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In gauge theories of strong, weak, and electromagnetic interactions, the fine-structure constant (a) is a
lower bound on the strength of weak and strong couplings. This opens the possibility of physical
systems wherein all fundamental couplings are large, and a is a low-energy phenomenon of the system

(essentially a collective property of the strong interactions). We construct such a model. At present
experimental energies, it agrees with standard (hadron-modified) electrodynamics, while revealing a

strongly coupled photon in the extreme asymptotic region.

I. INTRODUCTION

One of the great puzzles of particle physics is
the apparent existence of hierarchies of inter-
action strengths, e.g. , n =8'j4m=1 j137, while

F=g~, „'j47t=2.5, etc. It is an old dream that
these forces are related in some way. For ex-
ample, it ha, s recently been proposed' tha, t o.' is
the fundamental constant, while F arises from n
because the strong interactions are infrared un-
stable. Here we explore much the opposite hy-
pothesis —that all fundamental. couplings are of
order F, while the fine-structure constant ap-
pears as a low-energy collective phenomenon of
the system.

We explicitly construct and solve such a model.
Our results ean be conveniently and colorfully
summarized in terms of an "effective" fine-struc-
ture constant n„(rt). For (energies)' I( e GeV',
o.„., (t)=a, while at extreme asymptotic energies
there is a logarithmic approach to u„., (f) =F. In
the language of the renormalization group, it ap-
pears tha, t the fine-structure consta, nt has an
ultraviolet-stable fixed point at a value compar-
able with typical strong couplings.

Because the dynamics of the models is so un-
orthodox (at high energies), we carefully checked
it against experiment. We were particularly con-
cerned that loops (g —2, Lamb shift, etc. ) would

reflect the growth of n, , ,-. Such turns out not to
be the case, the deviations of the model from
conventional electrodynamics being of the order
expected for hadronic corrections. We conclude
that our new viewpoint is in fa.ct viable.

II. CHARGE AND THE FINE-STRUCTURE CONSTANT

Our first important observation is that in gauge
theor ies of s trong, weak, and e lec tromag ne tie
interactions, the fine-structure cons tant is a
lower bound on weak and strong (in fact all other)
couplings. The reader is familiar with this in a

simple form in the Weinberg-Salam theory of
weak a.nd electromagnetic interactions. ' There

e =gg''&(g'+g") '~a or g'. (2.1)

(2.2)Q=Q a;F, ,

where, in general. , nonvanishing a, 's are of order
one (since eigenvalues of Q are chosen to be in-
tegral, or third-integral, etc. ). The sum in

(2.2) is over neutral F,'s. For exa. mple, if (F,}
are the generators of SU(3), it is conventional for
only a, and a, to be nonzero.

Once Q is specified we can calcul. ate e as a
function of the other couplings. ' The covariant
momentum is

~~ =I~+ g,. F,. V~,

5

where (g,.} is the set of coupling constants for
all the vector fields of the system. Our task is
to rearrange 6'" by a,n orthogonal transformation
on ( V,.} (and therefore on (g, F,})so that

(2.3)

O'" =P" +ey" Q+ ~ ' ' (2.4)

y", the true photon, is one of the V," resulting from
transforming (V,} so that their mass matrix is
diagonal. eQ is the corresponding (gF)';I, so we

This is in fact a general characteristic of gauge
theories of vector mesons. The true photon is a
linear combination of the neutral vector mesons in
the system, including the "bare" photon, and each
mixing results in a progressively smaller e rel-
ative to the other couplings of the system. In
M models"' for example, the bare photon mixes
not only with B but also with the bare p, cu, a.nd

Relations and conclusions similar to (2.1) are
borne out there. Here we want to discuss a gen-
era, l formalism for calculating e in an aggregate
of many vector bosons.

The charge operator can be expressed as a lin-
ear combination of the group generators F,. :
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can write

e Q = g c,. g,. F, , g c,.' = 1. (2.5)
i

Comparison of (2.2) and (2.5) gives c,. =a, e/g, , and

the normalization condition then implies

e2

a
2 (2.6)

1 1 1, +g, , e'=g, '.e' go ~)o gn
(2 'I)

To make sure that the sum over other couplings
does not upset this, one either truncates the sum,

or, if an infinite number of vectors are present,
one needs demand rapid convergence of the sum,

g g 2 n2

It is curious that if, e.g. , all g„=g, and there
were an infinite number, then +=0: El.ectro-
magnetism cannot couple to such a system. This

is a springboard for our new hypothesis on the

origin of a. Suppose that n is smal. l because the

g„'s do not increase so rapidly as g„'-n . Suppose
in fact that

Equation (2.6) is a fundamental result of this
section. Note that it agrees with the special case
(2.1), where ae =a„,=1 (a„,=a„,=0). In actual
practice, of course, the mixing discussed here
parallels the spontaneous breakdown of the system.
For simplicity we will. continue our discussion
with all nonvanishing a,. =1, but generalization will
be immediate.

How is the fine-structure constant to be made
small in such a model'? The conventional method
is to have the bare photon coupling (say go) much
smaller than all the others:

2 = Q [ ——,
' F~,F,"'+ y, (.i $i. m()(l((]

D M 2+2m 2~ 2 2~2~ 4 (3.1)

where each V, is the gauge field of a U(1) subgroup
(F'„,-=S„V'„—&„V'„). Since there is only one V~,

is omitted. The covariant derivatives are given

by

D(( ki (6((+ig( +g)0(~

D„M„=[6„+i(g„V„"—g~V»o)]M„.

go is of order 1, and [using (2.6)] we find

(3.2)

2 2nl+1/+12(1/e2-1/CO ) ]
gn =g., n (3.3)

Here we have been more accurate than in (2.8).
The gauge symmetries are broken by (M„)=»„/W2,
so M„- (»„+M'„)/v 2, where ((„and M'„are real
Eliminating terms in 2 l.inear in M„' gives
((.„=m„/»„, and m„ is the mass of M'„. The mass
matrix p2, , for the'V, is then given by

mions, V„hadronic vector bosons, and Vo the
bare photon and weak bosons (from now on we

use subscripts l, m, n = 1, 2, . . . and i,j, k
= 0, 1, 2, . . . ). M„are the connecting scalars
which mediate between leptonic and hadronic
worlds. (t( is an extra Higgs field (like Weinberg's),
useful in the non-Abelian case to spl. it W', Z, etc.
from y.

For simplicity we will first take Abelian groups,
but internal symmetry can be addended trivially.
Explicitly, the Lagrangian is

g„'/4(( —Fn" ~e as n-~. (2.8) 2~ 2
~ oo=to ~ l ~

This is an unorthodox but consistent solution for
the system, having the ordinary valu'e for the

fine-structure constant, but with no fundamental

small couplings. Other similar solutions are
possible: In particular, the same effect is ob-
tained if all g„=g and there are -I/o.'vector
mesons in the mixing. This possibility will be

reconsidered at the end of the paper, but we will

focus most of our attention on the solution of the

definite form (2.8).

Ill. A MODEL

Ne believe that many models are possibl. e. For
simplicity, we will discuss an M model"' with

an infinite number of vector mesons. The model
is schematized in Fig. 1.' Referring to that fig-
ure, p„are hadronic fermions, go leptonic fer-

2 = 2 2~ on= & no= g(gnawn ~

2 2
mn rnngn ~n

f —
V,

—M V—f
f —V —M

2 2

I l

I

FIG. 1. The model.

The eigenvalues g2,. of the matrix p,
2 are the

roots of its characteristic polynomial.

(3.4)
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det(s —u )=II(s —g " ) s-g'0 Z Zl2 = 2 V 2 (-g'Og'n "n )

n S-gn Kn
(3.5)

After combining the two summations the determinant is

K 1 1

2

=II(s-g 2s ')s ', 1 —eosg

We have used (2.6) in the last identity. This gives i2'0=0 as the root for the photon; (l2'„} are the roots
of the function

A(s) -=1- e's g 1

n gn S gn &n
(3.7)

We analyze this by breaking the sum into three terms: n less than, equal to, and greater than m, where
m is the integer for which g 'K ' is closest to s. We then approximate the three terms by g„'K„' much less
than, approximately equal to, and much greater than s, respectively:

1 2 1 1A(s} =1 —e's, —e's, 2 2
—e's

gn S gm (S-gm "m'} mvi —gn "n

1 1 2/g 2 e K e 2/ 2=1 —e —
2 —,(1—m ' &) — m, + —m nni.

e g S —gm Km
(3.8)

Equation (3.3) was used in the last approxima. lion.
We have also assumed g„s„ono' (a& 0), e.g. ,
is reasonable for V„as daughters of l.inear Regge
trajectories. Thus for a reasonably greater than
zero,

2 2 2

A(s) = —,+m ' ~'&2 2 e K

gp S gm Km

Our result is then that
2

g K 2+e2K +m-e /g-e

Q

(3 8)

(3.10)

thus c,, is the jth component of the ith normalized
eigenvector of i22, , From (3.4) we then hw e the
eigenvector equations

(
2~ 2 = 2

gp ~ K~ Ckp ~ gpgn Kn Ckn = p k Ckp
n

(3.11)
2 2 2 = 2—gp gn K„Ckp + gn Kn Ckn = p k Ckn .

Therefore, p.
' =g 'K '+e'K ' until mis of the

order of e ', and p. =g K +g K for mabovethe
order of 137"'.

The only remaining parameters to be determined
are the couplings of the diagonalized vector me-
sons V', . Since V'; =Q, c,, Vv 2 g, F, V, in (2.3) be-
comes 5~, (g, c, ,}E, V', (c„ is ort. hogonal), so
g,. c, , is the coupling of V,' to g, (the coupling to
M„ is g„c,„-g,c,,). Since we also have

g v*„v, v, -=gv*, v, v„
f ol

then
2. . = 2, Ck, —g kC

The first equation is redundant since we already
have the eigenvalue condition. This is found by
solving the second equation for ck„and plugging
into the first. ' The second equation gives

K—go gn Kn
kn ~2 g 2K 2 kp' (3.12)

Notice that this gives co& --e/g, as in Sec. II; it
also shows that the M„areneutral: g„c -gpc~=O.
After normalizing the c,, [using (3.7) for s = p2„
and (2.6)j we obtain

K
-uh

nip gQ ~ nt~ ( 2 2K 2)2

go 1
e2 go m Q g 2(g2 g S 2)2

-i/2

(3.13)

gn c~= n n

(men; mth vector meson to nth quark).

Using (3.10) and the method used in deriving
(3.10), the n =m term in the second expression
above dominates, and we find the following set
of coupling constants:

g,c = e (photon to lepton),

g„c,„=e (photon to nth quark},
e2

go no g (e2/g 2+n-nn/nP)

(3.14)
(nth vector meson to lepton),

g„c„„=—g„(nth vector meson to nth quark),
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Clearly, p couples universally with e. Notice as
in (3.10) that instead of the e' expected in con-
ventional vector-dominance models there occurs

e'/(e'/g, '+m "~'& }

which approximates e' for all but extremely large
m (i.e. , m &e't ), where it asymptotically reaches

2
&p .

For i =j the same expression for the s channel
is added to give the total amplitude. These agree
with the S-matrix elements found by trea. ting the
off-d iagona1 par t of p,

' as par t of the in terac tion
Lagrangian, since all the Vp —V„ interactions can
be expressed in terms of a modified photon prop-
agator e'/go'tA(t) (see Fig. 2). They also have
the same form as in conventional vector-domi-
nance models, differing only in that

IV. TREE GRAPHS

1
CJ ~) ~1 t 2

j.
(g, ca, )(g„ca,) (4.1)

where p.
" is the diagonalized p'. Using (3.4) and

(3 't),

+ =g 'g (t —g„'~„')/det(t —p')

=e /tA(t),

'i'fon =gogn( gogn&n )g (t g'm ~m }

The S-matrix elements for fermion-fermion
scattering take on a simpler form if they are
calculated in terms of the undiagonalized mass
matrix'. in the Born approximation the invariant
amplitude for scattering between the ith and jth
fermions is

—~( C. )~
tA(t) ~ (go io} t 2

f

2

+
n t —p, „

(4.3)

only at "low energies" [i.e. , (energy)'=t less.
than some g„'z„' for which n«e "J. At very high
energies [t greater than some g„'z„' for n»(1 /o } J

there are significant differences, since gpc p

increases from e'/g„ to go'/g„ for very large n

For example, the form factor [from Mo„ in (4.2)]
is —g„'z„ /(t —g„'e„')A(t), as compared with the
form factor —p'/(t —g') given in conventional
vector-dominance models (g' = meson bare-mass
= g„'~„') by a photon coupling to a hadron through
a meson. These two expressions are approxi-
mately equal for low energies, where A(t)=1.
At high energies A(t) - e'/go' (see below) so the
form factor increases by a factor of go'/e', the
photon is coupling with strength gp instead of e.

The conclusions of the previous paragraph are
easily seen in detail. For spacelike t = —T&0
[by (3.'tj and (3.3)],

= eg„(- eg„z„')/(t —g„'~„')tA(t),

}limn =gmgn( g'ogmKm }( g'ogn&n }

x Q (t — g'~, ') /edt(t —p')
g2

2
R'p

2 "~ a-1-e2/g 2
Pl

+ —~, dn
"p Pl +X (4.4)

1 &m, n

(-eg ~„')(-eg„z„')
" (t —g g ')(t —g„'a„')t A(t)

(4.2)
where x = T/g, 'K,' and 'gg„' n' Cha-ngi. ng vari-
ables, n =xL,

M„„=g„'p[(t g„'~„')—
mlitt

A{-7.') =, +, x "~'~" a"v
gp g1 A p l.}+1

(4.5)

2j( 2

Then, using Ref. 9,

e e2 2

A(- T)=, +, x ' t'~ 'vcsc(oe'/g 'a)

= g„'/(t —g„'a „')

+g„'(-eg„w„')'/(t —g„'~„')'tA(t).
6' T

(4.6)
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8 /g +(t)=~+X~ -~+X~~- -~~ ~+ ~ o ~
0 m, n

0 n Vo
'

Vo Vmvo Vfi Vo

FIG. 2. Modified photon propagator.

For the n for which g„'q„' is closest to T, this
gives

2

A(- T)=, +n ' t'& T= pP
g

2 & ff&

0
(4.7)

g,c„,= e'„,. (n)/g„,

—e2/TA(- T) = —e'„, (n[T])/T,

(4.9)

(4.10)

where n[T] is the inverse of T=g„'x„' (picking the
integer n for which T is closest to g„2t&„'), and
where

e,«(n) = e'/(e'/go'+n "'&'). (4.11)

A relation similar to (4.9) holds for g„c „ in
(3.14), and (4.10) affects the scattering amplitudes
(4.2) by replacing A(t) with 1 and e with e,«, for
negative t in all amplitudes. The behavior of

which is the same factor appearing in (3.10) and
(3.14). Thus for T less than order e"' g, 'x, ' the
effective coupling is e [A(0) =1 by (3.7)], but it
increases to go as T becomes infinite: —e /TA( T)-
goes from = —e2/T to= -go'/T.

The anomalous asymptotic behavior of the elas-
tic scattering amplitudes, as well as that of the
vector masses and coupling constants, can all be
summarized as follows [from (3.10), (3.14), and
(4.7)]:

(4.8)

e„-, (n) [by (4.11)] is illustrated in Fig. 3.
We find similar high-energy behavior (for the

same reason) in lepton-antilepton total cross
section: Using the optical theorem, with widths
given by the prescription s- se' (except for the
photon) the cross section is

1

[s(s —4m'))~ ™go se' —g' se'

1
=go s sin6) c p s' —2p/„s cos6+ p, '

2 2

sin8+ c„o' = o sintt(1 —c~')

2 e2
sin6)

S (4.12)

g,' —e' . e4sin& 1 "
1u~- ' sin6) =

oOs s
1 2~ 1 g„

2
gn

(4.13)

Thus, in a conventional theory (with, say, g, -e
and g, a0, all others zero) or would be 0(e') for
all energies.

for asymptotic s (» o.'GeV'). For less than
these asymptotic energies the cross section is
of order e', as observed. Again this huge asymp-
totic limit is unexpected in conventional models.

It is an amusing check on the asymptotic form
(4.12) that, with the help of (2.6), it can be re-
written

F

eff

V. HIGHER-ORDER CORRECTIONS

0 e Q~/e~ (g &e)0

FIG. 3. Effective fine-structure constant.

Because of the anomalous high-energy behavior
of our model it seems particularly important
to study loop corrections, which are sensitive to
all energies. As examples of higher-order pro-
cesses we wil. l calculate the lepton anomalous
magnetic moment, Lamb shift, and electromag-
netic mass differences.

To calculate the lePton anomalous magnetic
moment, we need to evaluate the part of the in-
tegral (see Fig. 4; P" =P =m')
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p/

P'-P =q FIG. 5. Other relevant graphs for Lamb shift.

FIG. 4. Relevant graph for leptonic g -2 and Lamb
shift.

. d4k „(P"+f +m)y"(P +li +m}, —g,
(2zz)4 [(P'+k)2 —m2][(tz+k)' —m'] k —p2

—= [F,(q') —1]y"+F,(q }io""q„/2m,

(5.1)
which gives F,(0) (Feynman gauge). The result
is (in units m= 1)

F,(0) =—— 1 —2iz2 + tz'(iz2 —2)in', '2n' 4n'

—I (iz —4' +2) ~ 4(~'- 4~') ~'

lz'+ (i
' —4i ')'k

lz2 (lz4 4lz2 )
1/2

for p.'=0

Since gl/g„4K„' converges rapidly [the terms for
which the

e2/g 2 n-e2/442

factor in (3.14) is important are negligible], the
whole sum is of the same order as the first term,
which is the hadronic contribution found in stan-
dard treatments (due to p, ~, P mesons etc. ).

The graphs contributing to lowest-order Lamb
shzft 0 hadronic corrections are shown in Fig. 5.
These are the graphs for lowest-order Lamb shift
with photons replaced by vector mesons. The
hadronic vacuum-polarization contribution is
found by replacing the photon propagator and

coupling by those of the vector mesons:

e'/q' -(e'/g. )'/(q2+ iz'. ).

This adds to the photon's correction to the exter-
nal potential (12/15zr)(q'/m')(e'/q') the term

1+0 2 for p. » 1.
15tt m' q'+p. '„g„' q' (5.4)

(5.2)

Using (3.10) and (3.14} to sum the hadronic con-
tribution, we get

~ 1 (e'/g„)'i 2~ 2zz 4zz )3g„'~„'

Since q'«pP„ in an atom, the sum over all vector
mesons is -Ql/g„zg„zzz„'. This again converges
rapidly, and so is of the size expected from stan-
dard hadronic contributions. " The vertex cor-
rection includes an anomalous magnetic moment
contribution, treated above, and a contribution
from F,' (0)

e' ~ 1

12m g„x
(5.3)

F,(q') = Z, ' + q'F, ' (0).

That part of the integral for Fig. 4 gives

F,'(0) = — —2iz'+ 23+, —(iz4+ 10iz2+ 4)lntz2
1 g', l2

48m 4n p.
' —4

24 1 ~2 ~ (~4 4tz2)z/2
+ p'+ 8~' - 18'' —24—

1 g 1 in', 79 1———+0 for p. »1.
n 4n 6 p. 72 g p.

(5.5)

This equation is not applicable for p,
' = 0, where

infrared divergences necessitate a partly non-
relativistic treatment, as for the photon in lowest-
order Lamb shift. The leading hadronic contri-

bution is -Q (lng„'zz„')/g„'zz„', again rapidly con-
vergent: All hadronic Lamb-shift corrections in

this model agree with the conventional theory.
To study calculable electromagnetic mass dif
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0

+ 0 0 — 0

0 + 0

FIG. 6. Graphs for electromagnetic mass differences.

ferences, a higher symmetry than U(l) is needed:
The simplest is SU(2). We modify the Lagrangian
(3.1) by making each V, an isovector and do the
same for each fermion. The M„become four-
component (real) representations of SU(2) SU(2)
[-SO(4)], most simply written as 2&2 matrices
M„=M„+i 7.M„.' A real. isovector Q gives the
weak vector bosons masses. " All isospin break-
ing is due to (II); since it couples directly only
to Vo, hadronic isospin. is only broken to order

This group structure is not particularly

d'q „(P'-g)+m, -g„„
(2v)' V —q)' -m' q' - u' (5.6)

(with P' = m', m=fermion mass). This is found to
equal (m =1)

physical, but provides a simple illustration of
magnitudes expected in general.

The diagrams contributing to the mass difference
between (any) charged and neutral fermions is
given by Fig. 6. The integrals in general are of
the form

2 & 2 & 4 2 2 1 4 L 2 i +(P4I )'-& A ~ & -u --~ & ~ ~(-. ~ --*~ -2), , 4.,
~ & . . . 4.,~)2m 4m t.w -4e i 0 -&9 —4h4i

2

(~ lnA'+1) for g'=0
2v 4m

C

2

[-,' In A' ——,
' Ing' + —, + 0 (In', '/p ')J

2n 4m
for p.'»1.

(5 6)

(5.7)
We now specialize to the case of calculable lepton mass differences. Instead of using (3.14) we will ex-
amine the mass differences more carefully by using (4.2) and the identity

A2

l.nA' —lng = dx
+X

Then we find, from (5.7),

2

&m=—
A f I e2/g 2'l 1 e2 - A2 I'!+-, + . (-'»A'+-. ) --'

&&+" oo ") 4 go, o ~+~ oo (5.9)

This form now includes the sums over all vector mesons. Here P,
' is the charged vector-boson mass

matrix. g differs from p' as given by (3.4) only in that p'oo=lj, ',0+go')P owing to(p) =he, . The extra
terms

2 1
A28 3 4x

+glnA +— (5.10)
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inside the square brackets are due to the photon contribution, to which (5.8) does not apply because
p. 0=0.

Using (3.'7) and (4.2) and the analogous expressions for P,
' (found by the same method} we find

16rP „, 1 —e'xL1/g„2(x+g„sz„'), x[1 —e x2gl/g„'(x+g„'x„}2]+e )2P
'

(5.11)

We evaluate the integrals by expanding in e',
treating e'X (=tt~o) as O(l). The in A terms can
be seen to cancel in 4m before using (5.8) [then
they are explicitly (1/2w)(g02/4w} —,

' ink' —(1/2r}
x(g,'/4m)-; in A'J. The Eeroth-order part of the
second integral gives —ln(e A.'); combining this
with the photon contribution gives the nonstrong
part of hm to be =(3/16' }e (lne'A. + —,').

This is just the standard contribution to fer-
mionic mass differences from the weak-boson
system. " That is, we would obtain just this in

a model with the same group structure and no
hadronic V„'s, and go replaced by e. [Note that,
by the same method as for (3.10), M~'=e'A2. ]
The order e' terms of the two integrals give terms
of similar n dependence and opposite sign. The
slowest-decreasing terms cancel, leaving terms
which decrease too fast in n to affect the order in
e'[as, e.g. , Ql/g„' =O(l/e') would]. Higher-
order terms in e~ in the two integrals also con-
verge quickly, so (showing m dependence ex-
p lie it ly)

The first term of (5.13) gives a contribution to the
quark mass difference of the same form as the
total lepton mass difference. Computations for
the second term in (5.13) are similar to those for
the leptons. We then have the nth quark mass
difference

Am „3o. e'A.'ln, +-
m 4p m

3a 1 lnr
4m r —1 (r —1)

(5.14)

VL CONCLUSIONS

where r —= g„'K„2/e X ." Therefore, we again have
an order-e mass difference, so the anomalous
high-energy behavior of the model does not appear
in any of the higher-order corrections considered,
to within present experimental accuracy. Note
that in M models, order-u mass-splittings can
come both from strong (vector mass splits) and
nons trong interac tions. "

~nz 3a
j[ln(e')P/m') + -,']+0 (a)) . (5.12)

g„'(- eg„x„')'/(t g„'~„')'tA(t)—
e'(t —2g„'~„'}

= e'/t A(t}—(t, , )",A(t) (5.13)

The mass difference is the sum of a nonstrong
part, "which agrees with a conventional. gauge
theory of nonstrong interactions, plus a strong
part, which is of the same order as in a stan-
dard vector-dominance model, O(o.'}.

Using the same method for ttadronic (quark)
electromagnetic mass differences, we find that
the g„ /(t —g„z„') term in M„„=g„(l/(t —tt ))„„
cancels [using (4.2) for the equation analogous
to (5.9}]. This is due to the fact that the matrix
elements for charged boson exchange differ from
those for neutrals in (4.2) only in that tA(t) is
replaced by e2)P +tA(t) (this again follows by
using the same steps as in Secs. III and IV for
P,
' instead of p,'). The other term in M«can be

rewritten as

We have explicitly constructed and solved a,

simple model in which electromagnetism and the
weak interactions can be considered as strong
forces, arising in their known form only as "low-
energy" phenomena. Although highly unconven-
tional, the model agrees with electrodynamic
phenomenology in present experimental ranges,
and predicts deviations from conventional @ED
only at extreme asymptotic energies (s&e~" QeV~).

Other models are possible which have non-
standard behavior at energies more accessible to
experiment, e.g. , a model with a finite number
(of the order of 1/n) of vector bosons with the
same size coupling. Such a model might be as-
sociated with a single large non-Abelian gauge
group with only one coupling constant. In such a
model, one expects deviation from conventional
@ED at energies comparable to n ' GeV'.

Many other vector-meson-aggregate models
are possible. For example, consider Fig. 7,
where extra vector mesons have been added
"horizontally. " This model, in distinction to the
basic model of the paper, will have dipole form
factors' for the hadronic fermions. It is con-
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FIG. 7. Modified model with rapidly falling form fac-
tors.

venient to separate out our "vertical" model
(which is supporting the unconventional interpreta-
tion of n) from many "horizontal" vectors in a
chain. For such a chain of vectors
V„(n = 0, 1, 2, . . . , N), the form factors are easily
calculated in hadron- lepton collisions:

iV

2

I'(t),
(6.1)

Thus, an W-link chain has cV-pole form factors. "
In this way we are led to interpret "horizontal"

or chain structure (V„V„.. . ) as ordinary Aadrons

(p, p', etc. ), just as in Ref. 5. What then is the

physical interpretation of the vertical structure
(V„V„.. . ) '? We are tempted to identify these
with the recently discovered g particles. " The
couplings of V„V„.. . to V, (hadrons) is quite
arbitrary and can be controlled by a term of the
form Qa „)M„('(M„(' in the Lagrangian (3.1)
(and implied loops}. Hadronic widths can thus be

adjusted by hand to the surprising narrowness.
To get the leptonic widths correctly, the following
kind of group classification is appropriate: Take
each V„as a nonet in a repeated SU(3) scheme.
V, contains (p, ~, Q) as in standard M models,
while V, contains P(3105), 4(3695), and t)(4100)
as the three neutrals of Suzuki's scheme. " New
higher-mass (I('s would recur as V„V4, etc.

We are clear on the fact that our choice to in-
terpret the V 's (m~ 2) as y's is arbitrary and
not required: A choice of large a „'s would make
the V 's into more ordinary hadrons, l.ike p'.

The e-g0 behavior at high energies is analogous
to the renormalized coupling —bare coupling be-
havior of ordinary quantum electrodynamics at
high energy. "' (As mentioned above, such un-
conventional behavior is also like having an ultra-
violet-fixed point in ordinary QED. ) The mass-
matrix diagonalization is a zero/A-order renor-
malization, using trees instead of loops. The
effective coupling e„,, has a logarithmic behavior
at low energies, analogous to the behavior of
asymptotically free theories, but the situation is
reversed, since e„„ increases with energy. It
would be interesting to see if such tree renormal-
ization has applications in other contexts. Higher-
order charge renormalization in this model might
also have interesting consequences: We query
whether the model provides (or allows} a self-
consistency condition (perhaps in the spirit of the
finite QED of Johnson, Baker, and Will. ey'0) for
the actual calculation of the fine-structure con-
stant. It is also an intriguing question whether
such behavior can be found in more dynamical
models (such as quark or dual models) where,
as here, the photon is expected to mix with an
infinite number of vector mesons.
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