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Reggeon calculus for the production amplitude. II
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A Reggeon calculus for the production amplitude is derived by using Gribov's method of analyzing
hybrid Feynman diagrams. W'e find that, for any Reggeon diagram, the production amplitude can be
written in the representation discussed in part I of this study, and each term can be evaluated

according to rules which are a rather straightforward extension of Gribov's Reggeon calculus and have

the same character of a nonrelativistic field theory. We briefly show how the concept of Reggeon field

theory can be applied to production amplitudes.

I. INTRODUCTION

In the first part of our study' (henceforth re-
ferred to as paper I) we derived and discussed in

some detail a representation of the 2-n produc-
tion amplitude in the multi-Regge limit. In this
representation, the amplitude is written as a sum
of terms, each of which corresponds to a certain
set of simultaneous singularities. Signature fac-
tors are shown explicitly, and the remaining coef-
ficient functions are real. For the 2 3 amplitude
(Fig. 1)

where g(t) and V„~(o.,a, t, tp) are real (analytic)
functions for the Reggeon-two-particle vertex and

two-Reggeon-particle vertex, respectively.
This discussion had been based entirely on am-

plitudes with pure Regge-pole exchange. In this
second part we want to extend our consideration
to amplitudes which contain Regge cuts as well,
and it will turn out that the representation (1.1) is
just the right one to be used. When we write it
as a double Sommerfeld-Watson transform,

from phase factors.
In examining the effect of Regge cuts in the pro-

duction amplitude, we follow the pattern of
Gribov's' work on the 2-2 amplitude, i.e. , we
shall study hybrid Feynman diagrams and use
Sudakov techniques. As the result, we shall find
that a Reggeon calculus can be formulated which
is a rather straightforward extension of Gribov's
rules and has the same structure as a nonrela-
tivistic field theory. Using the representation
(1.2), this Reggeon calculus provides us with rules
for the calculation of Regge-cut contributions to
the coefficient functions E~ and E„. One particu-
larly interesting aspect of this is that it will be
possible to apply the concept of Reggeon field
theory' to production processes.

In the course of deriving our Reggeon calculus,
we first shall examine hybrid Feynman diagrams
of the 2-3 amplitude. Then we extend our con-
siderations to the 2-4 process, and from this we
derive our general rules. In order to make the
reading of the paper as convenient as possible,
we shall present all our results in the final sec-
tion, while calculations will be done in Secs. II
and III, and an appendix. The final section will
also contain a brief derivation of the Reggeon
field theory which recently has been used by
Migdal «al. ' During our calculations in Secs. II
and III we frequently refer to Gribov's paper as
well as to two papers of Drummond' and Campbell'
who studied some hybrid Feynman diagrams for
the production amplitude.

(1.2)

11. REGGEON DIAGRAM TECHNIQUE FOR

THE 2 ~ 3 AMPLITUDE

with appropriate functions E~ „, then we will find
that this form holds for any 2-3 amplitude, in-
cluding those with Regge-cut contributions, and all
information about the j -plane structure is contained
in the coefficient functions E~ „, which are free

The simplest diagram that contributes to the
double-Regge behavior of the 2-3 process is
shown in Fig. 1. The momentum-transfer vectors
are related to the incoming momenta and the en-
ergies s„,s„,s through
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FIG. 1. The simplest diagram for the 2 —3 amplitude.

S — 2

residue functions, we have for the asymptotic be-
havior of Fig. 1 the expression (1.1) which we now

write as

2 b-=a(, )r(t2)s.b" b. 2ln. "'&,k. k ..
+2} 2P'A, 4, ,) .

(2.5)

(2.5) can also be represented as a double Mellin
transform:

sb —m —2q2 2

2( 4 2) (Pl P2}+qlJ

S — 2 (2.1)

2~3
1

d) d)2S b Sbc4s

Sab —m —2q~
2 2

2( 4 2) (Pl P2) q2J. b

where q, and q, ~ have only components perpen-
dicular to the incoming momenta P, and P,. In the
double-Regge limit

where

+2} "&,,&,, g,Fs(j,j2t, t.2})f,

(2 6)

2
F1, s(j,j 2t, t22}) = — g(t, )g(t2}Gq (t, )

S, Sab, Sbc~ ™~

ab bcs s (2.2) 1
G, (t)= . () .

X«1„s(j,j2t, t2n)Gg, (t2), (2 7)

(2.8)

it follows from (2.1) that

2 2

and

(2.3)

s sab bb 2
( )

2

S
(2.4)

Assuming for the moment that the two blobs in
Fig. 1 have Regge-pole behavior with factorizing

Obviously, (2.6) is the same as (1.2). For sim-
plicity in our following calculations we shall use
(2.6} rather than (1.2}, and one of our results will
be that this form is unaffected by the presence of
any cuts. All effects of cut contributions will be
contained in E~ and I'„.

As the next step we consider the diagram in
Fig. 2. A detailed analysis has been given in Ref.
5 and we quote only the result':

"'"';",' S.b '1Sb, '2S'2-'G1 ((q, —t ).')G1 ((q, —u)i'}G, (&1')g, X, , &

l& "&1~« l'i+& "&1~1,121's~ .

The N's stand for the crossed box graphs at both
sides of Fig. 2 and describe the coupling of
two Reggeons to two particles. They are identical
to the functions which appear in the 2-2 ampli-
tude (Fig. 3). The energy factors in (2.9) can be

rewritten as

g+ l3-1S l2+ f3-i q
-( l3-i)

ab bc (2.10)

We further combine the signature factor (,, with

FIG. 2. A cut contribution to the 2 —3 amplitude. FIG. 3. Two-Reggeon cut in the 2 —2 amplitude.
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those in the bracket. Using the identity

~-i ff(1 g+ l3-1) +~ 71 3

sinv(f, + /, —1}

cos( v[1„+I,+1 ——,'(T, +T,)j)

sin( —,'vl) if r =+,

cos( vl) if r =—

(2.11)

S lg+l3-1 i~+33-1 / -( ly+ l3 1) ~
ab bcS f y+ L3 1 Lp ly L ~l y13( q ( V I

(2.12)

When we insert this into (2.9) and write it as a
double Mellin transform like (2.6), then j, be-
comes equal to l, +l, —1 and j, = l, + I, —1. Since

depends only on the difference l, —l„which
is now j, —j„we obtain for the Mellin transform

1 jl ~2 ab bc4i

which is derived in Gribov's original work, we ob-
tain for the energy factors and (, times the factor
in brackets in (2.9} with

(2.13)

d'k~ dl, dl, dl,F(, ) =
(2,) (2„'),

' ~(~, +I, —I -j,)~(f, +&, —I j,)-
xX, , X, , G ((&, I) '}G, ((q —I) )C&,(& '}l(,„)r(&&)&, (2.14)

and

for I ~ and

for Fs. The reader realizes that (2.13) is indeed
identical to (2.6) and only F~ and Fs have changed.
Comparing (2.14) with the Reggeon diagram (Fig.
2 or Fig. 4) one further recognizes the field-the-
oretical structure which is very similar to the
2-2 ease: for each Reggeon line a propagator G,
conservation of the two-dimensional momentum
at each of the three vertices N. .., N...,, and V.

Further, we have a loop integration fd~k~df What.
is new, however, is the role of angular momen-
tum. To the left-hand side of the produced par-
ticle, the sum of (angular momentum -1}is j, —1

and on the right-hand side it is j, —1, which are
the exponents of s,b and s„, respectively. In the

language of field theory, the Reggeon "energy"
j, —1 enters the diagram from the left-hand side,

FIG. 4. Reggeon diagram as obtained from Fig. 2.

and the energy j, —1 is leaving at the right-hand
side. At the vertex of the produced particle we
have a loss of energy (j, —1) —(j, —1) =j, -j,.

At this point we want to say a few words about the

y factors appearing in (2.14}. In the analysis of
the Mandelstam graph (Fig. 3), Gribov pointed out
that y, , produces a zero when j = l, + l, —1 is a
physical angular momentum. Consequently, the
two-Reggeon cut contained in Fig. 3 does not con-
tribute to physical partial waves in the t channel.
In our case (2.14), the p's play exactly the same
role: I~, being the coefficient of E&, must van-
ish at physical values of j„because our diagram
contains a two-Reggeon cut in j, and does not con-
tribute to physical partial waves. This vanishing
is ensured by y, yf3 For I'~, the decoupling is pro-
vided by y

So far we have assumed that the blobs in Figs.
1 and 2 are simple Regge poles (therefore dia-
gram Fig. 4). But from the way in which the
asymptotic behavior of such hybrid Feynman dia-
grams is derived, it is clear that the blobs can
a1.so be more complicated subamplitudes which
contain cuts, e.g. , Fig. 5(a). If the blobs in Fig.
5 are poles, we obtain the Reggeon diagram Fig.
5(b). The asymptotic behavior of this diagram
is again (2.13), but in (2.14) iV. ..and N..., have
to be replaced by two-particle-three-Reggeon
coupling functions and the Reggeon propagators
G, and G, replaced by more complicated Green's

1
functions Fig. 5(c)], e.g.
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d k dl&dfy I e I 2 2
fq, „„,y. ..„5(f,+1, —l, —1)G, (k )G, f((q, —k —k, ) )&., . .. G, , (2.15)

The rules for the calculation of these "self-en-
ergy" corrections are the same as in the analysis
of 2-2 scattering.

Next we analyze diagrams of the form Fig. 6,
where the left-hand side (lhs) may be any 2-2
amplitude which can be calculated by use of the
familiar rules, and the right-hand side (rhs) may
be any 2-3 amplitude which we have considered
so far. For illustration, we take the simple dia-
gram of Fig. 7(a) with Regge poles for the blobs,
but our considerations will also be valid for more
complicated amplitudes. In Fig. 7(a), the subampli-
tudes have the representations

2

dl(, (p, —k ' ', 216
'1

—1 '
F s

= dj dj [(k —q )2P~s, ~'

(2.17)

with El, s taken from (2.14}. The study of the link
between the two amplitudes follows the pattern
of Gribov's analysis in the 2-2 case: One uses
Sudakov variables: k=ao,'+Q,'+k, Icf. (Al)];
and from the requirement that the external
masses of F „„.and F,„s are to be finite when all
energies are large we obtain

k2 =sAp+k 2-m2
I

m'
, k, '~ m',

(q, —k)'= —s„n+snP+(q, —k)~'-m' I

(2.18)

(p, —k)'- -ns»m'
I m2 m2

(p, + k)'- ps» m' —lnl » —,
I pl »—

S Sgy

(k —q, )' —ps, ~ » m'

(2.19)

Thus the n, P integrations are restricted to

m2 m2 m2
«Ipl & I .s Sg~ Sg~

(2.20)

But when P-l, (2.18}requires snP-m2 and n
-m'/s, whereas (2.19) demands ns»m'. Sim-
ilarly, n -m'/s~, implies P- m'/s, ~ and (k —q, )'
is no longer large. Therefore, (2.20) is replaced
by

m2 m' m2—« InI«, «IPI «1
s Sy~ Stay

(2.21)

and, as a consequence of this, we are allowed to
approximate (q, —k)' in (2.18):

(q, —k)2 - suP + (q, —k) ' . (2.22)

g„k

(c)
FIG. 5. This diagram is obtained from Fig. 2 when

the blobs there have a more complicated internal struc-
ture. (a) Hybrid Feynman diagram; (b) Reggeon diagram
to (a); (c) replacements to be made in Fig. 4 in order to
reach Fig. 5(b).

&-k

FIG. 6. Another diagram for the 2 3 amplitude.
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So the link becomes

d~kF, „, », F „„,. = ——, df dj, s dadP( as-)'$, (Ps,~)43 3

1 1 1

I

1 1

so.P+k~' —m' so|P+(k —q, )~' —m'

(2.23)

where we have written down only those terms
which show the dependence on n and P. For the
a integration there are poles from the two propa-
gators (and the external masses of F„„,FD ).lyin. g
exclusively on one side of the real n axis, as well
as from the energy cut of F,„, , one in the upper
and one in the lower half plane. Since one half
plane is always free from the propagator poles

(for P& 0 it is the upper, for P& 0 it is the lower
half plane), we can close the a integration contour
around the energy cut in this half plane and obtain
the integral of the energy discontinuity. Further-
more, the two contributions due to P&0 and

P&0 just cancel each other if F „„. is opposite
to the s„signature in F,„,, but add if they are
equal. Thus (2.23) becomes

(2.24}

(2.25)

2 ——. dldjs dn dP -us ' Ps„' d'k,
m2/s~b

where the signature factor $, has disappeared, because we have taken the energy discontinuity of F,h, .
Since all terms in (2.24} to the right of the energy factors depend only on so.P but not a or P separately,
we introduce x= -saP as a new variable and perform the P integration:

15 /8~
2 1

s du dll( as)'tps, -Y =s, i dflg ' 'Jd x'
-m2/s nP/g g na/s ~

The most singular part will come fromj, -f, where (2.25) becomes

(2.26)

Finally, we take the Mellin transform in s„of the whole expression and perform the l and j, integrations:

g(t, ) 1

d'k, g(&, ) 1
+q & (.(i.p(t, }G,(t)2

(
. ), , d*x' ',

( ), .,) E

(2.2 I )

q, -k

(b)

(c)
FIG. 7. This diagram can be obtained by "enhancing"

the left crossed box graph in Fig. 2 through pole ex-
change. (a) Hybrid Feynman diagram; (b) corresponding
Beggeon diagram; (c) replacement to be made in Fig. 4
in order to reach Fig. 7(b).

It differs from (2.13) in that F~ and Fz there are
replaced by

F~ „-g(t,)G, (t, )r, F~ „
[where && stands for the quantity in curved paren-
theses in (2.2 I)j. This corresponds to Fig. 'I(c),
and the rules for this replacement are the same as
in the 2-2 case. Clearly, (2.2'7} is a.gain of the
form (2.6}with modified F~ s

Let us stop here for a moment and see what we
learn from these considerations. What we have
demonstrated is that internal Reggeon-Reggeon-
Reggeon vertices in the 2-3 amplitude obey the
same rules as in the 2-2 case. In particular, this
means that mlnerHum and Reggeon energies
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(= angular momentum -1) are conserved. Combin-
ing this with what we have said following (2.14),
we obtain the rules for a Reggeon field theory
which is, apart from the new vertex V and the
fact that we now have two different Reggeon ener-
gies j, —1, j, —1, the same as in the 2- 2 case.

Before we are justified in stating this as our re-
sult for the 2-3 amplitude it is necessary to con-
sider a somewhat larger class of Reggeon dia-
grams. To this end we lookatthehybrid-Feynman
diagrams of Fig. 8 and the corresponding Reggeon
diagrams in Fig. 9. Their analysis is rather
lengthy and described in the Appendix. Again the
amplitudes are of the form (2.6}, and F~ „are
calculated with our field-theoretic rules stated
above. Thus our result is completely confirmed,
and we summarize our rules as follows:

(a) Write the 2-3 amplitude in the form (2.6).
For the computation of E»(j,j,t, f,q) use the fol-
lowing rules.

(b) Each Reggeon line has the same direction
(say, to the right) and carries energy l —1 and

momentum k~. It corresponds to the propagator
G, (k~') =1/[l —a(k~')], and the I integration, whose
contour runs to the right of the propagator pole,
is to be closed to the left around the pole.

(c) Any internal n-Reggeon-m-Reggeon vertex
[Fig. 10(a)] is denoted by r, . . . , , , „and is
accompanied by conservation of energy and mo-
mentum: Q,"k, =ggkI and Q,"(l; —1)=g, (I,' —1).

(d) For the two-particle-n-Reggeon vertex [Fig.
10(b)] there is a factor X, . . . , and conservation
of energy and momentum: At the left vertex q,
=gk;, j, —1=+(l; —1), and at the right one q,
=Qk;, j,—1=+(/; —1).

(e) A factor V~(l„ f„k»', k, ,', q) or
Vs(l„ f„k,,', k»', q) as well as a conservation
k, —k, = (q, —q, ), l, —I, =(j, -j,) for the one-par-
ticle-two-Reggeon vertex [Fig. 10(c)] exists.

(f) For each closed loop there is an integration
fd'kdl/(2w}'i. Any diagram is then of the form

(a) (b) (c)

FIG. 9. Reggeon diagrams, obtained from Fig. 8.

of Fig. 11: j, —1, q, are total energy and momen-
tum on the left side, j, —1, q, those on the right
side of the produced particle, and j, -j,, q, —q, is
leaving along the produced particle.

(g) Finally, each vertex with n& 1 outgoing
Reggeons is accompanied by a factor y, . . . , ,
which in analogy to (2.11) is defined by

r„yi, - ~ ~ i ~ r, ~ ~ ~ ~ -( -1) ~

n 1 n

(2.28)

ln addition to that, there is a factor 1 =y„. +,~1

y„.,+, , for the I loop in F~ and y, &,+, , /y„, +, , in
(See Fig. 11 for the definition of the I, loop. }

This last rule needs a, comment. By combining
y factors in the diagram in an appropriate way
and by using identities like

(2.29)l +f - yf l yl l +& — yl 1

one can always cancel the 1/y, „„,. So there is"1
no pole due to a zero at integer j,. The numer-
ators y„„,and y„„„however, are neces-
sary if the diagram is to decouple from the phy-
sical angular momentum states of j„j„respec-
tively. On the other hand, in practical calcula-
tions the vertices are approximated by constants
and the y's by their value at l;=1. Then the ratio
in (g) reduces to 1 and we have just a ~ =i for
each vertex r. ... ,, and N, , of the diagram, but
not for the vertex of the produced particle.

The next step in enlarging the class of con-
sidered diagrams includes those of Figs. 12 and
13. They contain a new vertex which has not been
studied as yet: the particle —three-Reggeon ver-
tex. A detailed analysis of this vertex within the
framework of Gribov's Sudakov technique, to-
gether with a brief study of diagrams that contain
this vertex, will be given elsewhere. ' Here we
only mention that there are two different types.
An example of the first type is given in Fig. 14(a}.
The resulting amplitude has again the form (2.6),

(o)

2 2
r

J„k„n
(o) (b)

I I

(c)

(b)

FIG. 8. Two more complicated diagrams.
FIG. 10. Three types of vertices which occur in the

Reggeon calculus for the production amplitude.
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FIG. 11. Typical form of a Reggeon diagram in the
2 —3 amplitude.

i.e. , two terms each of which corresponds to a
set of simultaneous discontinuities (Fig. 4 of paper
1). The other type [Fig. 14(b)j, however, con-
tributes only to one of these sets. In other words,
Fig. 14(b) has no simultaneous singularities in s
and s„and leads to the amplitude

1
di, di, &. "sg."n "(g,$,,g,Fg(i,i,t, t,n), (2.3O)

F~=g(t, )G, (t,), '.
~ 6(l, + l, —1 -j2}W~G, (q, —k)~'G, (k~')N, ,

d2k dl, dl2
(2.31)

where W~ stands for the crossed box graph at the
produced particle. Note that there is no contribu-
tion to I ~ from this diagram. The fact that there
exist these two types of a particle —three-Reggeon
vertex is in agreement with what is expected from
the partial-wave analysis in the crossed channel. '
Apart from this the particle-three-Reggeon ver-
tex fits into our Reggeon diagram technique: Am-
plitudes containing such a vertex are still of the
form (2.6), and in the Reggeon field theory we
have a new vertex where momentum is conserved
and the produced particle carries awaythe Reggeon
energyj, —j„which is the difference of the Reg-
geon energy on the left-hand side and the total
Reggeon energy on the right-hand side of the pro-
duced particle (Fig. 15). For particle-four-Reg-
geon and higher vertices we expect a generaliza-
tion of these features: There will be several types
of vertex functions and some of them will contribute
only to one set of simultaneous singularities. How-

ever, we strongly expect that they will fit into our
rules.

III. THE 2 ~ 4 AMPLITUDE

In this section we shall consider some diagrams
for the 2-4 amplitude. From the results it will
then be clear how to generalize the Reggeon dia-
gram technique to the general 2-n case. First
we say a few words about the variables (Fig. 16).

The momentum-transfer vectors are

S — 2

Sbcd
—m —2q2 2

+
( 2) (Pg P2)+q1J. (3.1)

cd ob
(p +p )

s +s —2m2 —2

2(. -4 ')
cd+ ab ~2

(p p )+ (3 2)

2 —S"'(t p )2s

Sabc
—tPg —2Q ~

2 2

2( 4 2) (Pg P2) J3J

S
y Sabc t Sbcd s Sa

Sabc Sbcd Sab Sbc Sbc Scd
ptS S Sabc Sabc Sbcd S bcd

t, =q, ', t, =q2', t3=q, ' fixed.

(3.4)

For each produced particle we have an q vari-
able:

ab bc Sbc Scd
Ob ~ ~c

abc bcd

which in the multi-Regge limit become

(3.5)

q, =m' —(q, —q, },', q, =m' —(q, —q, ),' . (3.6)

The multi-Regge limit for this process is defined
as

FIG. 12. A diagram which contains a three-Reggeon-
particle vertex.

(b)

FIG. 13. Reggeon diagrams, obtained from Fig. 12.
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S Sabc bcd
bc

S Sabc cd

S

S Sah bcd

S b

2 = 2 = 2t, =q, t2 ——q2~, t =q3

There we have also the identities

(3.7)

As the simplest diagram for this process we con-
sider Fig. 16(a), which reduces to Fig. 16(b) when

the blobs are Regge poles. Its asymptotic be-
havior is (3.4) of paper I with V~, Vs being the

same functions as in the 2-3 amplitude of Fig. 1

[(2.5)]. For our following discussions we prefer
to use a slightly different form. Using the g vari-
ables (3.5) and (3.7), we express all energies in
terms of s,~, s~, , s~, n, , a.nd n, . Then (3.4) of

paper I becomes

(3.8)

T, ~=s,~"'s„2s« 'g(t, )g(t, )[$, $„~ («n~ 'n, vs(n, )vz(n, )+$„$«$„~n, 2n, "2v„(n,)vz(n, )

+&„&„„,&, „n, '2n, "& v„(n, ) v~(n, )

+($ E „$ „+$„$ $ )n, &n, "3v~(n, )v„(n, )] .

It can also be written as a triple Mellin transform,

~ ~ ~-i4 4243~ab '~b 2~a 3(y ~,„,( J J gb 'ac "+i~+

2F„(i,i.i,t, t, t,n, n. ) = —, g(t, )G, (t, ) v, (n, )~,,(t, ) v, (n. )G,,(t, )g(t, ), (3.10)

with a similar representation for the other four terms in (3.8) with functions Fs~, Fss, F~s analogous to
(3.10). We shall now demonstrate that this form remains valid when cuts are included and that the rules
for the cut contributions to the I"s are a direct generalization of the 2-3 case.

To this end we first consider the diagram of Fig. 1'7. Its asymptotic behavior has been analyzed in Ref.
6 and we use the result"

( ')4 2 Nl l Nl l Gr k, ')G, q, —k), ')Gr ~(q2 —k)~'~Gr q3 —k), ')s„'1s„'2S,„'3s"

&I [~i &I l &l l nb 'nc 'VI(nb)VI(nc)+'''] (3.11)

where we did not write down the other four terms of (3.8). We reexpress s through s,~, s„,s«, n„n,
[(3.5), (3.7)],

S = ab bc cd

T/b gc

and write the energy factors in (3.11):

S ll r4-1~ 12+14-1S l3+14-1 ~ -( r4-l)77 -( l4-1)
ab bc 'fb '&c

(3.12)

(3.13)

Next we combine the signature factor $, with $, , using (2.1].),
1

~ 11~ l4 ~l1r4~ l1+ l4 1

For the other four terms, we put together ~r with ~r ~r ~r and $r respectively. In this way, we o

j;j;f, (fft;I)--

FIG. 14. The simplest diagrams with a three-Reggeon-
particle vertex. FIG. 15. The three-Reggeon-particle vertex.
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a b c d
FIG. 17. A Regge cut in the 2- 4 amplitude.

(b)

FIG. 16. The simplest diagram for the 2 —4 amplitude.

tain for energy factors, signature, and the first term in brackets in (3.11)
4 g g 4 4 w P' i+/ -1 /g+/4-1 /3+l4-1~ -( l + / -1)- -( l2 l4-1) ' y Vab bc cf/ l1 l4-1 l2/1 l3l2 b

Finally, we write (3.11)as a triple Mellin transformation:

(3.14)

{3.15)

with

+LL
dl1' ' 'dl4 d k

,; (2iii)'6(l, + f, —1 -j, )o(l, + l, —1 —j,)fi(l, + 1, —1 —j,)

xG, ((q, —k)~2)G, ((q, —k)~'}G, ((q3 —k)~')G, (k~')N» N, , y, , VI(gi, )Vz('i), ) . (3.16)

Quite analogous expressions hold for the other four terms in (3.15). Again note the factors Z«which de-
1 4

couple our diagram from the physical partial wave in the j, channel.
This consideration already indicates how to generalize the rules from the 2- 3 amplitude to the 2 -4

case. We now have three angular momenta j„j„andj„and j, —1,j, —1,j, —1 are just the sums of the
energies of the Reggeons cut by cutting the diagram in Fig. 17 vertically to the left of particle b, between
6 and c, and to the right of particle c, respectively. Equivalently, the Reggeon energy j, —1 enters the
diagram from the left-hand side, j,—1 leaves on the right end, and particles b and c carry away j, -j„j, -j„respectively. With this prescription, we again have our familiar Reggeon field theory.

We want to demonstrate the validity of these rules still in a few other Reggeon diagrams. Taking that of
Fig. 18 we again quote the result of Ref. 6 where the diagram has been analyzed":

i — '
)4 )2 N/ / Ã/ l Gl k1. )G, q3 —q2 —k)1, )G/ q +k)~ )G/ &2+k) )S b 3$b d S bc1Scd'2

'VI. (i) )tl,~i i +& 'VB(& )( i t i i ][i)i, 'Vg(i) )k ( +ni, 'Vs(ni, )k hi ] . (3.1't)

The energy factors are transformed into

/1+l3 1 /1 l4 1 12 /4 1~ ( l4 l)~ ( l1 1)
~ab SbC

and for the phase factors we combine

~/~/g (/ / ~/ l ~/+/ -~/ /~/ l

~/, ~/ ~/ / ~/ l =i&/, / ~/, +/ -1~/ / ~/ /

~/ ~/ ~/, / ~/ / =i&/ / ~/ +l -1~/, / ~/ / ~

(3.16)

{3.19)

For the combination of the remaining pair we need another identity,

. cos( ii[f, + f, +1 —~(T, +r, )]}sin{-,'ii[j, -j,+1 ——,'(7, —T,)]}
l3 /4l3 /2 /1 l2 ( ( J1 J243 3J1

=g
l2 l3

. cos(2ii[l, + f, +1 ——,'(r, +r, )]}sin( ,'ii[j, -j, +1 — (r-, —T,)]}
J3 J2J1 J1J3 ~

/2
{3.20)
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which can be checked by simple algebra. Here we have set j, =l, ~l3 1 j2= l, +l, 1, j3 l2+lg 1. Final-
ly, we take the Mellin transform of (3.17),

dj,dl, dj,s„"s„"s„'[re, ' 'j), ' Fjj$ j 0 j j ( j j

(3.21)

~b +c RL~i2~fyJ2~ 3 2 ~b %c RR~~3~ ~2~3~2

+adjt

0c js(~ jy~ j3jj~ j2j3 ~ js~ j~ j3~ j2jy)]

which is again of the form (3.8). In the relation (3.20) one recognizes on the right-hand side the factors
cos{z'm[l, + I, +1 —,'(T,—+T,)]] and cog-,'w[l, + I, +I 2(r,-+r, )]j:They guarantee [cf. (2.11)] the decoupling of our
diagram from the partial-wave amplitude at integers j, and j„respectively.

Our last example is the diagram in Fig. 19. For the subamplitudes on the right- and left-hand sides we
use (2.13):

1F ths
4&

2

F „ = ——. dl dj, q2 —k)' '3scd'& (i ~y i ~ 'FL ~ +

(3.22)

The link between F,„, and F,„s is analyzed in the same way as used in Sec. II for Fig. 7:

m2 m2 m2 m2«in'« —, «ipse«—
Sbcd S cd Sffb Sab

Z d2k~ 1 1
T, 4

——
( )2

dl, dl3s dn( ns„~)-' dp(psgbc)
(2 )2 p k 2 2

p (k )
2 2—9'2 X

(3.23)

dg dg s b scd () (, ) (, $~, rIb g FL(qb)p'L q

+( j h j j 't j 5 j,i, )Q )c 'F ()s~)F ()jc)

+'t, ,h , jkjj h j,j, ), )g "Fs('QQ )Fs(g))

+&j,hj j&j5j jr), &n F, (7)b)Fs(n, )]

(3.24)

As to the a and P integrations, we close the contour of one of them around the energy cuts which are due
to (-ns, ~)'2 and (ps„,)' and obtain an integral of the discontinuity across the cut. To illustrate this for
the first term in (3.24), we write the q's, energy, and signature factor as

( sny~( ns„,)" 'g, t, , (ps-)"(s„y -"g, ~„, (3.25)

and see that P appears only in the total energy of F„„(Fig.20). .The discontinuity across its cut is just

discs, [(ps)"(s.,)" "(, hj j ]= (ps)"s~-" "5, j,
and by the same arguments as in the previous section we arrive at

-m /scd
"'

m /s~b
2 dl2dl s dn -nsb«)'2 dp ps„c)' djxdj s b'~s d 3$ J ~ l g ~g 1

m2/sb cd -m2/s, bc

(3.26)

d2k~ 1 1
(2n)' snP+ ki' —m' snP+ (k —q, )i' —m'

x 'j)~ '~q, '&Fj, (q~)Fj, (q, ) .

(3.2'7)

FIG. 18. Another diagram of the 2 —4 amplitude. FIG. 19. Another diagram of the 2 4 amplitude.
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Changing n and p to u'=g, 's,~a, p'=gb 's, bp leads to

1 1

and introducing x= —s„n'P' and performing the P' integration gives

(3.28)

8 2 3 l —I,3 2
(3.29)

Finally, we take the Mellin transform with respect to ss, and perform the L„L integrations by closing
their contours to the right-hand side. The Pole 1/(ls —l, ) makes (m'/f), )'s 's and (m')'s 's in (3.29) vanish,
and we end up with

1 d2k~
J" dj,dj,dj, s, s )sac'ss, a s$ f ))fsf)~fsjsf)s 'f)c s

( j dxx'sEc(f)s)

1 1
X -x+ k~ —m -x+ (k —q, )s —m2 2 s Fi(f)c)

(3.30)

A similar argument holds for the second and third terms in (3.24), but for the fourth we have

( »)"(-ass, s)-' '
&,,& f, (Ps)"(Ps.s.)" 's5, ,(„,,

Era, (Ps+Kr . Psssc+ fe) —Es, (Ps —Kr P. s sc —fe) =discs E s s(Psr)Ps rs +sf')+discf) E)„(Ps —K, P. s s )

1

4i dPsdj, (Ps)"(Ps.s.)" "N, f +$,*3)ES(n.) . (3.32)

Now P appears in both the total energy of E,„sand the subenergy, and when we move the P contour around,
we pick up the discontinuity across both energy cuts (Fig. 21):

With this we reach the form (3.27) and, by repeating the steps, finally arrive at the analog of (3.30). For
the combination of our signature factors we use the identity

(t +t *)5
&3&2 &2 &1 ~2&1 &1 &3&1~ j2j 3 J3 J2$ 3~ $2)1

and have

(3.33)

1

x ', dx"xE( f)), , k ), , E (f).) . (3.34)
1

2fr s L b x+kL m -x+ k-q i -m2

This concludes our demonstration of the validity of
our rules in more complicated diagrams.

IV. SUMMARY AND DISCUSSION

In the previous sections we examined hybrid
Feynman diagrams which contain Regge-cut con-
tributions to the 2- 3 and 2-4 production ampli-

tudes. In performing this analysis, we followed
the pattern of Gribov's work on the 2-2 ampli-
tude, and the result of our study is that Gribov's
Reggeon calculus can be extended to the produc-
tion amplitude. We found mainly three new fea-
tures which are not present in the 2-2 case. The
first one is the decomposition of the amplitude in-

qgk

cut fram(sfsf"

sa

FIG. 20. A hybrid Feynman diagram which contains the

diagrams of Fig. 19.

cut from (fes&b&)

FIG. 21. Singularities of P of (3.31).
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to a sum of terms, each of which reflects a certain
singularity structure. In paper I we derived and
discussed this representation for amplitudes which
conta, in only Regge poles, but the calculations of
the last two sections demonstrate that it remains
valid when Regge cuts are included. If we take,
for insta, nce, the 2-3 process, then for any given
Reggeon diagram the amplitude can be written in
the form (1.2), and our rules then tell us how to
compute E~ and E&.

The second new phenomenon is the existence of
more than one momentum variable and angular
momentum, which in the Reggeon calculus plays
the role of energy. In terms of Reggeon field the-
ory, the 2 2 amplitude is a two-point function
and depends only on one momentum and energy
variable. In contrast to this, the functions F~ ~
of the 2-3 amplitude are three-point functions
and depend on two Reggeon energies and momen-
ta,

Finally, the diagrams for the 2-n production
process contain a new vertex which couples the
produced particle to Reggeons. In the simplest
case, it is a two-Reggeon-particle coupling, the
analytic properties of which have been discussed
by several authors, but, in general, the pro-
duced particle can also couple to three or more
Reggeons. In this paper, we have been concerned
only with the two-Reggeon-particle coupling, but

our rules will include the more general coupling
function. A discussion of diagrams with a three-
Reggeon-particle vertex which will be given else-
where' shows that this higher-f. d~~ eo~-~~"'~~ ~~-

deed fits int( iu. tns, ~nd 'e,~d. . t..
that the same is true for the general many-
Reggeon-particle coupling.

All these results have been derived from a study
of 2-3 and 2-4 Reggeon diagrams. We expect,
however, that our rules apply to the 2-n ampli-
tude. In fact, we have considered at least some
types of 2- n Reggeon graphs and found that our
rules are correct. We do not want to present
these calculations here, but we consider them as
a justification for the expectation that our rules
are of general validity.

After these remarks we want to list our rules.
They are a direct extension of the rules for the
2-3 amplitude given at the end of Sec. III, a,nd

summarize the results of See. II and III. For the
calculation of any Reggeon diagram that contrib-
utes to the 2- n production amplitude, one pro-
ceeds in the following way:

(a) Write the 2-n amplitude in the representa-
tion which we have described in paper I a,nd write
each term as a multiple Sommerfeld-Watson
transform.

For illustration, a typical term of the 2-5 ampli-
tude is [cf. (3.16) of pa.per I]

1
abc ~de bc ~ j3~ j&j3~ j2j&~ j4j3+LRL~ j. 4~~ I. ~qS ~b ~ ~c~ ~d~

4

cjt' ''dj4s y sg~ 2s~ 3sg 4( ( t .
y ty y gy gg gg +Lsl(r/b /c /d) (4 )

The n —2 subscripts of I correspond to the set of
V~ ~ functions to which it would reduce for pure
pole exchange [cf. (3.16) of paper I], and reflect
the singularity structure of this term.

For the calculation of the E functions, use the
Reggeon diagram technique as follows:

(b) Each Reggeon line has the same direction,
say to the right of the diagram, and carries ener-
gy 3 —1 and momentum k~. It corresponds to the
propagator G, (k, ') = I/[/ —o.(k,')], and the l inte-
gration, whose contour lies to the right of the
propagator pole, is to be closed to the left around
the pole.

(c) Any internal n-Reggeon-m-Reggeon vertex
[Fig. 10(a)] has a factor r, ,. .. , , , /. . . , and is as-
sociated with conservation of momentum and ener-
gy: Q,"k; =QPk,', Q,"(/; —1) =Q, (/,' —1).

(d) For the two-particle-n-Reggeon vertex [Fig.
10(b)] write a factor N, ,. . . , and use conserva—

tion: At the left end of the diagram q, =Qk, ,

j, —1 =g(/, —1), at the right end q„, =Qk;,
j„,—1 =Q(/, —1).

(e) There is a factor V~(/„ /„k»', 0»', r/) or
Is(/„ l„.k, ~', k, ~', r/} for each one-particle —two-
Reggeon vertex [Fig. 10(c)]. As indicated, this
factor in general depends on momentum and angular
momentum of the two attached Reggeons, as well
as the g that belongs to the produced particle. The
subsc ript agrees with the cor responding subse ript
of I': the left-most produced pa. rtiele with the
first subscript of I, etc. In the notation of Fig.
22, the ith produced particle has momentum ff/;

—q;, , and carries Reggeon energy j; —j;,, Cor-
respondingly, there is a conservation law:

k, —k, = (q; —q;+, ), /, —/, = (j; -j;„)for this vertex.
For a particle-three-Reggeon vertex (Fig. 15},
there is another function W~ ~ together with

k, —k, —k, =(q; —q;„), (l, —1) —(l, +/, —1)
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= (i; i,'-, )

(f} For each closed loop the re is an integration
Jd'k~df/(2m)'i. Any diagram is then of the form
Fig. 22: To the left of the left-most produced par-
ticle total energy and momentum are j,—1, q„be-
tween this and the next-right particle they are
j,, —1, q„and so forth. Figure 22 is easily recog-
nized as an n-point function, with the external legs
being the n —2 produced particles and the right
a, nd left end of the diagram. Because of energy
and momentum conservation the amplitude depends
only on n —1 energies and momenta.

(g) Finally, there are still y factors in the dia-
gram, coming from the combination of signature
factors of the internal lines. Since the order in
which these signature factors can be combined is
not unique, there are different ways to arrange
the y factors. We want to mention one of them.
In this case, ea,ch vertex Xr . . . , and ~

r r r . . . r

with n Reggeons on its right-hand side is accom-
panied by a factor y, . . . , [defined in (2.28)]. In
addition to that, each 1 integration (see Fig. 22)

a factor 1 =yrj +&-r/yr, , i-r if thecorresponding
vertex function has the label L, and a factor

j ~ j r /y» .„,when the label is R. The numer
ators of these factors produce a zero for physical
values ofj, and j,„, and thus ensure that diagrams
with cuts decouple from physical angular momen-
tum states. The denominators can always be can-
celed against other y factors of the diagram, and
their zeros do not produce any poles. Therefore,
the diagram has the correct decoupling properties
at physical values of angular momentum. But the
reason why we have chosen this way of arranging
the y factors is the following one. In practical
calculations where one is mainly interested in the
regionj, . -1 and ~, -0, the vertices of the diagram
are approximated by its value at zero Reggeon mo-
mentum and energy, a,nd the y's are approximated
by its value at l, =1. In the most interesting case,
the so-cal1.ed enhanced diagrams, one has only
triPle couPlings &r. . l, r, between Reggeons, and the
va. lue of y..., at /, =1 is —1. Since there are twice
as many vertices &r . r r as yr r in the diagram,
one has just a v —1 = i for each (real) .. .,,, he

y factors

FIG. 22. Typical form of Reggeon diagrams for the
2 —n amplitude.

Vs(o. , = n, ) = V~(o., = o, ) = V (4.2)

and there is no longer any distinction between I'~
and I'„: I ~=—FR=I'. With the further approxima-
tions q-m' [cf. (2.4)], $, -$, — i, $, , —

-2/w(j, -j,) -i„we then obtain for the 2-3 ampli-
tude near j,-j,- 1

Pomeron as a simple pole leads to serious the-
oretical inconsistencies, and it is, therefore, un-
avoidable to include renormalization effects. In
the argument which leads to the unpleasant Pom-
eron decoupling theorems, the production ampli-
tude plays a crucial role. This motivates a par-
ticula, r interest in a, study of the effect of Pom-
eron cut cont:ributions in the production amplitude.
For production processes that allo~ only Pomeron
exchange, such a study has been performed by
Migdal, Polyakov, and Ter-Martirosyan. ' We
want to demonstrate how their field theory emerges
a.s an approximation of our Reggeon calculus.

Conventionally, when formulating the Reggeon
calculus as a field theory, all vertices are ap-
proximated by their value at vanishing external
momenta. and energies. We have already said that
in this approximation the verte, , nd the
triPle-Reggeon vertex &r . r l, which are real

]. t 2 3

functions, acquire an additional factor i . This
comes from the factors y», which in our approxi-
mation become -1. From our rule (g) it is clear
that in any diagram there are just twice as many
cV«and ~r. r'r ' ~ertiCeS aS y l r faetOrS, and SO

there is just one My=+i for each N„and rr
With the approximation of the vertex functions V~

and V„one ha.s to be a little careful. When V„
and V~ are approximated by their values at zero
Reggeon energy and momentum, then formula
(2.17) of paper I teaches us that

yr j&+ & -r yl j;+1 +1» F
and

yl j r+1 -l yl jr +1-l

on the other hand, reduce to 1, and thus the effect
of all y factors together is to make the triple-
Reggeon coupling purely imaginary.

We would like to conclude with a few words about
the practical use of our Reggeon calculus in pro-
duction processes. As we have mentioned in our
Introduction in paper I, the treatment of the

2

&j,~j,~.„"~„'(~') '( —2I" ) . (4.3)

However, V& and V~ also contain, in general,
higher-order terms:

V = V„(a, = n, = 1)+ (o., —n, ) V '(a, = e, = 1)+

(4 4)

V~ = V~ (o., = o., = I ) + (u, —a, ) V~ (o., = o, = 1 ) +
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with V„'= V~ = V', and when this next leading term
is included, (4.3) is modified to

d(,d(, , ' „' ( ') '(-2) (i —(" ), '

(4.5)

(X ~,+k -k-q qt+k~k»

kg

), Pb

qi-k k» q;k;k
k»+k~ q, p»+q»-k;k, Pe

(q,-s3 C
k+k, k» 5 k»

+k k»(i k

where F' results from V' and is, in general, not
small compared to F. The important result of
this is that in (4.5) the coefficient of the energy
factors is a complex function: Whereas E~ and

E„are real analytic functions near j,-j, -1 and

t, -t, -0, the amplitude is not pure real or imagi-
nary. This is a consequence of the signature
factors.

Formula (4.5) suggests introducing a complex
effective coupling constant

U= 2 V+ —V' (4.6)

for the particle-two-Reggeon vertex, and a factor
-i for each subenergy s„and s~, . It is then not
difficult to see that this prescription gives the
right structure for the 2-4 and higher amplitudes
near j;-1, t, -0: instead of being a sum of all
the E~~. . . with their respective signature fac-
tors, the 2-n amplitude has now only one term:

k+k
k, + k,-k» ji ~ k+k,

k»+kg0: t

2 k, k, 4 k»

FIG. 23. A hybrid Feynman diagram for the 2 —3
amplitude.

ki —e; P2+Pc Pi+k
2s„, q,

(A 1)

Fig. 24. The analysis follows closely the pattern
of Gribov's original paper, and in our analysis
we shall work out only those points which are dif-
ferent from Gr ibov's discussion.

First, we introduce Sudakov variables:

m' m'

&&(~') '" "F(j ''j''f '''f )

(4.7)

where E is a complex-valued function and propor-
tional to U" '. This leads directly to the field the-
ory of Migdal etal.

However, some of the approximations which
lead to (4.7) are no longer valid when the quantum
numbers of the produced particles allow exchange
of other Regge poles. In particular, V~ = V„ is
not justified when two different Regge poles cou-
ple to the produced particle, and the amplitude
remains a sum over several terms with their re-
spective signature factors. The application of
our rules to such processes looks rather promis-
ing and we hope that our study stimulates further
work on these lines.
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2 s„
q, = — p', ——p,' q,

m2 m'

s ' ' s (A2)

m2
p s

m2
p s (A3)

The momentum transfer along Reggeon 5 is only
finite if

m'
(y (A4)

As a result, we may neglect these parameters in
the diagram, wherever they appear in a sum to-
gether with other parameters, which are of the
order 1, From the link between Reggeon 5 and 6

The analysis of the crossed box graphs at both
sides of the diagram is the same as in the elastic
case. It leads to the restrictions

APPENDIX

We first analyze the diagr am of Fig. 23. The
blobs contain simple Regge poles, and Fig. 23 is
then equivalent to the two-Reggeon diagrams in

(a) (b)

FIG. 24. Reggeon diagrams contained in Fig. 23.
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we obtain

m'
9 s~

m2
p

say
(A5)

case(a} case(b}
Now we consider the energy of Reggeon 3:

(k, +k, +k, +k,)'- s[(o, + u, )(P, +P,)

+ (o, + o.)(p, + p, )],
where we have already neglected terms of the

order -m'. (A6) can only be large, if either
[case (a)]

(A6)

FIG. 25. Distributions of &&, ~„P» and P, integra-
tions in Fig. 23 or 24.

One further shows that the e8 integration in the

vertex 1-3-5 vanishes, if not ~P, ~& ~P, ~. Thus

(y, + n, » (y, + a and P, + P, »P, +P,

or [case (b)]

(A7a) m'—«JI3, «1.
Sad

(A13)

~, +o,,»a +n, and P +P, »P, +P (AVb)
All other a; and P; in (A10) are in the interval

Since so.,P, ~ m' and sne8, ~ m' from the link be-
tween Reggeons 1, 3, and 5, we obtain in case (a)

m'
P, ((1. (A14)

CR5«Q, + A„

and in a similar way also

(A8)
Using the conditions (A12), (A3), (A8'), (A9),
(A12), and (A13), we write down the propagators
for the vertex between Reggeons 1, 3, and 5:

In case (b)

{A9)
k, ' = s o.7/7+ k7~',

k8 A8P8+ k8

(A15a)

(A15b)

&5« ~7+ &8

J3, «P, +P, .

(A8')

(A9')
(4', +k, -k, )'= sn, p, + (e, k, +k, }—,', (A15c}

(g, —k, —k,)'= ( s+on)p, + (q, —k, —k,)~',

Reggeon 1: (1 —P,}n,s;
Reggeon 2: P, n, s;
Reggeon 3: (o., + o.,)(P, +P,)s;

Reggeon 4: p, a,s;
Reggeon 5: —p8z9s;

Reggeon 6: (1 —n, )p,s.

(A10a)

(A10b)

(A10c)

(A10d)

(A10e)

(A10f)

Since (A10a) is to be large, we need

but a study of the propagators in the
tween Reggeons 1, 3, and 5 leads to
Thus,

m' m'

s s~

o, » m'(s,
vertex be-
(&7 ~ m'/s~.

(A11)

Equation (A10e) requires P, » m'/s, but from (A5)
we have a9s ~ s,~. Therefore

m2—«P, «1.
sab

(A12)

From this we obtain the following decoupling
scheme for the Q. ; and P; integrations {i=2, 5, ):
Each of these variables appears in only one ver-
tex (Fig. 25). The vertices are now connected only

by the transverse components of k„k,.
Case (a). Next we restrict ourselves to case (a)

and look at the Reggeon energies:

(A15d)

(k7+k8) = s(o' + o'8)(~7+~8)+(k7+k8)~, (A15e)

(k, +k, +k, —k,}'= s(n, + o, + u, )(p, +p, )

+(k, +k, +k, -k,},'. (A15f)

The energy factors from {A10), which belong to
this vertex, are

(A16)

with /; being the angular momentum of the ith
Reggeon. From (A15) it follows that for the o.,
(or n, } integration all singularities lie in the same
half plane, and its integration yields zero, if not

sgnp, w sgnp, and
~ p, ~

&
~ p, ~. Assuming this, all

poles of a, coming from the propagators (A15)
lie in one half plane, and the a7 contour can be
closed around the energy cut of Reggeon 1 in the
opposite half plane. As a result of this, the ab-
sorptive part of the amplitude of Reggeon 1 ap-
pears. One further shows that the contributions
due to the regions p7&0, p8&0 and p8&0, p, &0
cancel each other if the signature of Reggeon 1 is
different from the product of those of Reggeons
3 and 5. If they are equal, the contributions add

up. Now we introduce the variables p8'= —jt38/p„

+5 p7'Q5 H8 p7cl8 + s Q7p7 Then the ex-
pressions in (A15) no longer depend on p7:



3004 JOCHEN BARTELS

k, '= &+k7~',

k8 —s n8 pa+ k8~

(q, +k, -k, )'=++ {q,-k, +k,),',

(A17a)

(A17b)

(A17c)

(k, +k, )' = x(1 —P,'}+so8(1 —P,') + (k, +k,),',
(A17e)

(k, +k, +k, -k, )'=.~-(1 —P,)+s(&, + &,)(1 P, )

(q, —k, —k, )'= s(o, ,'+ tt,')p,'+ {q,—k, —k,),',
(A17d)

+ (k, + k, + k, -k, )~', (A17f)

and the P, integration can be done explicitly. We
obtain for this vertex

1
7 8 5 7 P7 8 P8 7 (P7 P8 P8 gkt 2k, —m

1 1 1

(q, +k, —k, )' —m' k, ' —m' (k, +k, —q, )' —m' (k, +k, )' —m' (k, +k, +k, —k, )' —m'

1

=const&&s '1 ' dp p
'&" 5 '1 's' d'k7d'k, d&dn,'da,'dp,'x'& 1-p,' "p,' "ggg &&propagators

m /~rb

(1/ . }Lp+ tg-l g
—I

S-l I 1
'ab r

l, +l, —l, —1 ~, ; t&l5s (A1S)

where r. . . is the same function for the three-Reggeon coupling as in Gribov's original paper, being
independent of the energies.

For the vertex between Reggeons 2, 3, and 4, the analysis proceeds in the same way, except for the

fact that s„does not appear:

m'

s 3

rn'—«~ «1
s

(A19)

(A20)

m'—«p &&].
s

(A21)

These conditions are the analog of (All)-(A13). The result of the analysis (dn„d k„d k, integrations) is

(1js)l3+ l2-l& —1

s-J~ —1

l+l (A22)

Finally, we have to analyze the link between Reggeons 5 and 6. This is done in Ref. 10 and we quote only

the result:

], (, &&constx f da, dp, d'k~(p, s)"(a,s)'5gg
9

fj f ((q, -k},', (q. k), ', n)-hj hl I,

=s„"s "[q ' V (l„i,;(q, -k), ', (q, —k), ', r))(, &..., +q "1' (l„l,;(q, -k), ', (q, -k), ri)hi, 4,i, ]

(A23)

Now we are in the position to combine all energy factors: With the introduction of Sudakov variables:
d'k, . = {—,

'
~
s()do, dp, dk, ~ we obtain, in addition to the Reggeon energies, s', but a factor s' is necessary

for each of the two N's and the r's to make them energy-independent, and a factor s is necessary for

f...,, We are then left with

(l/s}lp+l2-/4-1 l (1/s )lp+ 5 —ly-1
sl "sl2sl s l5s l6s i s l

— S s l& 1 ab

l, +l, —l, -1 l, +l, —l, —1
(A24)

Expressing s through (2.2) in terms of q, s,b, and sb, and taking the double Mellin transform with respect
to s„and s~, we obtain
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l, —(l, + l~ —1) l j2 —(l, + l~ —1) j, —(l, + I, —1) j, + l, + l, —I,

1 1

j, —(l, +l, +l, —2} j, —(l, +i~+i, —2) j, —(l, +l, —1)
(A25)

Making use of the fact that Rej, & Rel; and Rej,
&Rel, , we can do some of the l,. integration and
convince ourselves that (A25) is equivalent to

(l,~l, ~l, kl l

4l (l 4l (l l yl 2l3 yl4/6 (j2(j j
(A29)

=2 yl ] l2 yl3l5 j I j2J I ' (A27)

In the second part of (A24) we arrange the signa-
ture factors in the following way:

~ yl4le
hl (2i~ hieti~l6 yl~l ~ yl (12 42(j) j p

yl4l5

Instead of this, we could have combined in another
way

q
"4 "(2vi)'5(j, -(l, +l, —1))5(j, —(l, +l, —1))

x 5(l, (l, + l, 1))5(l, (l, + l, 1}). (A26)

Finally, we have to take care of the signature fac-
tors. We observe that for Reggeons 1 and 4 only
the absorptive part of the subamplitude enters into
the whole amplitude, and we are then left with

and the signature factors in (A23). For'2' . '3
the first part in the brackets in (A23), we use
(2.11) and combine $, with g, to i y, , $, and this
with P. ..to

&l, kl, &l, (l,l, = & yl, l, & yl, l, &l,.r, -I&l,l,

There we see explicitly the factors yl l and

yl l which generate zeros when j, and j, take
4 6

physical values. It is also clear from (A29) that
there are no poles from zeros of y, as it might
seem from (A28). The form (A27), (A28), how-
ever, yields explicitly a y factor for each vertex
with two leaving Reggeons (N, , and r, . » in
our case}, and one can see fairly easily that this
holds for any diagram. But in all considered dia-
grams we found it possible to arrange the signa-
ture factors similarly to (A29), i.e. , without de-
nominators of y factors. Returning to (A27),
(A28), we combine them and obtain

l A/2(j~( l L '5j5~I815 q Rh( (&6~( )6

=n "5j,hj, j,i,y, „,iy...,vI,

+ q "h, ,5g, g, i',~,i', ), ,
""I's (A30)

Thus our final result for our diagram Fig. 24(a)
is of the form (2.6), with

E(L s) = '
. , " ', ' (2wi)45(j, -(l, + l, —1))5(j,-(l, l, -1))d242d2k,

x 5(l, -(l, + l, —1))5(l,-(l, + l, —1))N. ..y. ..N, „,
xri, ; i„,y&„, r&, ; &,&, V(L, &)(1„l „(q,—k, ),', (q, —k,),', n)

x G, ((q, —k, )L') G, (k,L')G, ((k, —k, )L')G, (k»')G, ((q, —k, ),')G, ((q, —k,),') 1,
yl4l 5

(A31)

C~se (b). The Reggeon energies remain un-
changed, except for Reggeon 3:

Now we proceed in the same way as in case (a):
For the vertex 1-3-5, the energy factors are

(n, + n, )(p, + p, )s (A32) n, "(n, + a, ) '3p, '& . (A34)

instead of (A10c). Equations (A11) and (A12) are
still valid, and the requirement that there must
be poles for P, in both half planes demands
)n, (&(n, ). On the other hand, we have s„n,~ m'
from the propagator (q, —k, —k,)'-m'.

The j3, integration becomes an integral over the
absorptive part of Reggeon 5, and by change of
variables, n,'= -n, /n„P,'= -a8P„P, = n,P,', -
x=sa,P„we can do the P, integration. The result
is

m2 m2

8
(A33} o p+l3 1) 1 w) (A35)l, -(l, + I, —1)
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Together with

(I/s )I + ig-1-l4
S

l +E 1 l yl4. l2l3
2 3 4

(A36)

for the lower three-Reggeon vertex we obtain for
the double Mellin transform

1 ~-(l4-0
l3+ l4-1 —/,

1 1 1

j, -(l, + l, —1) j, -(l, + l, —1)j, -(l, + l, + l, —2)

1 1 1

j, -(l, + l, —l, ) j, -(I, + l, —l, ) j, -(l, + l, - 2 l, —1)

which is equivalent to

q o4 "(2wi)'6(j, -(l, + l, —1))0(j, -(l, + l, —1))5(l, + I, —1 —l, )5(l, + l, —I —l, ) .

As to the signature factors, we combine E, , and E, , with (,, and obtain

ill I ~l fi I ~l ~l i~l i (i+I l ~J +t l~l -l ) ~L iyi 1 ~l l —i~I i I ~R)

or

(A38)

(A39)

(A40)

With this we again arrive at (2.6), with

I'(~ s)= ' . , ' ', '(2vi)'j, (1, + I, —I))6(-j, -(l, + I, —1))dl I
' dl, d 2k2d'k,

(A41)

« -(I.+«- »«5-«+ .— )»~,~.1i,~

, , I'(, ) (l„l., (,—&,),', (q, —&,), ', n)G, ((q, —&,),')G,(u„')G, ,((&, —&,),')

x G, (P, ')G, ((q, -Q, ) ')G, ((q, —Q, ) ')
~l 5l 4

Finally, we consider diagram Fig. 26. From
the requirement that the energy of the subampli-
tude 3,

s(ns+ n~)(P, + P,)+ s(n, + n, )(P, + P~), (A42)

has to be large, we obtain again the two cases
(A7a) and (A7b) together with (A8) and (A9). They
correspond to the Reggeon diagrams in Figs. 1-(I/s )'3+'5 ' 1

1-& ab
35 (A43)

27(a) and 27(b). In case (a), the upper three-
Reggeon vertex depends only on e„and the lower
one on p2. Determining the intervals for the a,
P parameters which appear in the Reggeon ener-
gies in the same way as for the previous diagram,
we obtain for the upper vertex

p+k-k-q, q, -krak, k;k,
qi-ke)

kt;k6~ ji k,
-k k I[ k,+ke
+(f

)

p-k k-k kl+kl+ks ~ k+kI I l 2 +k -q 5
4 qa l~ 'l~

k,+k, k,+ke q

k

2 k3 k,
~2 3 J3' 5Q

FIG. 26. Another hybrid Feynman diagram for the
2 —3 amplitude.

(b)

FIG. 27. Reggeon diagrams obtained from Fig. 26.
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and for the lower one (by symmetry arguments)

1 (1j )i +i
&-r4-1 bc

] ) 4 2 3 (A44)

which is equivalent to

(
12 + l 5-2

(2wi)45(j, -(l, + l, —1))5(j,-(l, + l, -1))

x 5(l, -(l, + l, —1))5( 1~ -(1,+ l,' - 1)) . (A46)

Combining all s factors, reexpressing s in terms
of s.„~and q and taking the double Mellin
transform with respect to s,b, ~, we obtain

(
l 2+ l 5-2 1 1

q j,-(l, + l, + l, —2) j, -(l, + l, —1)

1 1

j, -(l, + l,' + l, —2) j, —(l, + l, —1) '

(A45)

The exponent of g is the sum of angular momen-
tum, carried by the Reggeon under the produced
particle (see Fig. 22), and together with the q
factors g '-'l, q '& from the vertex of the produced
particle the q factors become

q-j1 q-t3 ~-j2

(A47)

The signature factors: g, ,$, ,$, ,f..., (,r are shown
to be

syr, r, syr r. q
' F„Ej2j V~

+'0 "' " ' ( $ & A48)
g g'}/ I

jy j2 j1j2
& & 3 sl 2+ l 5- 1

and our expressions for +L, & become

d2k, d'k, dl, ' dl,(' 4
'

(' . , ' (2mi) 5(j, (l, + l-, —1))5(j,-(l, + l, —1))5(j,-(l~+ l, —1))5(l, —(l, + l, -l))

All yrlXrly). ll pily). , l G, GlG, G

x V(»)( l„l'„(q, —k, —k, )~', (q, —k, —k, )~', q)
I

1, —"'"'& '
~r 3,l 3+ l 5-1

(A49)

The remaining case (b) leads to the same expression.
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