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Reggeon calculus for the production amplitude. I
Jochen Bartels~

Fermi National Accelerator Laboratory, Batavia, Illinois 60510$
(Received 25 November 1974)

We derive and discuss a representation of 2 t n production amplitude in the multi-Regge limit which

exhibits signature factors and singularity structure allowed by the Steinmann relations. We demonstrate
how each term of the representation can be understood in terms of the more familiar 2 l 2
amplitudes, and prove that the representation can be cast into a factorizing form.

I. INTRODUCTION

Within the last years, substantial progress has
been made in understanding the nature of Regge
cuts in 2-2 processes. Almost ten years ago,
Gribov, Pomeranchuk, and Ter-Martirosyan'
showed that multiparticle intermediate states in
the t-channel partial-wave unitarity relations
generate branch points in the angular momentum
plane. More recently, White' rederived and ex-
tended these results on a more rigorous basis.
Rather independent of this approach, Gribov de-
rived a Reggeon diagram technique' by consider-
ing the high-energy behavior of a certain class of
Feynman diagrams within the simple Q' model.
The structure of the rules, however, turned out
to be of much more general validity, and they sat-
isfy completely the t-channel unitarity relations.
They have the character of a three-dimensional
nonrelativistic field theory (one time, two space
dimensions), where the coupling between the
fields as well as the form of the bare propagator
are not specified. Very recently, "the applica-
tion of renormalization-group techniques to this
Reggeon field theory has led to very interesting
results which, in particular, strongly emphasize
the importance of cuts in addition to Regge poles.

In comparison with this, the situation in in-
elastic processes to which Regge ideas have been
applied (particle production, inclusive processes)
is less satisfactory. Migdal, Polyakov, and Ter-
Martirosyan' extended the idea of Reggeon field
theory to such inelastic processes, but their rules
do not take care of signature or singularity struc-
ture, which turned out to be rather crucial in at
least some of these processes, and therefore
their results must be correct only as an approxi-
mation. A derivation of a Reggeon calculus which
can compare with Gribov's work on the 2-2 pro-
cess as well as an investigation of crossed-chan-
nel unitarity contributions are still outstanding.
On the other hand, it is now generally believed
that Regge cuts must play an important role in in-
elastic processes: The assumption that pure

T(s, t)= dj s~$,.f, (t),1
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Regge-pole exchange dominates the high-energy
behavior leads to serious theoretical inconsis-
tencies by requiring the decoupling of the Pomeron
from a large number of processes, most likely
even from elastic 2-2 scattering. ' However,
these decoupling arguments would become invalid
if cut contributions would turn out to be equally
important as poles. This, in fact, is strongly sug-
gested by the results of Reggeon field theory in
2 - 2 processes.

This makes it very desirable to extend Gribov's
Reggeon calculus to these inelastic processes.
The experience with 2-2 processes suggests two

ways which might be promising. The one is a set
of discontinuity formulas, derived from partial-
wave unitarity relations in the crossed channels,
the other is a Reggeon diagram technique which
solves these discontinuity formulas. The success
of Gribov's work suggests deriving such a dia-
gram technique again from a careful study of hy-
brid Feynman diagrams. This is what we are
doing in this and the following paper, restricting
ourselves to the multi-Regge limit of production
amplitudes. The triple-Regge limit and other in-
elastic processes will, hopefully, be the object
of future investigations.

Multi-Regge behavior in 2 -n production ampli-
tudes with pure pole exchange has been suggested
already some time ago. ' Attempts to include Regge
cuts and to extend Gribov's Reggeon calculus to
this kind of process have been started by several
authors, "but they remained incomplete and
have not yet reached the level where underlying
general rules become visible. The reason for
this failure is essentially the presence of signa-
ture factors. To illustrate this in more detail,
we remember that when the 2-2 amplitude is
written as
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the partial wave f, (t) is a real analytic function.
This is the reason why in Gribov's Reggeon dia-
gram technique signature factors of internal lines
can always be extracted in such a way that the
amplitude is written as signature factor times
real analytic function. In Reggeon diagrams of
production amplitudes, however, it has not yet
been possible to write the amplitude as a phase
factor times a real function, and no general scheme
has been found for combining the signature factors
of internal lines in any suitable way.

Knowing that it was the signature which caused
the trouble in applying Gribov's technique of hy-
brid Feynman diagrams to production amplitudes,
it is natural to go back to the simplest multi-
Regge amplitudes with pure pole exchange (Fig. 1)
and examine the signature structure. Studying the
diagram of Fig. 1 in the multi-Regge limit,

~oo g ~oo g ~ooabc & ab & bc

e +T
simn

is not appropriate, because the Reggeon-particle-
Reggeon coupling function f still contains phase

1 2
factors and has a nontrivial singularity structure
in g as well. " Instead of (1.4), a more suitable
representation has been found:

-i ff(a2-n )
1 2

sinv(o. , —o.,}

(1.5)

where V~, V„are now real functions of ~„t„g, and
are supposed to have no singularities in g around

q =Q.
A decomposition similar to (1.5) has also been

suggested" for the 2-4 amplitude, and it has
been shown that (1.5) as well as the analogous rep-
resentation for the 2-4 amplitude are identical to
the factorizing forms (1.4) and a similar one for
the 2-4 case, respectively. The representation
(1.5), however, has the advantage over (1.4}by
exhibiting explicitly all phase factors; the remain-
ing coefficient functions V„and V~ are real. In
view of the difficulties with signature factors men-
tioned above, this representation seems to be a
strong candidate for a form in which Regge cuts
might easily be included.

ab bc
g ~ f

8 c

abc

Drummond etal. '3 have pointed out that the factor-
izing form

ob bc

FIG. 1. Double-Regge limit of the 2 —3 amplitude with
Regge-pole exchange.

Our subsequent investigation will show that this
is, indeed, correct. More precisely, we shall
find that the representation (1.5), written as a
double Mellin transform;

T2-3

(l.6)

remains va. lid for a.ll Reggeon diagrams (one ex-
ample in Fig. 2), the functions E~, E~ being real
analytic. (1.6) is thus the generalization of (1.1).
Moreover, the way in which a given Reggeon dia-
gram contributes to F~ and I „, is a straightfor-
ward extension of Gribov's Reggeon diagram tech-
nique for the 2-2 amplitude: The underlying
structure is, again, a nonrelativistic field theory
with one time and two space dimensions, and what
is new is the vertex where the produced particle
couples to Reggeons. This result is also general-
ized to more than 3 outgoing particles: We shall
describe the generalization of (1.6), and the way
in which Regge cuts contribute to the (always real
a, nalytic) coefficient functions is a simple generali-
zation of the 2-3 rules. In a special case, when

all Reggeons are Pomerons, and only the region
t, -0, j, -1 is considered, our diagram technique
reproduces the field-theoretical rules of Migdal,
Polyakov, and Ter-Martirosyan. 4 But our rules
are also applicable to other Reggeons than the
Pomeron and are of the same general validity as
Gribov's calculus for the 2-2 amplitude.

Comparing (1.6}with (1.1), we are obviously
confronted with new features which are not present
in the familiar 2-2 scattering amplitude: two
terms instead of one, and a new signature factor.
We therefore feel that it is necessary to discuss
this representation in a little more detail. In case

FIG. 2. A cut contribution to the 2 —3 amplitude.
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of the 2-3 amplitude, we will mainly review the

arguments of Drummond etal. "and Weis' which
lead to (1.5), but in order to derive the analogous
representation for the general 2-n case we need
some more insight. We also will show that our
representation is compatible with the factorizing
form [like (1.4) for the 2-3 case].

Thus our study naturally breaks into two parts.
In the first part (this paper) we are concerned
with a discussion of the representation (1.5) and

its analog for the 2-n amplitude. Section II con-
tains a review of the 2-3 amplitude which enables
us to find in Sec. III the general scheme of this
decomposition. All this will be based on multi-
Regge amplitudes with pure pole exchange. In the
following paper we then turn to an extensive study
of hybrid Feynman diagrams and will find (a) that
the representation found in part I remains valid in
the presence of cuts and (b) that the underlying
structure of how the cut contributions are com-
puted is that of a Reggeon field theory.

II. SIGNATURE AND SINGULARITY STRUCTURE
IN THE 2~3 AMPLITUDE

S, S~~, S~q

y)
— ~~ ~~ t t fix

s 8
(2.1}

Following the argument of Drummond etal."we

write the amplitude as a sum of four terms with

only right-hand or left-hand cuts in the energy
variables (Fig. 3). The first part has only right-
hand cuts in s, s„,s„, and in the double-Regge
limit behaves as

We said already in the Introduction that the cor-
rect treatment of signature plays an important role
in the study of the production amplitude. We there-
fore start with a reconsideration of signature and

singularity structure in the 2-3 amplitude. This
will mainly be a review of arguments given by
Drummond et at."and Weis.""In the next section
we shall extend this consideration to the 2- n

amplitude and find the representation which will be
of importance later on. For a general review on

Regge behavior in inelastic processes we refer to
the article of Brower, DeTar, and Weis, "which

also contains a complete list of references.
Let us now start with the 2-3 process of Fig. 1

in the double-Regge limit:

g Nob g bc~/ ( ob~g abc~a'

)

FIG. 3. Signature decomposition of the 2-3 amplitude.

F.„,=( 9) -I-.(t„ t., n)+( 0) -" I.(t„ t„n),
(2.3)

+ (-s) '(-s.~) ' "~I's] . (2.4)

At this point it is necessary to remember an im-
portant analyticity property of multiparticle ampli-
tudes which is closely related to the Steinmann
relations. " In the physical region the amplitude
is not allowed to have simultaneous discontinuities
in energy variables of overlapping channels [two
channels are defined to be overlapping when they

have particles in common but are not subchannels
of each other. For our 2-3 amplitude (ab) and

(bc) are overlapping channels, while (ab} is a sub-
channel of (&bc)J. Since Regge behavior in a given
channel can be thought of as resulting from the

superposition of energy thresholds in this channel,
one concludes that Regge behavior, such as given
in (2.2), is not in agreement with this required
analyticity property. In other words, 1" must
necessarily contain g factors if the amplitude is to
behave like s""""x s,',"""or s'"""'&s,',""""rather
than sf,"""'xs,","". This explains (2.3) and (2.4):
The first term has simultaneous singularities in
s and s„, the second one has them in s and s„.
Graphically, their content of discontinuities is
shown in Fig. 4. The form (2.3), which is neces-
sary to satisfy the analyticity requirements, has

where V~ and V„have no further singularities
around q =0 (the meaning of the subscripts will be-
come clear later). Now (2.2) can be rewritten as

A'( y)A'( p)
[ ( )~ ( p

sinn@, sinn Q.,

Here t, (t) denotes the Reggeon-particle-particle
vertex function. The function I' is real analyt-

j. 2

ic, and as a function of g has the form"
FIG. 4. The two allowed sets of simultaneous energy

discontinuities.
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s„+2E = (-s„)e ", s„&0 .

Similarly,

(2.5)

been derived from the dual model" as well as from
hybrid Feynman diagrams, the ladder model, and the
Van Hove model. '4 A partial-wave analysis based
on 8-matrix principles leads to the same form. "'"

We now turn to the question of phase factors in
Fig. 3. The first term has only right-hand cuts in
all three energy variables, and in the physical re-
gion one has to approach these cuts from above.
Starting with, say, s„on the negative real axis,
which is free from singularities, we move to the
positive real axis:

S2g+ 2E = ( S—2g)e, S),g& 0

s + 2E='( —s)e, s & 0

and {2.4}becomes

(2.6)

(2.7}

s 1sbc»e 1ea1 a2-a -i ffn -i ff(n -n )

sinn G, sinwn2

+S 2S 1~™2e" 2e " 1 "2'y
j~ab R&

(2.6)

In the second term of Fig. 3, s„&0, sb, &0, and
s&0, and only s„ is multiplied by a phase factor;
in the third term s„&0, s„&0, and s&0, and so
forth. The whole amplitude then becomes

[s~is ~2 ~2(e ''~2+v )(e "I"2 ~2)+7 T )V +s~2s 2 ~(e " +2m )(e ''2"2 "2)+r r )I) ] .
sinwu sinwu bc 1 1 2 I ab 2 1 2 R

1 2

(2.9 }

We can still put this in a more symmetric form by
making use of sine factors contained in V„and V~:

7 T
7I 222) i =( I 2+2}E"i-

(e " '+T }(e ""2+T )1 2

sinn',
sinw(u, —u, )

sinn+,
sinw(u, —u, )

Formula (2.9) can then be written as

(2.10)
and (2.12}is the same as

T, , =g(22)g(2, )s„ is„

X I (2) +2E)

X[(2) +1E ) ' —(2I —iE ) ']

(2.13}

With (2.11)

disc „I"
(e ""2+x,)(e " 2+T,}

(2.14)
47ln

sinn@

&aa
e-i ff(n1-a2) + 7 71 2

sinw(u, —u, )

With

7 T

(e " +2r, )( e'" 2+T,)

igni e+igai)

The phase factors e "are connected with the
air prescription,

We still mention that (2.11) is equivalent to the
factorized form (1.4}. Obviously, one can write
(2.9) as

g(fi)g()'2)s, 2 's)„'4,t bI '0 1+1'2, +2I ')t)g)', , I 22]

(2.12)

Here the term in brackets has to be compared with

f„„,in (1.4). Because of the complicated struc-
ture of f „we consider the form (2.11) to be

1 2
more suitable than (2.14). It is, however, some-
times useful to remember that (2.11) can be writ-
ten in the form (2.14). The validity of (2.11)has
been proved by White's partial-wave analysis of
the five-point function, ' whereas the form (2.14}
appears in dual models, " ladder graphs, and hy-
brid Feynmann diagrams. '

Before we turn to the 2-4 amplitude and, more
generally, to the 2-n amplitude, we want to say
few more words about (2.11). The first term can
be written as

g)t)(—)
2 [v)g), „"i g)t, )]

and has the same form as a 2-2 amplitude with
the exchange of Reggeon n, . The bracketed term
in (2.15), however, is not simply a Reggeon-two-
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particle vertex, but a 2- 2 amplitude by itself.
It describes the scattering process particle 2

+ Reggeon n, —b+ c (Fig. 6), and $ is the gen-
2 1

eralization of the signature factor ( when oneot2

external particle has noninteger spin o.1 As
Reggeon a, becomes a physical particle —n, even
(odd) for r, =+(-)—the signature factor & de-
velops a pole (particle pole in the t, channel), and
its residue is

a,
tl

FIG. 5. The Reggeon-particle —particle-particle
scattering amplitude described by the bracketed term of
(2.15).

—g(t, )s„[g V~(q)s„g g(t, )] . (2.16)

In (2.16), $ is what ( has reduced to, and the
vertex g &V~(r&) has a simple form, too. For gen-
eral n„u„(t'~ and Vs are of the form (at least
around g =0)'

1

r(—n )I(-n ')

1 1
I'( —n, )1"( —n, ) 2vt

x dn I'( —n)r(n —n, )

(2.19)

I'(-n, +K)F{-@2+n, —K)

K=0 K.

xg "I3(n, —K; t„ t, ),
{2.1V)

1 2&2~) I'( u)I'( u)
" I'(-u, + ~)r (-n, + n, —~)

K= 0
'fK.

xq'P(n, —z; t„ t, ),

but when a, is an integer, V~ reduces to a poly-
nomial in q of degree n, [the same happens with

V„when n2 becomes an integer; this explains our
use of the labels L and R: V~ (Vs} reduces to a
polynomial when the Reggeon on the left- (right-)
hand side of the vertex becomes a physical state].
Thence, q ~& V~(q) is a polynomial in rt

' of de-
gree a, . But since q

' is linearly related to the
cosine of the Toiler angle ~,

111. THE 2 ~ n AMPLITUDE

As a preparation, we take the 2-4 amplitude
(Fig. 6). q variables are defined by

~abSbc bcS cd'I b
= 7l

Sabc ~ bcd
(3.1}

where the contour of the & integration lies to the
left of the poles of F(-n) and to the right of those
of r(n —n, )r(s —n2) For. n, —uz integer, (2.19)
remains finite and, because of (2.3) and (2.14),
T2 3 has no pole either.

This completes our discussion of the 2-3 ampli-
tude. The main result is the representation (2.11),
avd we have illustrated in some detail its proper-
ties: how it r eflee ts the s -channel disc ontinuity
structure, and how each term can be understood
in terms of the more familiar 2-2 amplitudes.
In the next section, this discussion will help us to
construct the analog to (2.11) of the 2 —n ampli-
tude.

m, ' —t, —t, +2(t, t, )'t'cos~
(2.18)

and in the multi-Regge limit

S, Sa» Sbc & Scd

i Vz(7)) is a polynomial in cos&u, too. This
means that for integer n, nonsense helicity states
are decoupled, and q 1V~ is a superposition of
physical helicity states of Reggeon n, . Putting
this all together, we have found that, for integer
Q 1 the bracket term in (2.16) is really a 2 —2

scattering amplitude with physical particles.
For the second term in (2.11), the same holds

for n, and n2 ~1 and ~„s„and sbc interchanged.
Finally, we note that (2.11) has no pole when the
denominator sine(n, —a2) vanishes in ( „and

1 2
This is most easily seen when we rewrite

2 1
(2.1't} into the form"

g„q„t„t„t, fixed,
(3.2)

~ sabc

ab bc

bed
C

FIG. 6. The 2-4 amplitude with Regge-pole exchange.
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we have the further relation

ab bc cdS S 8
c (3.3)

One realizes that not all energy variables are in-

dependent. A minimal set of variables would be
s„,s„,s~, g, , g, , t„t„t, , but it is convenient to
use the other energy variables, too. By applica-
tion of the same arguments as we have used for
the 2-3 amplitude, Weis" has shown that in the
limit (3.2) T, , can be written as

T, , =g(f, )g(f, )[s is,~ "~ is„~ ~g ( „&, Vi(q„)Vi(q, )+s ~s„ i "~s„& '~g, ( „t, , Vs(g, )Vi(q, )

(3.4)

It is now quite tempting to apply the arguments of
the previous section to this representation. With
the understanding that the appearance of (s,",. . . }
signifies a nonvanishing discontinuity in s, , one
associates with each term in (3.4} a certain set of
simultaneous discontinuities (Fig. 7). Apparently,
these are all allowed sets of s cuts, because any
other set would contain either intersecting cut
lines which correspond to discontinuities in over-
lapping channels or a smaller number of simul-
taneous discontinuities.

Let us now pick out one term of (3.4), say, the

0

(b

(c

first one. We write it as

g(t, ) $ ii ~ Vi, (tli, )

xg „[V ('9,)s, t„g(&,)]

(3.5)

Paying no attention to the content of the curly
brackets we find that (3.5) has the form of a 2-2
scattering amplitude [Fig. 8(a}]: 1+2
—a+cluster(&cd} with a large rapidity gap between
a and cluster (bc@). Turning now to the curly
brackets, but still neglecting the content of the
square brackets, one again finds the form of a
2-2 scattering amplitude [Fig. 8(b)]: Reggeon n,
+particle 2-5 +c luster(cd }with a rapidity gap be-
tween b and cluster (cd). We note the appearance
of ( instead of (:This is due to the incoming
Reggeon n, with nonintegral spin. When e, takes
a physical integer value, then ( + =$ and

Gg

q, i V~(pi) reduces to a polynomial in helicity of
Reggeon u, . Finally, the same argument applies
to the square brackets in (3.5): It is the ampli-
tude for Reggeon o., +particle 2-c+d [Fig. 8(c)J .

The way in which we have reduced this term of
the 2-4 amplitude to a sequence of 2-2 amplitude
can nicely be illustrated in Fig. 7(a). First we
considered the amplitude 1+2- a+cluster(fied):
The lowest cut line belongs to the energy s, which

b c d b d c

(e
(0)

2 Ql
(b) 2 {c)

FIG. 7. The five allowed sets of simultaneous energy
discontinuities of the 2-4 amplitude.

FIG. 8. Reduction of Fig. 7(a) to 2 2 amplitudes:
(a) 1+2 a + cluster (bcd); (b) Reggeon ~&+2—& +cluster (cd); (c) Reggeon &&+2—c+ d.
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has to be large for this process, the next lower
line belongs to the way in which the outgoing par-
ticles are clustered. In the next step we con-
sidered the cluster (bed) alone and applied to it
the same argument again: The lower line denotes
the overall cluster energy s„„, the next line de-
notes the way in which the outgoing particles have
to be clustered. In each of these steps, the power
of the large energy is the Reggeon between the out-
going cluster, and the signature factor refers to
the exchanged Reggeon as well as the incoming
Reggeon. As to the question whether to use V~ or
V~ for the Reggeon-particle-Reggeon vertex, it is
obvious that it is answered by the requirement of
the nonsense helicity decoupling. Comparing this
with our Fig. t(a), we see that for any vertex the
label L or R denotes the side of the vertex where
one (or more) cut lines leaves the diagram.

The other terms in (3.4) can be treated in a quite
similar way. We demonstrate this still for the last
term. The analog to (3.5} is

g(t, ) g „V~(0,)s„"2g„Va(R,)

x '"
E „g(t,) . (3.6)

S&e

The first step is the same as in the previous case
[Fig. 9(a)]. The curly brackets in (3.6) now de-
scribe Reggeon n, +particle 2- cluster(bc)+d with

a rapidity gap between cluster (bc) and d [Fig.
9(b)]. When n, becomes a physical integer, the
residue of the pole in g becomes

2
g(t, )s,~

)
q—~ [Vz(q~)s~, g„~ Vs(g, )]

k „g(t,) I. (3.7)

As to the decoupling of nonsense helicity states,
we have to specify the reference frame the helicity
of Reggeon Q., refers to. One possible frame is
the c.m. system of cluster (bc) and Reggeon o,
with the Toiler angle ~„, the other is the c.m.
system of particle b and Beggeon o., with the
Toiler angle ~b. In the first case, one can show
that g, ' can be expressed in terms of g„ru„(d„,

gy
' ——g, 'P(cos(dg, sln&g, cosh)g„sln40g },

(3.8)

where the function P is linear in all variables,
and since q, ~V~(q, ) is a polynomial of degree
n, in g, ', we have polynomial in sin~„and
cos~„as well, and the nonsense helicity states
are absent. Within the second reference frame,
the cosine of the Toiler angle ~, is linearly re-

b c d b c d b

(0)
a)

(b)
p a,

(c)

FIG. 9. Reduction of Fig. 7(e): (a) 1+2
& +cluster (bcd); (b) Reggeon n~ + 2—cluster (bc) + d; (c) Reggeon Q.

&
+ Reggeon +3

b+c

lated to tt, ' by (2.18), and the decoupling of non-
sense helicity works, too.

In the last step, we consider the term in square
brackets in (3.6) which describes the process
Reggeon o, +Reggeon n, —b+c [Fig. 9(c)]. It is
important to note that the signature factor $ a& a3
of this amplitude refers only to Reggeon n, and
to Reggeon n, but not Reggeon n, ." When o., and

n, are physical integers, then ( =&, anda2a3 a2
q, "i V~(rt, ) and g, ~Vs(q, ) reduce to polynomials
in cosset, and cosset„respectively.

It is easy to trace this reduction procedure in
Fig. 7(e). What is new in comparison with Fig.
7(a) is the appearance of a Reggeon+Reggeon- particle+particle amplitude. In writing down
its high-energy form, we have to remember that
the signature factor refers only to one of the in-
coming Reggeons: to that Reggeon which in the
next large cluster (or in the preceding step of our
analysis} has been exchanged between the outgoing
particles (or clusters).

This completes our analysis of (3.4). It has
taught us that the arguments of the previous sec-
tion are completely sufficient for the understand-
ing of the more complicated 2-4 amplitude. How-
ever, what we have gained in addition is a simple
set of heuristic rules which allow us to construct,
for a given set of discontinuity lines (Fig. 'I), the
corresponding term in the decomposition (3.5).
We shall formulate these rules in a moment.

So far, we have been concerned only with the
two simplest cases 2- 3 and 2-4. In the same
way as we derived in Sec. II the representation
(2.11) [and Weis has derived (3.4)J, we could also
proceed with 2-5, etc. However, the algebra of
phase factors becomes more and more tedious.
On the other hand, we have derived a scheme in
which both 2-3 and 2-4 fit naturally, and we
might expect that it applies to the general case,
too. As a proof that this is indeed the case, we
show in the Appendix that our representation
[(2.11), (3.4), and the analog for 2 —n which we
will describe in a momentJ can be written in the
fac to riz ed for m (Fig. 10)
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-'2
eg, t2M~ lou

t2 ling

FIG. 10. Multi-Regge limit of the 2 n amplitude.

g(t, )s, &h.,f..., s, 2h.g...,
x f„s„,~ &h-, g(t„,}, (3.9)

where f „ is given by (2.12):

fQgCp t}12 40', a2 L(~12} ~12 %&X',+ s(Tt12}

(3.10)

This form (3.9) emerges in dual models" as well
as in hybrid Feynman diagrams, " and this is, for
the moment, all we have on the 2 - n amplitude.
Showing the identity of (3 ~ 9) and our representa-
tion has in addition the other virtue that it demon-
strates the absence of poles due to the signature
factors („„,, etc. ; we have shown above that

f does not have them, and therefore they are
1 2

absent in (3.9) as well.
We have now to specify the analog of (2.11)and

(3.4) for the general 2-n case. To do this, we

simply summarize the rules which allowed us to
construct the 2 - 3 and 2 - 4 amplitude and, for
illustration, apply them to one more complicated
diagram. These construction rules will then pro-
vide a general definition of our representation.

The rules are the following.
(a) First draw all allowed sets of discontinuity

sets. A set is defined to be allowed if (i) lines do

not intersect and (ii) no further lines can be drawn
without violating (i). (Intersecting lines corre-
spond to discontinuities in overlapping channels. )

For any set [for illustration we choose one of
the 2-5 process (Fig. 11}]:

(b) Consider it as a 2-2 scattering amplitude
I + 2 - cluster(abc)+ cluster(de). The clusters are
given by the two cut lines above the overall s cut.
For large s this amplitude is dominated by

Reggeon exchange between these two clusters:

FIG. 11. One allowed set of discontinuities for the
2 5 amplitude.

S 3
abc VdeS t2bcsde

(3.11)

For any of the clusters, say (abc):
(c) Consider it as a 2-2 scattering amplitude

1+Reggeon n, -a+cluster(bc}. The clustering of
the outgoing particles is again given by the cut
lines above the overall cut of this amplitude. For
large s„, the Reggeon exchange bebveen the out-
going clusters is given by

Stlbc
ay

Vtgbc = V. &a a Vbc
Sbc 1 3

(3.12)

Here $ indicates that our incoming particle
3

has noninteger spin.
For cluster Vb, :
(d) There are only two outgoing particles. If we

had more, we would have to repeat step (c}until
we end up with only two single outgoing particles.
Considering V„as the amplitude Reggeon n,
+ Reggeon n3 -b + c, we obtain

Vbc= Vb bc '~a, a, c (3.13)

where the signature factor refers only to n„which
in the previous step has been the exchanged
Reggeon.

(e) Repeating this procedure for the other
cluster in (3.11},

(3.14)

we put all parts (3.11}-(3.14) together and obtain

CX3

~ a3~ a~a3~a2aj~ a4a3 a Vb Vc d e (3.15)

(f) Finally, we set V, =g(t, ), V, =b'(t, ) and label
the other vertex functions by I. or R, according
to whether to the left- or right-hand sides of the
produced particle cut lines are leaving the ampli-
tude: V, —VL, (g„ t„ t 2a,o), etc. Then (3.15)

becomes

Sa3 S a&-a3$ a4 a3 S a2-a&g
abc de b c ~ a3~ a&n3~ a2a&~ a4a3

xd'(t, )V (9 )V (n.)V (I} )tI(t, ) (3.15)
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b
sab~ sbc scd sde

a b a b

a, t,

ab bc
b abc

FIG. 14. Replacement to be made in Fig. 13 in order
to obtain Fig. 15.

FIG. 12. Notations for the 2- 5 amplitude.

IV. SUMMARY

For convenience, we shall write (A2} as

In this paper, we have found a representation
of the production amplitude in the multi-Regge
limit. It is a sum of terms, each of which repre-
sents a certain set of allowed simultaneous dis-
continuities and allows a simple interpretation in
terms of 2-2 amplitudes. Furthermore, the
phase factors are extracted, and the remaining
functions are real. It is this representation which
remains valid when Regge cuts are included.
This will be shown in the following part of our
study.
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By some algebra one can check that
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APPENDIX

In this appendix we prove that our decomposition
of the 2 n amplitude which we have described in

Sec. III can always be written in the factorizing
form (Fig. 10)

xf, ,s„,~-1] g(t„,)

(A1)

when f is given in (2.12):

fa a )12 ( a a2 ~1,()1 }+ )122 Aaia R()12} ~

(A2)
+1,2 i~ay 2 1 27 7'

Aaia2= '
(e i2ai +)(re-«2+a7 )

(A6)

For our proof we proceed as follows. In Sec. II
we have demonstrated how our decomposition for
the 2-3 amplitude can be written in the factorized
form. Assuming that we have proven this already
for the 2- (n —1) amplitude, we shall then show
the validity for the 2- n amplitude. For sake of
simplicity, however, we illustrate in the follow-
ing how one proceeds from the 2-4 to the 2-5
amplitude, and it will then be clear that with the
same procedure the general step from 2-(n —1)
to 2- n can be performed.

We now turn to the 2-5 amplitude (Fig. 12) and
demonstrate that the factorized form

s„2t' f „s„ i& g(f, ) (A7)

x(e ' 1.2 —e' 1,2} .

a b c d e

a b c d e

4 OTHER TERMS + 4 OTHER TERMS

FIG. 13. Decomposition of the 2- 4 amplitude in (A9),
1+ 2 cluster (ab) +c+d+ e, into the allowed sets of
simultaneous singularities.

FIG. 15. Five possible sets of discontinuities in the
2- 5 amplitude, as obtained from Figs. 13 and 14.
They represent the first term of (AS).
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a bc d e 0 bc d

+ 4 OTHER TERMS

FIG. 16. Decomposition of the 2 —4 amplitude (A12):
1+ 2-a + cluster (bc) + d + e.

FIG. 17. Replacement in Fig. 16 which leads to Fig. 18.

V,~g„s,~, f„„,' g(t~) . (AS)

can be cast into our decomposition (which now has
already 14 terms). In (A7}, we insert for f 2
formula (A3), combine ),Q 2, =g„, , with (A4),
and set s„/rt, =s„,/s„:

[ g( ,I&}... s.,"' "'V,(n, )k.,s... f...,"

(A8)

In the brackets of the first term, we recognize the
amplitude 1+Reggeon ~2- a+&. Treating it as a
vertex particle 1 —Reggeon o., —cluster(ab), we
write the first term of (A8) as

It has precisely the form of a 2-4 amplitude, and

hence, can be decomposed according to our
scheme (Fig. 13). To obtain the complete singu-
larity structure, however, we have to take care
of the internal structure of V„. According to
what we said in Sec. III, Regge behavior within
V„corresponds to another discontinuity line in
our diagrams. As depictured in Fig. 14, we have
to insert a new cut wherever we see the cluster
(ab). The right-hand side of Fig. 13 is thus trans-
formed to Fig. 15.

In the second term of (A8), we use (A3) for
et20t3 '

g(t, )s.. & ~, [V&(rt&)rt, rQ."', ,]s&."4„[V&(r}.)r). "'Q.,'., + Vs(r},)r). "'Q.", ]s.g"'&.,f„,„,~g. '5,g(t. ) .

(A10)

Here we take the second term in the second square brackets and combine:

Q1 & 03 =Q» +0312 +2 +3 2 +1+3 2 3 ™31 2 1

This leads to

(A11)

g(t, ).... ~.,[ .. "Q:., V. (n, ) .." "~..V.(n.}".. "Q.". V(~, ) .,""~..V.(n.)]

xs„, &$„ f s„"g g(t, ) . (A12)

One notices that in (A12) the term in brackets has the same structure as f„, , in (A3) and can be written as

(A13)

Thus (A12) is like a. 2-4 amplitude and can be decomposed into 8 terms (Fig. 16). But again we have to
remember that V~' and V'„' have internal Regge exchange themselves. Wherever we meet the cluster (bc},
we make the replacement of Fig. 17, and Fig. 16 is transformed into Fig. 18.

Next we turn to the first term in (A10). For f„„we use (A3):

g(t, )$~ s„"'[Vr(rt~)g), 'Q„'~ ]$„s„'[rt, 'Q~"~ Vr(rt, )])~ s,~"'[t4 "'Q~3„Vr(rt, )+rt~ "4Q„4„Vrr(rt,)]

x ( s„g(f ) . (A14)

a b c d b cd

+ 4 OTHER TERMS

FIG. 18. Five other possible sets of discontinuities in

the 2 5 amplitude, as obtained from Figs. 16 and 17.
They represent (A12).

FIG. 19. 2 —4 amplitude 1+ 2-a + b + cluster (cd)
+e (A15).
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FIG. 20. Three other possible sets of discontinuities
in the 2- 5 amplitude, as obtained from Fig. 19 when
clustering among particles a and b is omitted. They
represent (A15).

For the term with Vs(g, ) we repeat the previous
analysis and arrive at

g(t, )s, "t,[V (6 )9 'Q '
1

where F ~~,„, is the analog of (A13). (A15) is like a
2-4 amplitude (Fig. 19}, except for the vertex of
particle b: Instead of f„,there is only the first
term of (A3). Therefore, when we apply our de-
composition to (A15) and draw the five diagrams
with cut lines, all discontinuity sets involving
Vs(r)~) have to be left out, and we end up with only
three diagrams (Fig. 20).

In the final step we examine the first term in
(A14):

g(t, )g „s, [V (97rl 'Q„]
xt'„s~, 2[V~(q,g, 2Q„2 ]$„s,„
x [V~(q~)1)~ "&Q ' ]$ s~, &g(t, ), (A16)

which by use of (A5) can be written

FIG. 21. The last set of discontinuities from (A17).

1 2 1 3 2 4 3

xg(t, ) V, (q, ) V (q, ) V (q, )g(t,), (AIV)

which obviously is Fig. 21 and completes the set
of allowed discontinuity sets (Figs. 15, 18, 20,
and 21).

It is not difficult to see how our argument is gen-
eralized to more than 3 produced particles. Pro-
ceeding from the left to the right end of the dia-
gram, we first decompose f and treat the Vs
term Be.ing left with the V~, we decompose f 2 3
and treat its V~. Repeating this for each vertex,
we are finally left with only V~'s from all vertices
and we handle this like (A16). Translating this in-
to our diagrams with sets of discontinuity lines,
we create in the first step all configurations where
particles & and 6 are combined into a cluster,
then all diagrams with cluster (bc) and so forth.
In the final step, particles c and d are clustered,
but no clustering of & and b appears (otherwise
we would have double counting, for clustering of
& and b has been covered in the first step}. Ob-
viously, in this way all possible configurations
are created without any double counting. This
completes our proof.
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