

V", "' =g(x„x,) + h(x„x„x,) .

Consequently Lorentz invariance requires

g(x„x,) =- g(x, = x p),

(A15)

(A16)

(A17)
h(x„x„x,) =-h(x, =x P) .

Therefore, the boundary condition V',""'- 0 as
l xl- ~ implies that V',~' "' = 0 for x'& 0, i.e., V', ~

is causal. Note that one reaches the same con-
clusion if e,V", " =0.

Taking the result V',~'"' = 0 into account we next
have

xP —= x'PK,

C(x„x„x,) =—C((x p}' —x') .

(A23)

(A24)

Consequently the boundary condition V,""'- 0 as
lxl-~ does not require V,""'to vanish identically
for x'& 0. Hence V2'~ may possess a noncausal
part.

If ~0V,''"' =0, then V2'~'"' depends on x„x„and
x3 only, i .e ., it is a function of (x P }'—x'. Hence
again the boundary condition does not imply that
V,' '"' vanishes identically for x'& 0 and conse-
quently V,' may have a noncausal component.

Finally, one can verify that these results are
consistent with the equations arising from the re-
maining choices for p. and v. In particular we
note that }j, = v=0 gives, on using (A18) and V", "'
=0, the equation

p, =1 v=1 8 'V'~'"' =00 2

V)j, nc 07 ' ]. 0 2

v =0 a O V&&'"'-' =0
7

' 2 0 2 7

p. =3 v=0 & & V" n' =0
r ' 3 0 2

(A18)

(A19)

(A20)

(A21)

g2Vi j, nc 0 (A25)

(A26)

On the other hand, Meyer and Suura' identify the
noncausal part in V," as {p = 0; x'~ 0):

V.""' =2fe"'~a lxl '

Suppose that ~0V2" "' & 0. Then these equations will

imply that it is a constant =K, say. Hence
where I~ is a constant. Clearly this is a solution
of (A25).
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