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Bose condensation in supercritical external fields*

Abraham Klein and Johann Rafelski
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19174

(Received 12 August 1974)

We study the relativistic field theory of a charged spin-zero boson field in the presence of an external
field, such as the Coulomb field of a prescribed charge distribution. It is shown that for a sufficiently
intense field the ground state is unstable against the formation of a Bose-Einstein condensate of charged
boson pairs, A consistent quantum theory can be formulated when known nonlinear couplings such as
the Coulomb interactions of the bosons are properly included in the Hamiltonian. Speculations are
offered concerning the possible stability of nuclei with charge number Z & 10'.

I. INTRODUCTION

In this paper, we study the problem of the quan-
tization of a charged spin-zero field in the pre-
sence of a localized positive-charge distribution
of arbitrary strength ("Coulomb field of a nucle-
us").

When the nuclear charge number Z exceeds a
certain critical value, Z„solutions of the linear
Klein-Gordon (KG) equation in the external field
no longer form a complete set and standard quan-
tization of the quadratic Hamiltonian operator
fails. With conventional nuclear charge densities,
the fact that this phenomenon occurs for Z a 10'
may explain the paucity of attention which it has
so far received in the literature. ' 4 It turns out
that when one examines the usual quantum theory
one notices that at Z= Z, the vacuum becomes un-
stable against the production of an indefinite num-
ber of charged boson pairs. To guarantee a stable
ground state for Z&Z, one must, at the very least,
take account of the self-Coulomb interaction of
the boson field. The basic physics of the result-
ing nonlinear field theory as well as some of the
mathematics are given in Migdal's paper, ' which
is, however, technically incomplete. The core
of our work, Secs. III and IV, thus has minimal
overlap with the former's work.

Thus, at the very least, we exhibit in the materi-
al of Secs. II-IV an amusing example of a spatial-
ly inhomogeneous Bose-Einstein (BE) condensa-
tion phenomenon whose occurrence is in a basic
sense attributable to the special properties of a
relativistic many-body theory.

In the last section Sec. V, we speculate that
ultimate connection with physical reality may not
be beyond the possible. For nuclei with Z& Z, to
be stable we argue that two conditions are neces-
sary. The first is that ordinary N=—Z nuclei con-
tain a neutral BE condensate of equal mixtures of
neutral and charged pions. (Bounds on the density
of such a condensate set by present experiments

will be the subject of separate investigations. ) In
the domain of large Z& Z„ the considerations of
Sec. IV indicate that the Coulomb energy will be
reduced in the presence of the pion condensate.
Physically this can only happen if the charge den-
sity sits well outside the matter density, the net
charge residing on the condensate. This leads to
our second condition, which is that this effect be
sufficiently pronounced to prevent nuclear fission
of such superheavy nuclei. Though we are some-
what skeptical concerning the possible concurrence
of these two conditions, such a possibility prob-
ably merits further investigation.

The behavior of pions in the Coulomb field of a
"heavy" nucleus is in marked contrast with the
behavior of electrons, a subject which has been
thoroughly investigated. ' These are so far the
only cases for which the theory has been worked
out.

II. KLEIN-GORDON EQUATION IN A STRONG COULOMB
FIELD. INSTABILITY AGAINST CHARGED PAIR

CONDENSATION

A. Forms of the KG equation.

We study (withe =c = I) the equation

(E —V)' q(r) = (P'+ I') q(r), (2 I)

where g(r) is a complex scalar function and V(r)
is the potential energy of a negatively charged
scalar particle of mass m (henceforth called a
pion) in the field of a fixed extended charged dis-
tribution. For example, we may take

&(~) = — f(~), (2.2)

f(~)=I-e '" (2.3)

where a ' =—A, the nuclear radius.
The formal properties of the equation are more

easily studied if we introduce a formalism of first
order in the energy (time derivative). 6 In terms
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of the two-component vector

(
( (z —v)q f

(2.4) c,,., g = (P /2m) g + V „„g,
where

(2.12)

istic Schrodinger equation. For this form, we
write

Eq. (2.1) becomes

z&, Q=RQ,
R = —,

' (1+~, ) (p'+ rn ') + 2 (1 —v, ) + ~,V .

(2.5)

(2.6)

~ „.,=E'[I+ (E'/2m)],

V,,„=V[1+(E '/m) —(V/2m)],

E =E'+ n&.

(2.13)

Here T, (i =1, 2, 3) are the usual Pauli spin ma-
trices. Since X is Hermitian, we recognize that
the fundamental scalar product is the integral of
the density

~.&(r) = g(r) ~, Ab(r ), (2.7)

providing an orthogonality theorem for two solu-
tions of (2.5) belonging to different energies.

For the norm of any given solution, we compute

kg (z-=v)q, (2.8)

I y
I' = I2IE -«) I]-', (2.9)

where (V) = fg* VP/ jg*g, we see that, in general,
the solution set for given V divides into two sub-
sets P~ and P„characterized as follows:

Remembering the sign of V, Eq. (2.2), we see
that (2.8) is certainly positive for E ~0. On the
other hand, for negative-energy continuum solu-
tions, the norm must be negative, by analytic con-
tinuation from the limit &=0. Thus if we choose
the original KG scalar function to be normalized
according to

B. Bound - state spectrum and approach
to the critical point.

For full understanding of the situation when Z
becomes very lar ge, we consider together the so-
lutions for both negative and positive pions (m').
The behavior of the most deeply bound orbits is
illustrated schematically in Fig. 1. We shall first
describe the results and then indicate how they
follow from the KG equation. For a potential en-
ergy of the form (2.2), the curve marked E rep-
resents in its solid part the lowest bound state of
a n . Two special values of Z are to be noted.
For Z & Zo there emer ges from the negative-energy
continuum a new bound-state branch for n which
meets the branch E at a point of vertical tangen-

cy, Z=Z, . For Z&Z, there is simply no bound-
state solution corresponding to this branch, The
curve marked 8+ is a reflection of E with re-
spect to the abscissa E =0 and represents a solu-
tion branch for 71+.

We shall now indicate the derivation of these
results from the KG equation. To understand
their physical implication we must resort to the
quantum field theory described in the next sec-
tion.

It follows most easily from (2.1) that

P„=—1, E„—(V)„0 .

(2.10)
((r;E, e) = y(r; —E, —e) . (2.14)

The considerations above would obviously fail
should there occur an eigenvalue for which the in-
equalities (2.10) are replaced by an equality. The
resolution of this difficulty, carried out below,
represents the basic goal of this part of our work.

For the normally occurring situations for which
(2.10) applies, the completeness relation for the
solution of (2.5) takes the dyadic form

pr p r 7'x n r n r 'T~=I5 r-r'
(2.11)

and I is the unit two-by-two matrix.
A third form of the KG equation is sometimes

useful because of its analogy with the nonrelativ-

FIG. 1. Schematic representation of the lowest bound-
state branch for a negative pion in the Coulomb field of
a superheavy nucleus (neglecting strong interactions).
The branch for the positive pion related by charge con-
jugation is also shown.
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This shows that if branch E occurs for n,
branch E, occurs for m'. Next consider the equa-
tion for n' near zero binding energy. From,
(2.13), remembering to change the sign of the
charge, we have

( +, E' - 0) —=
I V(r )I —(V /2m) . (2.16)

For Z large enough, the second term must dom-
inate and give (Z&Z, ) a m' bound state —even in
the field of a positively charged nucleus —as
shown in the solid part of the branch E, . The
combination of (2.14) and (2.15) establishes the
qualitative character of Fig. 1.

One naturally inquires after the physical picture
which explains how a m' can be bound in the field
of a positively charged nucleus. Here, the fact
that the charge density is not positive-definite
plays an essential role. Though the total charge
is one unit, this is obtained by adding individually
large contributions of negative and positive
charge. If the negative charge is on the average
closer to the nuclear charge, we obtain the re-
quired binding force.

It is in fact easy to see from the considerations
of Sec. IIA that points on the solid parts of curves
E, correspond to solutions with positive norm
whereas dashed portions represent solutions with
negative norm. The meeting point must therefore
be one at which E =(V). Now consider Eq. (2.1)
for V- A.V and form the expectation value,

Combining this with Eqs. (2.16) (A. =1) and (2.2)
and (2.3) we derive (o. = e'/h c)

E(E -(V&) = m Zu—E. &f '(r))+Zo.& f'(r)V& .
(2.20)

The correct order of magnitude for Z, should
be obtained if we examine (2.20) for E =0. Thus
we have

m' = ( Zn)'~ (e '"/r&- (Zn)'
(2.21)

(2.22)

using the essential fact that the pion wave function
is largely confined to the nuclear interior. If we
set R' =(10'/rn') we find Zn-10, which is roughly
consistent but appears to render our problem
somewhat academic, at least under presently
known conditions. (If we had a pion of electronic
mass, Z, would be reduced by an order of mag-
nitude. )

Returning now to the technical aspects of our
problem, we notice that at Z= Z, there is only
one solution remaining of the two we had for
Z&Z, . To understand the approach to the limit,
we define in terms of the two solutions of interest
Q, (a referring to norm) two new unckanged lin-
ear combinations:

((E —XV)'&=(p'&+ m'. (2.16)

With the help of the KG equation, the first deriva-
tive of (2.16) at X = 1 becomes

With

d, (r) = y,'(r)~, Q, (r), (2.23)

(E -&v&) —= &Ev&-(v'& .
dE
dA.

(2.17) etc. , we have straightforwardly

At the point E =(V), the right-hand side cannot
vanish. Therefore we must have dE/dA-~, a
point of vertical tangency.

Let E = —p. represent this point occurring at
Z=Z, . Then we see that for the branch E„we
have E,= p, . Therefore in a quantum field theory
we could produce an indefinite number of rr' pairs
without energy cost (in the absence of other inter-
actions). This apparent instability will be dealt
with in the next section.

Let us estimate the value of Z, predicted by
our model, using the pion mass. This can be
done with the help of a virial theorem. From the
statement

d= d=0e o (2.24)

but

(2.25)

E~+E = 2V+

where

(2.26)

It may be instructive to exhibit expressions for
these densities. In the following we make use of
the orthogonality between Q, and P, which if we
assume real wave functions can be expressed in
the form

&[r p, (E V)' -P' -m'j&=—0, (2.18) V.b
= (g„vgb)/(g„Pb) (2.27)

we derive for bound states

(P'&=((r ~V)(E —V)&. (2.19)

and (as will be needed below) V„=V, . We also
record our expressions using unit normalization
for g, . We then have
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d ( )
1 2 [V+ V(&)](t(+

+ - lz, -v l

(V —V)()( ' 2(V, —V)g, (l(

Iz —('
I (I@,-(', ll& -(' I)"'I '

(2.28)

p, (r) =g a~ /~(r)+ g b~ Q„(r), (3.6}

if we assume that

The completeness relation (2.11) will guarantee
a satisfactory quantum theory when used in con-
junction with the expansion

(2.29)

[gp, Opt]= bppt,

[b„,b„t,]= 6„„,
(3.7)

(v, -v)q, ' (v -v)p '-
l~, -v, l lz -v

I

(2.30)

(and of course if the a's and b's commute, etc.).
Thus (3.6) and (3.7) satisfy (3.3). Furthermore,
if the vacuum is annihilated by a~ and b„, we find
for (3.4) and (3.5)

From these expressions, we verify (2.24) and
(2.25). From (2.28) we see that the limit Z-Z,
is a delicate one. If we define

(2.31)

E~ a~~a~+ E„b~b„,

Q= —le( Pa~ta, —Pb b )„„
P n

(3.8)

(3.9)

it can be shown that d, behaves like O(ct ') By.
contrast, d„and d, remain finite and vanish re-
spectively as n-0.

III. QUANTIZATION OF THE KLEIN-GORDON EQUATION

IN A COULOMB FIELD. STABILIZATION OF THE

VACUUM BY NONLINEAR INTERACTIONS

A. Quantization below the critical point.

This is achieved most elegantly in an external
field by use of the first-order formalism. We

adopt the Lagrangian

(r, t)=if~ (r, t)v, . (3.2)

Thus the required commutation relations are

[P „,(r, t), Pt„(r', t)]= w, b(r -r') .

The Hamiltonian which follows from (3.1) and

(3.2) is

(3.3)

(3.4)

To this we adjoin our candidate for total charge
operator, namely

@'.
p ~it.v (3.5)

It is understood that II and Q are to be taken in
normal form with respect to the vacuum state to
be defined below.

L(t) = d'~ [i yt, (r, t) ~, y (r, t) —y.', Xy „,] .

(3.1)

This yields the canonical momentum

As long as Z& Z„ this represents an unequivo-
cally satisfactory theory of noninteracting bosons
of either charge in the external field of a positive-
ly charged nucleus. As we approach the point Z
=Z„we arrive, now on a proper quantum basis,
at the situation already described: The vacuum
state is no longer unique, but approaches degen-
eracy with an infinite set of other states contain-
ing various numbers of r' of energy + p, each.

To remedy this situation, it is sufficient to in-
clude in the quantum theory the mutual Coulomb
interaction of any produced pions. This will be
demonstrated with sufficient rigor in the next two
sections, but the results can be anticipated on
physical grounds. Thus, as we approach Z= Z„
including the Coulomb interaction of the pions,
multipion states of small excitation energy can
now mix with the previously defined vacuum. But
the expectation value of the Coulomb interaction
of any assembly of charges is positive, and since
it is quartic in the amplitudes it must ultimately
dominate and prevent collapse. Moreover, if we
consider the equation of motion for excitations of
negative charge, which is the appropriate general-
ization of the unquantized KG equation, we must
find that the charge distribution of the other pions
screens the nuclear field on the average. The net
result is an effective nuclear field which remains
subcritical. A vacuum state is thus stabilized,
but in terms of the eigenstates of the Hilbert space
defined by the expansion (3.6) its description will
involve many components.

B, Quantization beyond the critical point. The reduced

Hamiltonian.

Formally the quantization can be carried out
precisely as above. We need only replace (3.4)
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by the Hamiltonian

H= Q,„XP

K=K, —T,~,
6)0. (3.11)

We also define

(3.10)

Since V in 3C is now, by assumption, beyond criti-
cality, IVI) IV,I, we choose V, such that I V,I& I V, I

and IV, —V,I/IV, I«1 and write

The subscript onH reminds us that we are de-
scribing only two degrees of freedom.

For Z —Z, = 1, the basis defined by (3.11) and
(3.12) should be very satisfactory for the diagonal-
ization of the Hamiltonian (3.21). The unperturbed
vacuum (we consider the subspace L=0) will mix
with states with at most a few pion pairs to yield
a new stable vacuum. This is guaranteed by the
positive-definite character of the quartic terms
of H.

For Z —Z, =-Z'»1, the mixing becomes large
and the treatment by means of the basis defined
above becomes cumbersome. In this case the
stability of the ground state may be inferred from
a classical approximation for which

e s T| 'P s =300 'P a ~

5=2(c, —e ))0,
y. = 2(e +@+)&0,

(3.12)

(3.13)

(3.14)

((q'q)') = (q "q)(q—'q) = (q')',

(q'qP'P) =(q'q)(P 'p) =q'p',

etc.
With

(3.22a)

(3.22b)

q = 2(a+b~),

p = 2 i(a —t b),

yielding

(3.16)

(r) =q y, (r)+ipse y, (r), (3.17)

where &f&, and P, are the combinations defined. in
(2.22). With the aid of definitions (3.11)—(3.14)
and the further definitions

where these all refer to the near-critical eigen-
values.

To establish the stability of the Hamiltonian
(3.10), we write

Q„„(r)=a P+(r)+b~ P (r)+y (r) . (3.15)

For the remainder of the present section we drop
the terms arising from y, since these make ref-

(1)

erence to the nondangerous jevels; a full discus-
sion including these terms will be carried out in
Sec. IV. We also rewrite the first terms of (3.15)
by means of the operators

we have (L = 0)

W(q', P') =(H,.„)

(3.23)

= -Aq' Bp'+ 2 U, (—q')'+ U,.q'p'+ 2 U.(p')' .

(3.24)

As will be seen below, we can, without loss of
generality, choose P'=0. The variation of W with
respect to p' then yields the minimum at

and

q' =A/v, ,

W= —zA /U, ,

(3.25)

(3.26)

which is proportional to Z".
Further progress and substantiation of the above

simplification depends on recognizing that the
variational expression (3.24) may be derived as
the expectation value of II with respect to a co-

. red

herent trial function

'pa ~i+ 'pa (3.18) Ia', b', 6) =exp(ata'+ btb'e 'e)Ivac) . (3.27)

Vabde' a( ,pa ~, pa)( p,'T, pd)'/Ir —r'I, (3.19)
[This is true insofar as Ia'I'»1, Ib'I'»1, and re-
quires remembering tha, t (3.27) is not normalized. j
With the identifications

L=btb —ata= i(q~p~ —pq) (3.20) p'=
I p.l', (3.28)

we obtain by straightforward transcription (where
U„„—= U„etc.)

H,„„=(~—&..)O'P+(~ —&..)q'q+(-u+&. ,) L

+ v. (q'q)' .U. .(q 'q-, P 'P}+.U.—(P'p)'-
+ l(q'q, I.)v, „—l(p'p, L)v. „+l L'v„.,

(3.21)

&2q = a'+ b' e 'e,

&2p =i (a' —b'e '9) .

(3.29)

(3.30)

Average charge neutrality is assured by choosing
a '=O'. The choice 6 =0 for the arbitrary phase
furthermore guarantees P =0. Both here and be-

we have (immediately dropping the subscript zero)
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low, however, it is useful to retain this phase
until the final stages of the formulation.

The observations just made suggest that the pre-
vious classical approximation can be improved by
also varying the operators a~ and b~, i.e., by
varying the functions Q, (r) and Ij),(r) in (3.17).
The expectation value of H, with respect to a
general trial state (3.27) again has the form (3.24)
with the more concise definitions of A and B,

p„„„(r)=leI' p,'(r)~, p.(r)+ I p I' pt(r)~, p.(r)
=lel'p, +III'pe e (3.40)

An understanding of the structure of the nonlin-
ear problem posed by (3.36)-(3.40) requires fur-
ther discussion. For instance, what happens when
we set I p I' =07 Since this corresponds to setting
the phase 6 =0, we are led to study the equivalent
transformation

(3.31)
or in terms of Q, and Q,,

(3.41)

B= — Q, KQe. (3.32)

It is important in the following to notice that (3.24)
is a functional of the quantities q P, and p P, (and
their Hermitian conjugates).

The variation is to be carried out subject to the
constraints that Q, given by

y, =-(2)-"(y,+ y. )

have positive and negative norm, respectively, as
required by (2.10). From the variational expres-
sion (3.24), we thus subtract

Ij),'= z(1+e")P, + p(1 —e'e) P. ,

y.'=-.'(1-e")y, +-,'(1+ e") y,

(3.42a)

(3.42b)

I
@I' =xn, I 0 I' = (1 -x)n,

where

n = la'I'+ I
O'I', x = 2(l+ cose) .

(3.43)

(3.44)

By means of trivial algebra we now find as ex-
pected that (3.36) or (3.37) is invariant in form
under the transformation (3.42), but because

With the help of (3.29) and (3.30), we can further-
more write

-e, la'I' y+'~, O, ~ lb'I' p.'=x p. +(1 -x)p. (3.45)

the coefficients of the norms representing a de-
finition of Lagrange multipliers. This is trans-
formed by means of (3.29), (3.30), and (3.33) into
the expression

I I'e+IIeI')(eee e, e. + etc, e.)

the definition (3.40) is simplified to

p, , (r) =np,'(r) = p(r) . (3.40')

Thus we have shown that the solution for I
Pl'e0

can be transformed into one with I p I'=0 with-
out affecting any physical results. But to obtain
a general formulation of the problem this should
be done after the variation has been carried out.

If we apply (3.42) to the energy (3.24) (or equiva-
lently set I P I'=0), we find

W(n', 0) = -4 ' n + —.
'

Ll,' n' (3.46)

(3.36a)

&;II 4.=P &i 4.+»i 4e

or equivalently

cleft 4 L el~i 4 k e

where

K ff X+ v

(3.36b)

(3.37)

(3.38)

where we have also assumed charge neutrality
and used the definitions (3.13) and (3.14). Vari-
ation of the sum of (3.24) and (3.35) with respect
to I4'I' Q, and I p I' TI).

' yields the equations

&e)T 4e =P~). 4' e5+'r) 4e~

which is a minimum for [cf. (3.25)]

(3.47)

where we henceforth drop the primes. Remember-
ing the definitions (3.19) and (3.23), we see that
p „.(r), (3.40'), is independent of the scale of P, .

The last observation is the essential one to un-
derstand: the limit 5-0. In this limit p, ,-, will
remain finite, but of the separate factors n = q' - 0
and p, -~. It is strongly suggested that we re-
scale the functions Q„Ij),. We therefore define

(3.48a)

v „-,(r) =-e~, „„(r')Ir - r 'I ', (3.39)
g=(p./e), (3.48b)

thus retaining the scalar product between them
[Eq. (3.53) below]. With
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Z =- (6/q'),

Eqs. (3.36) become

(3C rr

(R,,rr —p rg) $ = err Q. ,

where

(3.49)

(3.50a)

(3.50b)

fo= 0f,

fr = 4' f

fp = 4pf, f.= — P.f

(3.59)

K ff K+ U

v =er, p(r')~r -r'~ ',
(3.51)

(3.52)

The discussion just completed provides us with
the basic machinery needed to carry out a com-
plete quantization in the supercritical domain
Z& Z, . This is done below.

(3.53)

g= g r, , etc. , (3.54)

(3.57)

we have (including the limit 5 = 0, but not confined
to it) an expansion theorem

f =fo4+frrl+ Zf» 0»+Zf. f. (3.58)

where

(3.55)

In this new form the structure of the self-con-
sistency problem is completely clear. The set
(3.50)-(3.55) will have a self-consistent solution
for any (reasonable) q ~ 0. [At self-consistency
q' will, in fact, be given by (3.47).] The limit

p =0 may be taken with inpunity. In this limit, the
self-consistency problem becomes independent of
g and of its Eq. (3.50b). This means, as we know,
that we have lost one solution of our self-consist-
ent KG equation. Equation (3. 50b) noge defines a
nonvanishing function suitably orthogonal to all
solutions of the lCG equation, thus Providing a
missing function to make uP a comPlete set.

Let rtr, be all solutions of

Z„r (f), =e, 7', Q, , (3.56)

other than rtr itself. As described in Sec. II, these
will divide neatly into two sets Q» and rP„, with
positive and negative norm. For an arbitrary
vector

IV. CONSISTENT QUANTIZATION FOR SUPERCRITICAL

FIELDS,

As we have seen in the preceding section, for
Z& Z, we are dealing with a Bose condensation
phenomenon. In our discussion of the stability
of the vacuum based on the coherent state approxi-
mation, we have already mixed eigenstates of dif-
ferent charge. For a general quantization we gen-
eralize this procedure by replacing H, Eq. (3.10),
by

II'=H- p. L,
where

(4.1)

(4.2)

is proportional [cf. (3.5)] to the total charge op-
erator. We now write

P (r)=P(r)+)t (r),
where

(4.3)

P(r) =q P„ (4.4)

and rIr„q are solutions of the self-consistency
problem (3.36) with p =0. We shall ultimately con-
sider the limit 5-0. We have argued that the
function rP(r) remains well defined in this limit.
As long as 510, X„&;. defines a complete set of
single-particle functions in the sense of Eq. (2.11).
For 5 =0, we have learned how to adjoin a func-
tion to the solutions of the KG equation so as to
achieve completeness.

If we substitute (4.3) into (4.1), using (3.36),
we find straightforwardly, omitting also the sub-
script from y, „, that

p(r') p(r)
x ' »" p" x.)r -r'

r Z ~ . [n(r)+n'(r)][n(r')+n'(r')]+ X 30grr V rr X+ 2e r -r'
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where [cf. (3.40')]

p(r) = 4 '(r)7, y(~),

q( r) = 0'(r) Yi X(r) .

(4.6)

(4.7)

is the part quadratic in the field operator X.
We shall seek a realization of the operator y(r)

which brings (4.10) to diagonal form and satisfies
the commutation relations

If we ignore terms linear in 5 which will ultimate-
ly -0, we see that (4.5) has the structure, in an
obvious notation,

[X(r),X'(r')] =7,&(r -r'),
[}I(r), y(r')] =0.

(4.11a)

(4.11b)

H' = Wo+H~+H3+H4,

where

2 p(r) p(r )
Wo= —2e ~p

is the condensation energy and

(4.8)

(4.9)

(4.10)

This can be done most expeditiously as follows:
Let us define the amplitudes

(vac (}I (r)~ v) =f,(r), (4.12a)

{vac [y ~( r) [ v) =- g t( r), (4.12b)

where the states
~ v) are quasiparticle states,

which we study first in an approximation which
neglects H,' and H4, Eq. (4.8). In this approxima-
tion we obtain by taking matrix elements of the
Heisenberg equations of motion for the operators
X~X

E, Y, f„(r)=(36,« —p7, ) f„(~).+e'
( r —r'(-'[g~ {r')+gP(r')] v„P{r), (4.13a)

—E,g, (r)7, =g, (3C„.„—gv, )+e'Q (r)7, (
r-r'~ '[gz (r')+fP(r'}], (4.13b)

K,(r) = 4(r) f(r), (4.14)

and E„measures the energy of the state ( v) rela-

tive to that of the vacuum. For an acceptable
quantization, this must be positive for all v.

We demonstrate how (4.13) meets these require-
ments. By forming the obvious scalar products,
we derive from (4.13a) and (4.13b)

f, f, — g, g, = f t(Xgff p, v;) f„+ g~(K, ff p. 7,)g, +e' r-r' (4.15)

The third term of (4.15) is clearly positive, and

by using the expansion theorems (3.58) and (3.59)
for f, and g„respectively, it follows that these
terms are positive as well. Since E,&0, we see
that two classes of solutions emerge. In the first
5 I, I„=(f„f„)& 0 and l (f„,f,)( & [ ( g„g„)(. These
are the appropriate continuations into the super-
critical region of the positively normed m solu-
tions. For the other class of solutions (g„g,) &0
and

~ (g„g,)[&((f„f,)~, so that the left-hand side
of (4.15) remains positive. In this case E„cor--
responds to the solution of the Klein-Gordon equa-
tion and we are dealing with a continuation of the
m' solutions. These assertions become intuitively
clear if we allow the explicit e' which occurs in
(4.13}to approach zero, in which case the two
equations would decouple to the limits indicated.

( f,(r)
F(r) =

(

~ (4.16)

In this new two-component space, the Pauli ma-
trices will be designated as o;. Then the symme-
try property noted above is that to every solution
E, with energy E,&0 there corresponds another
solution 6, with equal but opposite E„where

We next notice a symmetry property of the sys-
tem (4.13). We interchange f, with g„ take the
Hermitian conjugate, and replace E,- -E,. This
changes (4.13a) into (4.13b) and conversely. The
result may be usefully reformulated as follows.
We first replace (4.13b) by its transpose so that
ger, -7, g,*=a,g,*, etc. A solution to (4.13) is
then represented by the double vector
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&v7P3 &v &vv' (4.18)

(4.17)

With this theorem we have accounted for all so-
lutions of the doubled system (4.13). The physical
solutions are those with positive energy E,& 0.
The unphysical solutions are, however, needed
for completeness in the doubled space. Accord-
ing to (4.13), the orthonormalization theorem for
the I, should be f, = cosh6„X„,

gv = Slnht9v+ Xv+ )

(4.27a)

(4.27b)

standard methods.
We cannot refrain from carrying the formal de-

velopment just a little further. It is mainly to ob-
serve that the completeness relations (4.23) can
be reduced to the form (2.11) appropriate to the
KG equation by considering, as after Eq. (4.15),
two sets of solutions. For the first we write

The orthogonality follows from (4.13) itself; the
normalization follows from the orthogonality plus
completeness relations which will be given below.
In practice the G, are distinguished by the sign of
the energy and by the sign of the norm, since
from (4.17) and (4.18) follows

and for the second

f, = sinho, Xv

g, =cosho, X,

(4.28)

(4.29a)

(4.29b)

G'7a03G (4.19) Xv-Xv- = (4.30)

x(~) = g[~, f,(&}+~' g.(&)],

x '(&) =(x(~))'

I v)= o,'~ va)c, u, lvac)=0.

(4.20a)

(4.20b)

(4.21)

Insertion of (4.20) into the commutators (4.11)
yields the completeness relations

The quantization procedure can now be sumar-
ized by the expansion theorems

2 sinh9, coshO„E, = e' g„(r)—,, g„(r'),
(4.31)

For bound states we choose X, real. For this
case, we state the equations determining this func-
tion X, and the angle O„obtained by insertion of
(4.27) into (4.13) and straightforward algebraic
combination, utilizing also (4.28):

g [f.(r) g,(r') —g.(r) f.(r')]=o. (4.23)

Q[f,(r) f t(r') - g,(r) gt(r')]= ~,5(r -r'),
(4.22)

x.( )= X(r ~
r')(cosh'6, +sinh'6, )

+ g(r ~
r') 2 sinh9, cosh6„X„(r'),

(4.32)

These, together with their Hermitian conjugates,
can be rewritten succinctly in terms of the vec-
tors (4.16) and (4.17) as

I', r I, r' -G„r G„r' =5 r -r' 7,o, .

(4.24)

Together with the orthogonality implied by (4.13),
the relations lead back to (4.18) and (4.19) and to
the further orthogonality relation

E, v', 03G, = 0. (4.25)

H,' = P E„o.to., —g E„(g„g„), (4.26)

It is finally straightforward to verify that the ex-
pansions (4.20) fulfill their aim of diagonalizing
H,'. We obtain

where

X(r~ r') =(K,.„i —p 7, ) 5(r -r')+g(r~ r'), (4.33)

2

Z(r~ r') = —,[7, y(r)][y (r')7, ]. (4.34)

Equations (4.31) and (4.32) have to be solved by
self -consistent methods.

For the set of solutions (4.29) and (4.30), a set
analogous to (4.31) and (4.32) can be obtained dif-
fering from the latter in form by the replacement
E, -Ev.

With the aid of the considerations flowing from
(4.27) forward, we can rewrite the expansion
(4.20) so as to suggest continuity with the subcriti-
cal expansion given in (3.6). For this purpose a
change in notation is de

rigueur:

the last term representing a (positive) zero-point
energy.

The remaining terms H,' and H~, respectively
cubic and quartic in the new quasiparticle oper-
ators, may be treated by perturbative or other

Xv+ X7I )

Xv- X7t )

Qv+ D ~)

nv -Pq.

(4.35)
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In place of (4.20) we therefore write

Q„„=Q+ g (u, cosh6, + utsinh0„) }t,

+ g (P„sinh6'„+P„tcosh9„) }t„. (4.36)

As (Z —Z, ) -0 the condensate wave function P
and all the phase angles 0-0, so that quite for-
mally the two expansions (3.6) and (4.36) look
similar in this limit.

In point of fact, however, neither exists mathe-
matically in this limit. The physical counterpart
of this is that in the neighborhood of Z —Z, =0 the
excitations of unit charge, or more accurately
those that can be reached by applying the field
operator once to the vacuum, cannot be described
simply either as particles or quasiparticles. The
description of the eigenstates in terms of either
limiting description is more complicated. In the
language of thermodynamics this corresponds to
an increase in the size of the fluctuations in the
neighborhood of a phase transition.

The same point can be emphasized by considera-
tion of Fig. 2. In Fig. 1, the parts of the solid
curves marked E and F., not too near Z = Z, may
be considered eigenvalues of the field theory. In
Fig. 2 we indicate schematically the continuation
of these eigenvalues for increasing Z according
to the nonlinear field theory of this paper. The
parts of these curves corresponding to (Z —Z, )» 1
would emerge from the solution of (4.31) and (4.32)
[or (4.13)]. However, for Z-Z, we would have to
mix either multiparticle states with the single-
particle states valid for Z&Z, or multi-quasipar-
ticle states with the single-quasiparticle states
valid for Z& Z, in order to reproduce the curves
of Fig. 2 in the transition region.

V. POSSIBLE APPLICATION AND EXTENSION OF

RESULTS.

To provide some balance to the very formal con-
siderations of the preceding portions of this paper,
we now attempt to relate our discussion to the
structure of nuclei, known and unknown.

The first point which must be emphasized is that
the results developed so far are applicable to a
situation where the nucleus of charge Z-10' is
held together by a deus ex machina. Under no
circumstances, is the condensation energy suffici-
ent to stabilize the nucleus. This is easily seen
as follows: The sum of the condensation energy
and of the Coulomb energy of the nucleus can, in
the semiclassical approximation in which we are
working, be written in the form

IV„, + W„„,= f[(Vg)'a ll ' g')+ —J
(5.1)

FIG. 2. Schematic representation of those eigenvalues
of the field theory, continued into the range Z &Z, ,
which correspond for Z &Z, to single 7t and 7t+ mesons
bound to the nucleus.

where p is the KG amplitude corresponding to the
two-component Q, and p, is the sum of the charge
densities of the protons and of the pion condensate.
As previously noted, the latter arranges itself so
as to cancel as much as possible the proton
charge inside the nucleus. This must be balanced
for overall charge neutrality of the condensate
by a positive charge density outside the nucleus.
Depending on the actual range of this charge, it
is conceivabte (though we have no reliable numer-
ical results) that the overall Coulomb repulsion,
the last term in (5.1), is sufficiently reduced so
as to restore stability against fission if the nucle-
us is otherwise stable.

In this connection, of course, one immediately
thinks of the obvious advantages of a negatively
charged condensate. We have, however, proved
in the last section that small charge fluctuations
about a neutral condensate increase the total en-
ergy of the system. This does not rule against
the interest of studying condensates carrying
charges of order Z, especially if one simultane-
ously considers pion-nucleon interactions (see
below).

In any event, and this is our elementary point,
the best we can do without strong interactions is
to reduce the last term of (5.1) to impotence. We

are left with the rest and kinetic energies of the
condensate. These can be compensated, if at all,
by the pion-nucleon interaction. It has been
claimed' that ordinary nuclei contain a neutral
pion condensate. This is an extremely interest-
ing suggestion, even if it is moot. ' If this turns
out to be the case, a number of questions come
to the fore: (i) Why has this condensate not been
observed as yeti (ii) How would we look for it'?
(iii) What are the implications for the ideas dis-
cussed in the body of this paper' ?

In order to speculate on .'.hese questions, let us
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consider briefly a highly schematic model' which
predicts such a condensation phenomenon. We
describe the condensate by a real (KG) wave func-
tion j(x) and postulate that the energy functional
which determines g(x) has the form

+ 2D (5.2)

which contains two new constants C and D, both
positive, and a function f(~), which we shall ten-
tatively identify with the nucleon matter density.
Actually the term proportional to D is not suffici-
ent to stabilize the system, because there is no
cutoff on the P-wave interaction. This can be
done if we make the replacement

~C Vg(r) - [C(V')]' 'Vf(r), (5.3)

where C(V') will cut off short-wavelength oscilla-
tions of P(x). For the time being we neglect the
operator character of C.

If we then vary (5.2), we obtain the equation

—[1 —Cf(r)] V'y(r)+(0((r ) =0, (5 4)

Cf(0) —I & 0, (5.6)

then a solution of (5.4) corresponds to finding an
s-wave bound state of zero energy for a particle
subject to an attractive square-well potential in-
side the nucleus and a barrier outside. Since
both of these can be adjusted by adjusting the in-

(5.5)

where for purposes of qualitative discussion we
have also dropped a term proportional to the gra-
dient of the function f(r). If we choose f (g) = con-
stant inside the nucleus and zero outside and as-
sume that

tegral J g'(r), there are formally an infinite num-
ber of solutions for ((r). These can be classified
by wave-numbers k, where it can be shown by
standard methods that the values of k„

k„=~„/[Cf (0) —1] (5.7)

form a monotonically increasing sequence. We
shall understand that the main effect of the proper
incorporation of the requirement (5.3) is to select
the lowest value of k„. This can still correspond
to a solution in which g(~) oscillates a, number of
times inside the nucleus.

Such a condensate, if its amplitude were also
small, might be difficult to detect. Such an am-
plitude must, however, induce corresponding os-
cillations in the nuclear density which could be
detected at sufficiently large momentum-transfer
electron and nuclear elastic scattering. It has
been asserted that such effects have been seen in
electron scattering. ' Effects on nuclear spectra
should also be examined.

For heavier nuclei, we can no longer ignore the
Coulomb interaction of the pion cloud with the pro-
ton charge distribution. This will result in charge
separation in the condensate proper, ultimately
to the extreme separation described in the body of
of the paper. One may then anticipate additional
observable effects in electron scattering and
muonic x rays. Firm conclusions (from the mod-
el) would, however, require a self-consistent
treatment of the nuc1.ear and electromagnetic ef-
fects.

It thus is clearly worthwhile to try to under-
stand from first principles if nuclei are condensed
in the sense of the present discussion. It may
be worthwhile quite independently to investigate
phenomenologically the experimental consequences
of such a condensate. Finally, one may try to
understand if super-superheavy nuclei of the type
envisaged in this paper could indeed exist.
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