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We apply the methods of Dashen, Hasslacher, and Neveu to quantum field theories with continuous
global symmetries. With a U(1) symmetry we show that it is possible to project out a subspace of
fixed charge, and to reformulate the theory as one with internal symmetry, but with centrifugal terms
arising from rotation in the internal-symmetry space; in the weak-coupling regime, static solutions of
this equivalent problem determine the energies of the bound states. Within a particular model in one
spatial dimension we demonstrate the existence of such bound states and examine the dependence of
their energies upon the charge. The extension of the method to non-Abelian groups is illustrated with

SU(2) examples.

I. INTRODUCTION

In a recent series of papers!'? Dashen, Hassla-
cher, and Neveu (DHN) have suggested a method
for obtaining bound-state energies in quantum
field theory. Working within the framework of
the path-integral formulation of quantum mechan-
ics, they show that the stationary-phase approxi-
mation to the path integral is the proper general-
ization of the one-dimensional WKB approxima-
tion. In this paper we discuss the application of
these methods to theories with global continuous
internal symmetries.

The DHN method can take two forms. If all
classical periodic solutions of the field equations
are known, then the bound-state energies can be
obtained by imposing WKB quantization conditions
on the action of the classical motion. Alternative-
ly if the coupling is weak and a stable time-inde-
pendent classical solution is known, there will be
a corresponding quantum bound state, as well as
nearby states corresponding to excitation of the
normal modes of oscillation about the static solu-
tion. Their energies will be given by the classical
energy of the static solution, plus quantum correc-
tions that can be systematically evaluated. In a
somewhat different language, the weak-coupling
case has also been discussed by Goldstone and
Jackiw.?

When there are many coupled fields with some
internal symmetry, certain interesting questions
arise. The symmetry clearly introduces “sym-
metry” coordinates* which are changed by the
symmetry transformation, while the energy of
the system is not. When the internal symmetry
is global, the number of such coordinates is less
than or (more typically) equal to the number of
group generators.

Since the potential energy is independent of the
transformation, one would expect quantum fluc-
tuations in the symmetry coordinates to be very
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large. Consequently, one might wonder if “semi-
classical” WKB methods could be meaningful in
such a context. To put it in other words, one
might wonder if the “zero-frequency modes” cor-
responding to these symmetry coordinates could
give rise to infrared problems in the WKB method.

In fact these methods, when used with care,
should not present any such problems. Certainly
it would be a mistake, in the presence of contin-
uous internal symmetry, even for weak coupling,
to perturb about a classical time-independent solu-
tion. For every such solution, there will be near-
ly ones of the same energy, obtained by applying
infinitesimal rotations in internal-symmetry
space. Consequently, there will be zero-frequen-
cy modes which give rise to vanishing denomin-
ators in the course of the perturbation calculation.
(These are similar to the zero-frequency modes
due to translation symmetry which were encount-
ered in Refs. 2 and 3.) One must therefore nec-
essarily include periodic time-dependent solu-
tions which move in internal space, even for weak
coupling. (Along the zero-frequency modes, even
a small coupling constant is, by comparison to
w=0, infinitely strong.) For strong coupling, the
WKB method in any case requires use of all peri-
odic classical solutions, which will include all
periodic motions in internal space as well.

This, and many features of the problem, can be
illustrated by using a very simple example. Con-
sider the path-integral-WKB treatment of a single
nonrelativistic particle on a plane moving under a
central potential V(r) which has a minimum at
some 7 =¥,. Although a time-independent classical
solution exists with #»(¢) =r, and 6 =any constant, it
is incorrect even for weak anharmonicity to per-
turb about such a solution. Nontrivial periodic or-
bits, both circular and noncircular, must be em-
ployed. The WKB quantization conditions then
pick orbits whose energy and angular momentum
approximately equal those of the quantum levels.
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Alternatively, and more exactly, one can project
out an angular momentum sector and integrate out
the 6 variables in the path integral, leaving behind
a radial problem with an effective potential con-
taining the well-known centrifugal term. WKB
methods can then be employed for the radial prob-
lem. In particular, for weak coupling, it is cor-
rect to perturb about the classical stationary solu-
tion »(¢) =R, where R is a minimum of the effec-
tive radial potential, since there is no continuous
symmetry left in the radial problem. Further,
this stationary solution to the effective radial
problem and its classical energy correspond in
the original 7, 6 variables, to a circular orbit of
appropriate angular momentum.

One might hope that corresponding things happen
in field theories with global internal symmetry.
In Secs. II and III of this paper we explicitly show
this by using a U(1)-symmetric field theory as an
example. The “symmetry” coordinate is easily
identified here, and is in fact cyclic. It is shown
that one can project out a definite charge sector
(where the “charge” is of course the internal quan-
tum number) of the propagator of the theory, and
write a path integral for it. Then the symmetry
coordinate is exactly integrated in the path inte-
gral, leaving behind the remaining coordinates
and an effective action in these. There are no
infrared modes due to internal symmetry in these
remaining variables since they are all left invari-
ant by the group.® Thus, for weak coupling one
can find bound-state energies by perturbing about
a lime-independent solution to the equations of
motion of the remaining variables, as obtained
from the effective action. We do this, and find
that just as in the case of the “kink” solution of
Ref. 2, the quantum energy is dominated by the
classical energy of this stationary solution for
weak coupling. If there is more than one time-
independent solution for weak coupling, they cor-
respond to different families of bound states, not
accessible to one another in perturbation theory.

Further analogies with the angular momentum
problem are also explicitly shown. The stationary
solution for the remaining variables is seen to
correspond, in terms of the original variables, to
time -dependent solutions which rotate globally in
internal space. The classical energy of this
globally rotating solution provides in weak cou-
pling the leading contribution to the bound-state
energies. The classical charge of this rotating
configuration is also approximately the quantum
charge of the sector, with quantum corrections
which we evaluate exactly. For large charge the
quantum corrections to the classical charge are
negligible, in accordance with the correspondence
principle.

It is also seen that the equations of motion of the
nonsymmetry coordinates contain an added “cen-
trifugal” term dependent on the charge. That ro-
tations in “internal space” can also give rise to
centrifugal forces need not cause surprise. After
all, such rotations produce nonzero time deriva-
tives of the multiplet fields, and contribute to the
kinetic term in the energy, just as ordinary rota-
tions do in nonrelativistic physics. The analogs
of “circular orbits” are periodic solutions which
rotate globally in internal space, but have no other
time dependence. In weak coupling, states of high-
er values of internal spins come from perturbing
about periodic field solutions which rotate globally
in internal space with increasing “angular veloc-
ity.”

In Secs. II and III we illustrate these ideas by
using a concrete example of a field theory with
U(1) internal symmetry. We consider a two-di-
mensional Lagrangian with one real scalar field
o and one complex scalar field ¢:

L(o, ¢)=3(0,0) + 3 p20® - §ro*
+3(0,0%)(8,0) - 2 m?| §| - Th(| §|2)?
-zal¢|2(0® - p2/)N). (1.1)

The Lagrangian is clearly U(l)-symmetric with
respect to the complex field ¢. Since the charge
operator for the ¢ field should be well defined,

we want the vacuum to be symmetric with respect
to U(1). Hence, finite-energy configurations of
the ¢ field must vanish as x =+, However, it is
hard to confine a single static scalar multiplet by
itself; hence the extra real field o, which keeps
the ¢ field confined. Note the sign of the 0 mass
term, which leads to a vacuum that breaks the
discrete 0 = -0 symmetry. The resulting o “kink”
solution traps the ¢ field. This is similar to the
physically interesting case where quark multiplets
are trapped by scalar fields, as in popular con-
finement models.?® We use a scalar multiplet ¢
instead of quarks, just for simplicity.

Having established in Sec. II the connection be-
tween bound states and globally rotating classical
solutions, we discuss in Sec. III the existence and
qualitative nature of some classical solutions of
the system in (1.1). If the complex field ¢ is writ-
ten in polar form

P(x, £)=p(x, t)e* =) (1.2)

then it is shown that for a range of couplings a
truly time-independent solution exists of the form

o(x,t)=04(x),

p(x, t)=py(x), 6(x,?)=const. (1.3)

The shapes of 0, and p, are shown qualitatively in
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FIG. 1. Qualitative features of a static solution to field equations of the system in (1.1). The dashed line stands for
the o field and the heavy line for the modulus of the complex ¢ field. The phase 6(x) of the complex field is zero.

Fig. 1. Further, given such a solution, others
which rotate globally in the internal U(1) space,
viz.,

o(x, t)=e"“*p, (x)
and (1.4)
o(x, t)=0,(x),

also are easily obtained for a range of w. As w
increases the “centrifugal” forces tend to widen
the ¢ configuration until, for sufficiently large w
(of the order of the masses), the ¢ field is no long-
er confined.

This implies in weak coupling [A,%, a<< p2, m? in
(1.1)] that hadrons become unbound when the inter-
nal quantum number is increased too much—a sat-
isfying result in that hadronic particles in nature
have low values of internal quantum numbers.

We also find that the bound-state energies vary
very weakly with the charge in weak coupling. The
charge-dependent part of the energy is of order
(A/u?)? as compared to the charge-independent
part. This is similar to what happens with trans-
lation symmetry in weak coupling.?** The momen-
tum-dependent part of the energy is two orders of
coupling higher than the rest mass of the bound
state.

These properties are shown explicitly only for
the U(1) group in Secs. II and III. There is every
reason to believe that the general approach carr-
ies over to higher non-Abelian groups and to ad-
joint as well as nonadjoint representations. But
explicitly identifying and integrating over the sym-

metry coordinates can be much more difficult.
This is partly because the symmetry modes are
curvilinear, i.e., they depend upon the field con-
figuration and partly because, for non-Abelian
groups, the symmetry coordinates are not all
cyclic. Nevertheless, based on the explicit ex-
perience with U(1) and on general notions of the
correspondence principle it is possible to give
weak -coupling approximations to bound-state en-
ergies even in the presence of non-Abelian inter-
nal-symmetry groups. A discussion of this is
given in Sec. IV.

II. U(1) SYMMETRY

Before treating the U(1)-symmetric field theory
described in Eq. (1.1), let us consider the corre-
sponding analysis for the prototype U(1) problem,
viz., a particle on a plane under the influence of
a central potential. Analogy with this simple sys-
tem was mentioned in the Introduction. It will be
useful to sketch its path integral with WKB analy-
sis, in order to point out some crucial features
whose analogs exist in the field-theoretic example
as well.

Consider a particle on a plane with a Lagrangian

L=3(2+3?)-V(r), (2.1)

where we will use Cartesian (x, y) or polar (r, 6)
coordinates as convenience dictates.

The Lagrangian in (2.1) is clearly U(1)-symme-
tric, with the angular momentum ! as the “charge”
of that symmetry. The spectrum of this system
for any given !/ can be obtained from the poles of
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1
e, 2]
1 o ila ‘Ld
= f dae Tr[H E} (2.2)
; 2m . © . . S
- EZE,{ dae-uaf dT e'ET fdxdy(x, y‘e-lHTa—tLalx, W (2.3)
= ﬁ fda et de e'ET f ¥ ol odO7,, 6l e~ T E 7 60) (2.4)
whereithas betin assumed that the angular momen- infinitesimals in a path integral. This has been
tum operfttor L has only integral eigenvalues. Not- pointed out by Edwards and Gulyaev,” who also
ing that L is the generator of rotations, we have describe the correct way to transform to polar
) i . coordinates, starting from the known Cartesian
7oy Ol e HT ey 65)=(rg, 6o+l e T\ 7y, 6,) . form of the path integral. The transition ampli-
2.5) tude in (2.5) is given by the path integral

This is just the amplitude to go from one point to r

a rotated point in time 7, and a path integral can _[D[x, y] exp[i f (2_ + % V(ﬂ) dt :\, 2.7
be written for it. It is tempting to write the path 0

integral in polar coordinates, using naively the

polar form of the Lagrangian in the infinitesimal where all paths begin at (r,, 6,) and end at (r,0,+ )
action, in time 7. Dividing the time T into a lattice £,=0,
; ; biyeeny bpoy, =T, with
AS=LAL=[372 + 27262 —~ V(r)] Af. (2.6) poert tnsb i

L=t =€, x(t)=x;, yE)=y;,
That would be incorrect, and amounts to assum- ihia=e xt)=x, Y=y,

ing A6 ~0O(A¢), which is not the correct order of the path integral (2.7) is
1 5 5
. X - -
lim —fde‘ dygexp{ zz[( ‘26’“-1) L, W 23‘-1) —V(x,y;)e]} , (2.8)
=1 i

where A= (Zm'e). Now, going to polar coordinates at every time index 7,
dx,- dy,- =7 d’}’l' d9, y

and
1 2 2 1 2 2
E[(xi_xi-l) +(Vi=yi_y) ]= E[T:’ +7;_ 2 =2ryr;_, cos(6; —94_1)]- (2.9)

If 6, -6,_,=A0; were of order €, one could expand the cosine, retain the first two terms, and get a kinetic
term (1/2¢)(r; —7;_,? +7;7;_,(86;], which is what one would have obtained if the infinitesimal action in
the path integral had been Le, with L given by its polar form in (2.6). But A6 is no! of order € in a path
integral, where, just as in Brownian motion, (A#)? is of order €, so that higher terms in the cosine expan-
sion must be retained. Edwards and Gulyaev point out that the cosine can be retained in its entirety and
the 6 path integral evaluated exactly.

Inserting (2.9) into (2.8), (2.7), (2.5), and (2.4), G,(E)= f aT e'E7G ,(T), with

G(T)= +— P frodrode fda e'““f H dr‘r a8, exp§ zz [7‘ 7 ) -Vir)e- =1 cos(6; - 9,-_,)] }
i= v
(2.10)

All the angular integrals are exactly evaluated by using

da =de,, where 6,=6(T)=60,+a,

Lea=1(6,-6))= Y L(A6,),
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and
ﬁ do;da =[] de,,=I-nId(A0,~).
i=1 i=1 i=1

The angular integrals in (2.10) are

(2.11)

1 - s " .
7o fdeo H fd(Ae,)exp [— i1(86;) + L‘I—Zﬁ cos(A9¢)} = H 2nl, <%> (Where I, is a Bessel function”)
i=1 i=1

Inserting this into (2.10) we get

n
1 & 2
Gi(1)= Wf Hdriexp{ i [_______(r, 2:‘-1) -
i i=1

=fdrofD[7’(t)Jexp[i f(;z—V(’r)_ (l;y_zi

Thus the problem reduces to an effective radial
problem with an effective potential

(1*-%)

Ur)=V(r)+ 7

(2.14)
This is only too well known, and is most easily ob-
tained by writing the Schrodinger differential equa-
tion in polar coordinates. However, it is the path-
integral method which is easier to generalize to
field theory. Note also that had one used the naive
polar path integral with the polar form of L in
(2.6), or equivalently dropped the quartic and
higher powers of Af; in the cosine in (2.9), one
would have obtained a very similar result, with

12 replacing the correct factor (1% - 1) in the effec-
tive potential U(»).

n/ 2mie \V2 [r,—ri_l (la—%)i]
—— ) exp| =t ——— |,
:o H (virid) P L€ 2rivi,

Viry)e- (_{2'_3)5] {

(2.12)

i=1

vy,

f

) ] (2.13)

The radial problem can now be treated by the
WKB methods of Ref. 1. The stationary-phase
points of the integrand in (2.13) are the classical
periodic solutions with period T of

au(r)

P+ o

=0, (2.15)

The WKB quantization condition may then be im-
posed on these solutions. Alternatively, for weak
coupling one can perturb the path integral about
the stationary solution

r() =R,

where R is a minimum of U(»). Expanding the
path integral in powers of x(¢)=7(¢{) -R, we get

c,(T)=e-‘U<R>dex0fD[x]exp ;zf{"—;-"—; U"(R)-%; U"’(R)'“}dt}

= ¢=IURITD(T) |

If U”(R) and higher derivatives are small (“weak
coupling”) and if R is large enough so that the
corrections due to the semi-infinite range of »
(from 0 to =) (see comment No. 6 below) can be
ignored, then D(T) is just the trace and path in-
tegral of a harmonic oscillator. It is a product of
Gaussian integrals and has the well-known result

1
27 sin{[U”(R)]V?T/2}

> exp[-i(p+EVU" T|,
?

D(T)=

(2.17)

(2.16)

G,(E)=ifwdTe“”G,(T)

0
=Y i deexp{i[E ~UR)-(p+3WU"] T}
»

1
) ; E-UR)-(p+:U "R

(2.18)
Thus, in this approximation, for any given I, the
system has bound states at

E;,=UR)+ (p+2[U"R)2+0WU™),  (2.19)

where the [ dependence lies in the potential U(R)
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and the location of its minimum R.

Now let us make several observations about this
well-known result and its simple derivation, which
must be borne in mind in analyzing the field-theo-
retic problem:

1. The energy levels have a contribution U(R)
from the classical energy of a stationary solution
at the bottom of the effective potential U(r)=V(r)
+12/272, where [2=1%2~%. Interms of the (r, 6)
coordinates, there is clearly a circular orbit at
¥ =R with 6(¢) =1t /R?, whose energy is also equal
to UR).

2. Thus, in weak coupling one is essentially per-
turbing the path integral about a circular orbit of
appropriate angular momentum 1 (which is slight-
ly different from the desired quantum value 1).

3. The quantum corrections and the level split-
ting come from the term (p + WU ", which is the
result of fluctuations about the circular orbit.
These fluctuations are restricted to paths which
keep ! fixed in the result (2.19).

4. Varying the quantum value of ! amounts to
varying the classical circular orbit about which
the perturbation is done.

5. The neglect of U”(R) and higher derivatives
(weak coupling) does not necessarily follow from
the corresponding statement about the original
potential V(r), because of the added centrifugal
term. Even if V() is purely harmonic,

2 _ L
= Dy,

- n+2
r=R;n>2 2R

8" (r)

ar"

This is not small, unless R is very large. We
will find that in the field-theory example, the cor-
responding weak-coupling condition is generally
satisfied.

6. The range of the radial variable » extends
only from 0 to +%, and not from —« to +», Thus,
even if U"”, etc. in (2.16) are completely neglected
so that the path integral for the remaining harmon-
ic oscillator is a product of Gaussian integrals,
the limits of integration can be finite, leading to
corrections to the simple answer in (2.17) for
D(T). KR is very large, it is clear that these
corrections are negligible. This problem, also
evident in the WKB method starting from the wave
equation, leads to the so-called Langer modifica-
tion.® If x=1n7 is used as a variable, then since
x ranges from -« to +, the end-point problem
does not exist. In the one-particle problem, this
manipulation effectively leads to a modified cen-
trifugal term where 12 - 1 is replaced by (12 - %)
+3=12,

7. Note, however, that these difficulties exist in
the Gaussian path integral after the classical en-
ergy U(R) has been factored out [Eq. (2.16)].

Hence, they affect only the quantum correction.
It will be seen that in the weak-coupling field
theory, the classical energy dominates and is
unaffected by this problem.

8. One could attempt to “derive” the quantiza-
tion of ! from the WKB method. This would in-
volve using all periodic orbits, circular and non-
circular, on the plane. In our approach, we in-
stead assume the well-known result that ! must
be an integer, and project out a given ! sector by
Eq. (2.2). We will similarly assume, in the field-
theoretic case, that the internal charges are quan-
tized, since this is a very familiar result indepen-
dent of the details of dynamics. Our main interest
is in the energies of the bound states with some
given charge.

Let us now turn to the field theory described by
the Lagrangian in (1.1). The complex ¢ field can
be written as

lx, ) =plx,t)e' D =¢ (x,)+i¢y(x,1).

(2.20)
The Lagrangian takes the form
L=2(3,00 +3(8,0,) +2(8,0,7 - V(0, ¢,0,)
(2.21a)
=2(8,0) +3(8,p)* +2p%(8,6)° - V(0, p)
= Ly(0,p) +2p(8,6), (2.21b)

where L(0,p) does not depend on the 6 field or its
derivatives. The Lagrangian is clearly invariant
under the U(1) internal-symmetry transformation

o(x, t)=~0o(x,t),
plx, &)= plx, t),

and (2.22)
0(x,t)~0(x,t)+a,

where a is any global (space-time-independent)
constant. The corresponding conserved internal
quantum number is the charge given by

) 9
Q= % fcp* 3 ¢ + Hermitian conjugate. (2.23)
The propagator, for any given eigenvalue g of the
charge operator @, is given by
i

ad : 2T : : :
GQ(E)= _2__7;./. dTe+tETf da e~ Tr[e_lﬂTeIQa]
0 0

= z‘[ daT 'E7G (T) (2.24)

As is well known, given the canonical commuta-
tion relation for the ¢ field, the operator @ gen-
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erates precisely the global U(1) transformation in (2.22), Thus, in terms of eigenstates of the field
operators ¢ and ¢

(0(x), p(x)e®®) e~ 1T i g (x) p(x)e®™*N=(a(x), p(x)e' & *| =T | g(x) p(x)e* X)) . (2.25)
Hence
6u1)= o [daer= [ doys) [doy(xIosteidsx) [ DIE 62| Dlo) 6] et 0.0 00 (2.26)

where in the path integral all paths start from p,(x), 0,(x), 6,(x) at £=0 and return to p,(x), 0,(x), 6,(x) +a
after time 7.

For the moment, let us naively replace the Lagrangian in the path integral by its polar form (2.21b). As
with the one-particle problem, a more careful evaluation starting with the “Cartesian” form (2.21a) leads
to a correction which, for the sake of simplicity of presentation, we will discuss at the end.

Working in a box of finite volume (the infinite-volume limit can be taken at the end) the field 6(x, {) can
be decomposed into a Fourier sum,

0, )=b(t)+ D bylt)e*n*=b(t)+6(x, 1), (2.27)

kp =0

where the zero-momentum mode has been given a separate symbol “b”, and the remaining space-depen-
dent modes have been summed to 'é(x, t). Using coordinates p(x), o(x), 8(x), and b, it is clear that (i) the
coordinate b is cyclic and (ii) the symmetry transformation (2.22) translates the coordinate b by a constant
@, while leaving p(x), o(x), and 8(x) unaffected. Further,

gpr(a#e)de - ;—pr[(b + 07 = (3] dx

= [ %0r, DB, OF = (70, P10 [03(r, Dy +b [ g2, D50, D,

where dots and primes refer to time and space differentiation, respectively. Hence, the Lagrangian in
(2.21) can be written as

dex: fL’(p,o,@)dx+%(l°))2A(t)+Z°)B(t), (2.28)

where

L'=Ly(p,0)+ 3 p?[# - 87],

A(t) = f;>2(x,t)dx, and B(t):fpz(x,t)é'(x, t)dx . (2.29)
Therefore,
Ga(T)=fd[5Jexp(1' fL'dxdt>§1; fdadboD[b(t)]exp[ifdt(%Abz+Bb)]ei°“, (2.30)

where d[ £] stands for the path integrals and the initial-value (trace) integrals for the variables p(x), B(x),
and o(x). That is,

d[ £] = p,(x) dpo(x) dBy(x) do,(x) D[ 3p?) D[o] D8],

and L'=L'(0,8,p). Thus Eq. (2.30) shows the explicit dependence of the integral on the symmetry variable
b, which can now be integrated out. The path integral D[b(¢)] and the end-point integrals dadb, can all be
evaluated together easily by familiar methods. Divide the time T into# +1 lattice points £,=0, ¢,, ¢, . . ., {4_),
t,=T, and let e =¢; —¢;_,, b;=b(t;), and b,=0(T) =b,+ .

Then

dadb,D[b(t)) = (1/4m/2) fI db;,
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where A is the usual path-integral measure 27ie.

ga=a(b,=b)= Y alb, ~b,_,)= qZAb

i=1

Then

lfdafdb bet)exp[ ]dt( Ab? + Bb) +zqa}

II exp| - i(q +B;e/2A;]

Inserting this into (2.30) we get

G,.(T)= fd[g]exp (z fLeffdt> , (2.33)

where

(¢ + [p*8dx)
2fp2dx
(2.34)

Ly =Lo(p,0) + 5p?[ (B - (VBP]-

Equation (2.33) is the analog here of the radial in-
tegral (2.13) in the one-particle problem. The
role of the single radius variable 7 there is now
played by the infinite collection of variables p(x),
o(x), and 8(x), collectively symbolized here by &.
The last term in L. in (2.34) is the analog here
of the centrifugal potential (1% - 1)/272 in (2.13).

Thus far, the treatment does not require cou-
pling constants to be small. All that has happened
is that the symmetry variable corresponding to
the global internal symmetry has been explicitly
integrated. In evaluating the remaining highly non-
trivial path integrals in (2.33) over the & variables,
one resorts to WKB approximations. If one’s abil-
ity to solve the classical field equations corre-
sponding to the Lagrangian L. were good enough
to obtain all periodic solutions, one could use the
WKB method even for strong coupling with rea-
sonable hope of a good approximation.

Alternatively, in a weak-coupling case one can
perturb the action in (2.33) about a time-indepen-
dent classical solution, as was done with the
“kink” solution for the x¢* theory in Ref. 2.

Our method of integrating out the symmetry
variable is useful especially for weak coupling
because (i) it reduces the problem to one where
the remaining variables do not have a continuous
internal symmetry; (ii) the potentially trouble-
some “infrared” modes due to the symmetry have
been integrated out,® and (iii) since L. in the re-

fH“‘m“

Further,

(2.31)

) 13 T A
X0y 4 (80,7 G+ (8008, +q(a0) ] ‘l

=1

by Gaussian integration  (2.32)

A 172

maining variables is a function of ¢, a correspon-
dence is set up between the WKB energy levels
and the value of the internal quantum number for
the levels. These ideas can be generalized to
more complicated internal groups and represen-
tations (see Sec. IV).

Let us proceed with our U(1) example for the
weak-coupling case, i.e., A, ¢,h <p2, m?in (1.1).
In that case, one perturbs L. in (2.33) about a
time-independent solution of the corresponding
Euler-Lagrange equations.

These equations are obtained by varying L e
with respect to p(x, t), o(x, ), and 8(x, () and their
derivatives [variations with respect to 8(x, t) im-
plies those with respect to the coefficients b, in
(2.27)]. Upon inserting L,(o,p) from (2.21) and
(1.1) into L in (2.34), it is easy to see that

B(x,t)=0

is a solution of the Euler-Lagrange equations cor-
responding to L ;. The corresponding equations
obeyed by 0 and p are

8V

DO+£=0

and (2.35)

) 2
Dp+—Y ap

3 [fp*(x, t)ax]? )

It is argued in Sec. III that these equations have a
time-independent solution {po(x), Oo(x)} for a range
of the couplings {A, a,k} and the charge ¢. It is
further argued that in the weak-coupling case,
i.e., A,a,h<<p? m?in (1.1), the classical energy
U po(x),0,(x)) of this solution is of order p?/A.
This inverse relationship between the energy of
the classical stationary solution and the coupling
is also found for the “kink” solution of Ref. 2.
Let us for the moment assume this and perturb
the action in the path integral for G,(T) about this



2958 R. RAJARAMAN AND ERICK J. WEINBERG 11

solution {p,, 0, 6=0}= &,

G (T)=e""ValP0: )T A (T), (2.36)

where

an)= [delew )i farlL 00,6 |

(2.37)

The reader is reminded that £ stands for the col-
lection of variables p(x, ), o(x, ), and 8(x, t) and
d[£] is the trace and path integration as defined
in (2.31). Recall that 8(x) is constrained to sat-
isfy [B(x)dx=0. Therefore,

G (E)=1i deexp [i(E— U,- % lnAq(T)> T].

(2.38)

Clearly, the last few equations are analogous to
Egs. (2.16) to (2.18) in the example of one particle
on a plane. There in a given angular momentum
sector I, G,(E) had a series of poles correspond-
ing to bound-state energies. The lowest such en-
ergy had a classical piece U(R) and a quantum
(zero-point energy) correction of 3E[U”(R)]"2.
This quantum correction arose from the factor
D(T) in Eq. (2.16) which was the value of the path
integral for G,(T) perturbed about the classical
time-independent solution. Similarly, G.(E) here
gives bound-state energies which have a classical
piece U,(p,, 0,) and quantum corrections arising
from A(T). Unlike the single-particle problem,
however, the field-theoretic example gives a clas-
sical energy U,(p,,0,) of order p?/A, while the
quantum corrections from InA (7T) can be seen to
be of order unity. This is similar to the contri-
butions to the energy of the “kink” in Ref. 2. It
seems to be a general feature of time-dependent
nonvanishing solutions of weak-coupling field the-
ories, where, by rescaling fields, an inverse pow-
er of the coupling constant can be factored out of
the entire Lagrangian.

Thus, to leading order in p?/x, the energy of
the lowest bound state with charge g is the classi-
cal value U,(0,,p,). Both the quantum correction
to this energy and the splitting between excited
levels with the same charge are of order unity.
Finally, as pointed out in Sec. II, the time-in-
dependent solution {o,(x), po(x), 8(x) =0} of the
Euler-Lagrange equations (2.35) arising from Les
is related to a time-dependent classical solution
of the original Lagrangian in (1.1). This latter
solution rotates globally in the U(1) space and has
a classical charge ¢ and energy U,(0,, p,).

We do not evaluate the quantum correction to

the energy in this paper for several reasons.
Firstly, while we can obtain the existence and
qualitative features of the solution (p,, 0,) in Sec.
III, we do not know its precise analytic form,
other than within a variational class. If the clas-
sical solution were precisely known, the proce-
dure for evaluating A, (7)) would be similar in
principle to what was done in Ref. 2. One per-
turbs the path integral in [£] about the solution

¢,, and the leading quantum correction is obtained
by solving for the eigenfrequencies of the corre-
sponding linearized problem. In practice, be-
cause of the presence of polar coordinates, addi-
tional difficulties exist here. One is the field-
theoretic generalization of the Langer problem
mentioned in the one-particle example. The range
of the “radial field” p(x) extends only from 0 to «
at each x. Hence the Gaussian integrals over the
normal modes of the linearized problem will have
truncated limits, leading to corrections. Second-
ly, the derivation above used an action ds

=L(p, 0, 0)dt in the path integral, with L given

by the polar form (2.21b). As we saw earlier,
this is incorrect even for the one-particle prob-
lem. A more careful treatment, briefly outlined
below, leads to a much more complicated effec-
tive action in the place of [Ldt in the path in-
tegral in (2.33). The resulting equations of motion
are very similar to (2.35), but the quantum cor-
rections will be very hard to evaluate in practice.
These corrections are nevertheless of order unity,
and we also expect them to be finite once mass
counterterms are introduced as in Ref. 2, since
the underlying theory is renormalizable.

Finally let us return, as promised, to the pro-
priety of using the polar form of the Lagrangian
in the path integral in Eq. (2.26). We saw in the
one-particle problem that replacing (%% +3?%) by
(#2 +726?) in the path integral is incorrect, but a
more careful treatment of infinitesimals merely
led to a simple modification, viz., it replaced [®
by 12 - % in the effective radial potential. A cor-
responding thing happens in the field-theoretic
example as well. The problem concerns the time-
derivative part of the Lagrangian which has the
form 3(¢,% + ¢,2) in terms of the Cartesian fields.
In the path integral this would give rise to a kine-
tic term

= L) =i (WP (6,400 = 655,
2¢? 2¢®

’

(2.39)

where time is divided into a lattice of spacing €
and {.d)l.l'(x)! ¢2,i(x)} and {(Px,i_x(x), ¢z,i—1(x)} de-
scribe fields at two neighboring times. Using
polar fields and the cosine law,
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K= ﬁ{piz(th-f(x)-29«<x)"i—1(")
x cos6;(x) = 6;_,(x)]}. (2.40)

If the cosine of 6;(x) - 6;_,(x)=A6,(x) were ex-
panded in powers of Af;(x), and only the first
two terms retained, this would be equivalent to
the j polar form 3(p? +p262) used in Eq. (2.21).
This is incorrect, for it assumes that A8(x)~¢,

J

which is not the correct order of infintesimals
in the path integral.

It is, however, possible to retain the cosine in
its entirety and integrate the cyclinal coordinate
b, where 6;(x) is written as before as

6;(x)=b; +0;(x).

The relevant part of the path integral involving b
[in place of (2.32a)] then has the form

fiId(Ab;)exp [iz <¢I(Ab;)+ %fpe(x)pg_l(x) cos[Ab‘+A§,-(x)]dx>]. (2.41)

i

After a suitable change of variables, the expo-
nent in (2.41) obviously has the form

i Y [q(ab;)+A, cos(ab; +6,)], (2.42)

where A; and §; are functions of space integrals
involving p;(x), p;_,(x), and 8;(x). Thus (2.41)
when integrated is again a product of Bessel func-
tions, as was the corresponding (2.12). The
Bessel functions can again be expanded and lead-
ing terms in € retained. These steps are straight-
forward but the resulting expression, a path in-
tegral in the remaining variables, is too lengthy
to be presented here. We will merely mention
the following features. The path integral involves
an effective action in the exponent, whose station-
ary-phase paths satisfy equations of motion. A
time-independent solution to these exists, with
9(x)=0, and o(x) and p(x) satisfying (2.35), with
the sole modification that 42 =(¢® - 1) in the “cen-
trifugal” term of the p equation in (2.35). Quan-
tum corrections to the classical energy of this
time-independent solution, while more compli-
cated in their evaluation, can still be seen to be
of order unity, one order of A/u? higher than the
classical energy. We will discuss the classical
solution and its energy in Sec. III using the cor-
rect factor (g% - %) instead of ¢* in (2.35).

III. BOUND -STATE SOLUTIONS
AND THEIR ENERGIES

As was shown in Ref. 1 and in the previous sec-
tion, the WKB treatment of quantum field theory
leads to the consideration of the corresponding
classical field theory. In this section we investi-
gate the classical field theory with the Lagrangian
(1.1), with particular emphasis on the case of
weak coupling, where the WKB method simplifies
considerably. To simplify our equations we re-
scale as follows:

r

x=x/p, t=t/u,

2\1/2
o(x)-(-‘i—) a(x), (3.1)
2\1/2
tp(x)"(%-) o(x).
Also, we define
a2
=55
;e )‘_m_z (3.2)
=

If we write the complex field ¢(x) in polar form,
as in (2.20), the Lagrangian takes the form

2
L=p.<“7>fdx%§&2— 3072 +30% - 30!
1 X, 2, h2p02 2n72
+d |5 2 (PP =P +p*6° —p%67)

-3 fp? = 5(0%-1)p? - %p“] % ,
(3.3a)

where dots and primes refer to time and space
derivatives, respectively. The corresponding
equations of motion are

[O-1+0%+dp?lo=0,

[g(o—me)szwz—1>+p2]p=o, (3.3b)
3,[0%,6]=0.

Since we will be interested only in solutions of
the field equations whose energy is finite when
measured relative to the ground state, we must
first determine the ground state and its energy.
We expect the fields in this state to be uniform in
both space and time. In this case the Euler-La-
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grange equations become

0=0(0% - 1 +dp?),

4
0=p(f +0%=1+p?). (3.4)
There are four solutions to these equations:
I 02=1, p=0;
w10 L
(3.5)

m 0=0, p?=1-%;
IV o=p=0.

(The value of 6 is arbitrary, as long as it is con-
stant in space and time.) Depending upon the val-
ues of f and d, either I, II, or III will be the low-
est in energy. The others will have finitely great-
er energy densities, hence infinitely higher ener-
gies. If we wish to have solutions of the general
form shown in Fig. 1, solution I must be lowest

in energy. The necessary and sufficient conditions
for this are

>0,
d(l-f)<1.

Henceforth, we assume that these conditions are
satisfied.

We can now add an (infinite) constant to the La-
grangian so that solution I will correspond to zero
energy:

L»L-u(%z>fdx{%}. 3.7

Note that this has absolutely nothing to do with the
infinite shift in the ground-state energy resulting
from the quantum zero-point oscillations, which
will be discussed later.

As was shown in Sec. II, evaluating the path in-
tegral over the mode corresponding to global
shifts of 6 leads to consideration of solutions of
effective Euler-Lagrange equations involving a
centrifugal-barrier term. (An analogous result
can be obtained in the classical field theory from
the conservation of the classical charge.) In par-
ticular, for the case of weak coupling we need
only find solutions in which p, 8, and ¢ are time-
independent. [ is defined in (2.27).] Such solu-
tions must satisfy

(3.6)

0=-0"-0+0%+dp%0,

A A - A/AN (2 -1)
O===pny4y 2972 __(_) _\4 =4/

aP TP, ap® [fpa(x)dszp

+(f+02=1)p+p%, (3.8)
_i 277
0_ dx(pe),

where we have rescaled according to (3.1).

Before proceeding to the consideration of Egs.
(3.8), it is useful to study the corresponding equa-
tions in the absence of the centrifugal-barrier
term, namely

0=-0" -0 +0%+dp’c, (3.9a)
A Az 2 3
0=--‘;p —59’p+(f+o -1)p+p?, (3.90)
- d 271
= dx(p 9. (3.9¢)

If the energy is to be finite, 0 and p must approach
their ground-state values asymptotically as x ap-
proaches +«, In particular, we will be interested
in solutions which satisfy

px=)=0,

O(xo)=+1. (3.10)
These boundary conditions, together with (3.9¢c)
and the definition of §, imply that

8(x) =constant=0. (3.11)

We must show that (3.9) does in fact have a
stable solution which satisfies (3.10). We begin by
noting that in the case of static fields the potential
energy is given by

2
V=u<“T >_fdx % 302 ~30%+50%+%

12
(3.12)

where, because of (3.11), we have omitted terms
involving 8(x). Stable solutions of (3.9) correspond
to local minima of the potential energy in the in-
finite-dimensional space of field configurations.
The signs of the quartic terms in the Lagrangian
ensure that the potential energy is bounded from
below; the absolute minimum corresponds to solu-
tion I of (3.5). Further, no field configuration sat-
isfying the boundary conditions (3.10) can be de-
formed into a field configuration satisfying differ-
ent boundary conditions (e.g., solution I) without
crossing an infinite potential barrier, arising
from the infinite length of space. Thus, among
field configurations satisfying (3.10), there must
be at least one which is a local minimum of the
potential energy. (In fact, there will be an infinity
of minima since substituting x’ =x +a for x will
generate a new configuration with the same poten-
tial energy.) We are particularly interested in
finding solutions for which p(x) is nonvanishing.

If p(x) were identically zero, we could solve
(3.9) analytically, obtaining
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O(x, t) =tanh(%>y
(3.13)
plx,t)=0.

To determine whether or not this is a stable solu-
tion, we must see whether the matrix of second
derivatives of the potential energy has any nega-
tive eigenvalues. In this system with an infinite
number of degrees of freedom, the problem be-
comes that of finding the eigenvalues of the fol-
lowing equations:

-¢'+<-1+3tanh2£ﬁ-° )zp=kzp, (3.14a)

-%X" 4»(_1+f+tanh"’£‘/_Tx‘1 )x=Fx. (3.14b)

Both of these are exactly soluble Schrodinger
equations.® The lowest eigenvalue of (3.14a) is
zero, as shown in Ref. 2, while the lowest eigen-
value of (3.14b) is

E°=f—1+£;[<1+§f>1/2-1]. (3.15)

Thus, (3.13) will be unstable if
A 8a 1/2
f<1-4a[(1+-;> _1], (3.16)

and stable otherwise. If (3.16) is satisfied, the
minimum of the potential energy does not occur
at (3.13), but rather at some other field configu-
ration, in which p(x) is not identically zero and a
solution of the form we are seeking does exist.
[Note that the conditions (3.16) and (3.6) are con-
sistent with weak coupling, viz., a, X, h<<n?, y2.]
It is difficult to find this solution analytically, but
an approximation can be obtained by variational
methods, as we shall see presently.

[If (3.16) is not satisfied, then (3.13) is a local
minimum of the potential energy. This in itself
does not preclude the possibility of other minima;
however, it is easy to show that if f >1, there are
no minima in which p(x) is not zero everywhere.
If f >1, all terms in the potential energy which
contain p(x) are positive. Therefore, if we begin
with any field configuration and replace p(x) by
bp(x), the potential energy will decrease monoton-
ically as we let b approach zero.

We also note that if f were allowed to be nega-
tive, no field configuration satisfying (3.10) could
be even a local minimum of V, since such config-
urations asymptotically approach solution I of
(3.5), which is no longer a stable solution.]

We are now ready to consider Egs. (3.8). Again,
the constraint of finite energy imposes the condi-
tion that the fields approach their ground-state

values asymptotically for large |x|, and again we
restrict ourselves to solutions satisfying (3.10)
and (3.11). These boundary conditions will also
ensure the finiteness of [p?(x)dx, so the effective
Lagrangian will be well defined. Since we are
dealing with static solutions, we can define a con-

stant, w?, by
(fﬁ’%)z (#-2) =Z’—:Up2(x)dx]z. (3.17)

(If it were not for the —% arising from quantum
effects, w would have a simple interpretation as
the frequency of rotation in internal space.) We
can now write (3.8) as

A Aw?
0===p"” = - 3, 3.18
2P +<f au““z 1>p+p (3.18)

This is of just the same form as (3.9) with
6(x,t)=0, and f replaced by

ow?
g=f ap?’

Everything that we have said about the solutions
of (3.9) can be immediately applied. In particular,
there will be solutions only when g is both greater
than 0 and less than a critical value which is no
greater than 1. The physical interpretation of
this is that for sufficiently large ¢ the “centrifu-
gal force” arising from the rotation in internal
space is so great that the potential of the o field
can no longer bind the p field. This result, which
clearly carries over in weak-coupling WKB ap-
proximation to the quantum system as well. is
physically satisfying. It says that bound hadrons
no longer exist for sufficiently large values of
internal quantum numbers. Rewriting (3.8) in the
form (3.18) has several advantages, since the
latter has the same form as the original field
equation (3.9). If a static solution to the original
equations is known precisely, or within a varia-
tional class, the static solutions of (3.8) are im-
mediately available by replacing the constant f by
the constant g. The extra centrifugal term in (3.8)
acts just like a mass term for a static p field.
Further, consider a globally rotating solution to
the original equations (3.3b), viz.,

olx, t) =0,(x),
plx, t) =po(x), (3.19)
w
0(x, t) =t
Then p,(x) clearly satisfies (3.18). Thus static so-
lutions of the effective equations of motion con-

taining the centrifugal term are essentially glob-
ally rotating solutions of the parent equations of
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motion, just as in the single-particle example in
Sec. II. Finally, as can be checked easily, the
rotating solution (3.19) has an energy equal to

U, (pos 00) = = Legr(po, 0,) [ see Eq. (2.34)].

So far, we have dealt primarily with the exis-
tence of solutions to (3.8) and (3.9); we now turn
our attention to the form of these solutions. Be-
cause of the complexity of (3.8) and (3.9), it is
difficult to obtain analytic expressions for the
solutions; instead, we use a variational approach
to finding the minima of the potential energy
(3.12) (with g replacing f). We use the trial field
configuration (see Fig. 2)

-1, x<-L
o(x)= x/L, =L<x<L
/+1, x>L

1p'fl 4 Pﬁ._ 2p (CR

sm 1L+15L+d ok T3~ DRy
V=

1401 4 {Aﬁ 1 220

’\u A{L *ELltd| R 138 R-T5 R -

If we vary ¢® and R so as to minimize V, we obtain

the conditions

( 1/2

8x
c2=-§'(1—g)—m,

(3.22)

(3.20)
\0, |x| >R
plx) = .
[g@®= 15D, [x] <R

varying ¢, R, and L so as to minimize V. The
motivation for this form should be clear: Even in
the presence of a nonzero p field, the o field
should behave qualitatively just as it does in
(3.20); i.e., it should be very close to +1 or -1
through most of space, crossing from one to the
other in a relatively narrow region, which we can
arbitrarily take to be centered at x=0. The p
field should be nonvanishing only near the region
where ¢? is sufficiently small.

Using (3.20), we obtain

]l R<L

‘9

L? c“R][
12z Cv
2Ch 10 ‘,R>L. (3.21)

BV o (BY_ 91,20 ) (B
o2 a8 -Ye) (8)24,

8L 21 \/L\? \
2 = — e —— —_ -
€ 3R (1+aL2)<R> 2%
(If these yield a negative value for ¢?, then ¢®=0
is the solution.) We may also try to vary L, but

—_—_—_———————

FIG. 2. Field configurations used in the variational calculation. The dashed line stands for the o field and the solid

line for the p field.
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the equations become prohibitively complicated.
Instead, we restrict our consideration to the case
of small d, where we may write

L=Ly,+dL,+0(d?). (3.23)

Choosing L= 4 will minimize that part of V
which is zeroth order in d; L, then appears only
in terms of order d2, and will therefore be ne-
glected.

If we consider variations of A/a, we find that R
increases and ¢® decreases as \/a is increased.
This is to be expected, since gradient terms in
the potential energy should make the variation in
p more gradual, both by decreasing its magnitude
and by spreading it over a broader region. More
important is the behavior of Rand ¢* as w, and
thus g, are varied; a short calculation shows that
both R and c? increase with increasing w. This is
perfectly reasonable, since increasing the “cen-
trifugal force” should drive [p*(x)dx upward.

However, the quantities of primary interest for
us are the energy and the charge, given by

2 l ‘
E =“<%>{21m9 +d[(f—g)(§czR)_ mch]}

(3.24a)
and

qz—%=<“2 ) (‘”‘2 ) -exseny.

These also increase if g is decreased while f is

(3.24b)

2.90

2.80

2.70

2.60

E/K (N K2)

2.50

240

2.30 1 1 1

held fixed. If we eliminate (f - g) from (3.24), we

obtain
o o 5 S e
(3.25)

It is important to keep in mind that this expres-
sion does not explicitly display the entire depen-
dence of the energy on the charge, since R and ¢?
are both charge-dependent. In Fig. 3 we plot the
dependence of E on ¢ for typical values of the
parameters; other values give similar results.

The WKB method reduces to the consideration
of the static solutions of (3.8) only for the case of
weak coupling, i.e., when a, s, and X <42 and
m®. In this case we can make the following re-
marks:

(1) For small q(g <2/)), the variation of R
and ¢? with charge is small.

(2) For g of order unity the charge-dependent
part of the energy will be of order (A/u?)? com-
pared to the charge-independent part. This is
smaller than the quantum corrections. However,
when ¢ is of order u?/A, the variation of the ener-
gy with increasing charge will be significant. At
the same time the weak-coupling approximation
will still be valid.

(3) For any given set of parameters, there
will be a2 maximum charge, determined by the
condition that g be positive. This maximum
charge will be of order u?/x.

0.02 004 0.06

1 1 | 1 i
040 042 044 046 048

Vai-1/74 (n/nr?)

FIG. 3. Dependence of energy upon charge for solutions of the variational problem, withA/a=0.5 ard a/2=0.1. The
curves terminate at the charge where binding ceases to be possible.
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IV. HIGHER SYMMETRY GROUPS

The methods outlined explicitly in the previous
two sections for U(1) symmetry should hold, sub-
ject to the same limitations, for higher groups,
and for fields transforming as adjoint as well as
nonadjoint representations of these groups.

However, certain complications arise when we
consider the extension of these methods to the-
ories with non-Abelian internal-symmetry groups.
To illustrate this, we use a theory with an SU(2)
internal symmetry, namely the theory of (1.1)
with ¢(x, ¢t) as a triplet of real fields transform-
ing under the I =1 representation of SU(2) and with
lo|2=23.16,2. We can define one “radial” and
two “angular” fields in terms of the original
Cartesian fields by

é,(x, t)=p(x, t) sinb(x, t ) cosy(x, t),
dalx, t)=plx, t)sind(x, t) siny(x, t), (4.1)
oalx, t)=plx, t) cosb(x, t).

Under the infinitesimal global isospin rotation
generated by €,7, +€,1,+¢€,1,, these fields trans-

G,(E) = f” dT e'E7G,(T)
0

27+1

G[(T) = 2o

I
fda(l—COSCl) E: eiumTrei(HTbula\ ,
m==

form as
6p(x, ) =0,
80(x, t) =€, cosp(x, t) + €, siny(x, t), (4.2)
oY(x, t) = - €, cotd(x, t) siny(x, ¢)

+€,cotd(x, t) cosylx, t) +e,.

In the U(1) case, the symmetry coordinate was
seen to be b(t), defined by (2.27). However, it is
easy to see that if we were to define by, by, 6,
and ¥ in analogy with the U(1) example, § and ¢
would not be left invariant by the transformation
(4.2), so bg and b, cannot be the symmetry coor-
dinates. The coordinate system containing the
symmetry coordinates is in fact a much more com-
plicated curvilinear one, i.e., it depends upon the
point in function space.

Rather than immediately proceeding to construct
this coordinate system, let us outline the steps
which our method would prescribe if we did know
the coordinate system. First, we would project
onto a subspace of definite / by inserting the ap-
propriate projection operator, obtaining

(4.3)

Tre'dT+els) = fpozdp0 dcos b, dyy( Po(x), B(x), Bo(x) + a7 | py(x), 6p(x), %(x)) .

[ In writing the projection in this manner we are
assuming, on the basis of the usual quantum re-
sults, that I will be restricted to integral values.
An analogous assumption was made in the U(1) ex-
ample.] Next we would transform to the coordi-
nate system containing the symmetry coordinates
and write a path integral for the final term in
(4.3). Integrating over a and the symmetry coor-
dinates, we would have been left with a path inte-
gral over the remaining coordinates with an inte-
grand involving an effective action, depending on
I, which no longer contained the global internal
symmetry. [ The corresponding path integrals over
6(t) and ¢(¢) for a single particle in three dimen-
sions have been evaluated exactly in Ref. 7.)

The manner of treating this resultant path inte-
gral depends upon whether the coupling is strong
or weak. The strong-coupling case is quite dif-
ficult to handle; at the very least, we have to know
all of the periodic solutions of the effective action.
For weak coupling, on the other hand, it is suf-
ficient to expand about the stationary-phase point

r

determined by a static solution of the effective ac-
tion. Furthermore, the bound-state energies in
the weak-coupling limit will be dominated by the
value of the effective action at this stationary
point, with corrections being smaller by a factor
of /2.

So far we have not made any assumptions about
the relation of the effective action in the path inte-
gral to any classical quantities. However, in the
weak-coupling situation, the results of the U(1) ex-
ample, as well as the correspondence principle,
lead us to expect a connection with classical field
theory, at least when the internal quantum number
is sufficiently large. In particular, we may ex-
pect in this limit that (1) the equations which de-
termine the static stationary point of the path inte-
gral are the same as the classical effective field
equations (i.e., those equations obtained from the
Euler-Lagrange equations by eliminating the sym-
metry coordinates in favor of the conserved
charges), and (2) that the value of the effective
action appearing in the path integral is, when eval-



uated at this point, equal to the energy of the cor-
responding solution of the classical effective equa-
tions (i.e., the energy of a classical solution whose
only time dependence is in the symmetry coordi-
nates).

If the internal quantum number is small, we
should certainly expect the quantum-mechanical
equations to differ from the classical ones. For
the U(1) example, the effect of quantum mechanics
was to modify the charge dependence by such fac-
tors as the replacement of ¢* by g% - in (3.8).
Recall, however, that in the weak-coupling regime
the charge dependence of the energy was negligible
for small quantum numbers, so such factors could
become important for calculating energies only for
large changes, inwhich case the difference between
¢° and ¢° -1is negligible, as required by the corre-
spondence principle. If this property remains
true in theories with non-Abelian internal-sym-
metry groups, we may expect the relation between
the quantum and classical field theories outlined
in the previous paragraph to hold for all values of
the internal quantum numbers, provided only that
the coupling is weak.

Let us assume that these properties hold, and
see how far we can proceed without actually ob-
taining an explicit expression for the symmetry
coordinates. Even at the classical level, we can-
not write the effective equations of motion without
obtaining the symmetry coordinates. Despite this,
we can recognize the static solutions of these equa-
tions. Such solutions must be solutions of the orig-
inal Euler-Lagrange equations with the additional

J
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property that their only time dependence is in the
symmetry coordinates. In other words, the field
configuration at time ¢ +6¢ must be obtained from
that at time ¢ by a global isospin rotation; using
(4.2), we see that o(x,¢t) and p(x, ) must be time-
independent, while 8(x, f) and ¥(x, ) must be of the
form

8(x, 1) = w, (1) cosd(x, t) +w, () sind(x, 1),
. 4.4
(x, t) = —w,(t) cotb(x, t) sind(x, t) (4.4)

+w, () cotb(x, t) cosi(x, t) +ws(t),

where w,, w,, and w, are functions of time, but
not of space. The field equations obtained from
the Lagrangian are

[O-1+0%+dp?]lo =0,
by . .
[;(D-— 6% +6'% - sin?@ ¢* +sin*6 ¢’ 2)

+(f+0%=1) +pz]p=0, (4.5)

di o 0
[ p? sin?6 ¢'] =0,

d s, d
d—t[pzsm 6¢]-dx

(%[pzé]—d—i[pze'] - p*singcosf(p? - ¢'2)=0.

We can now use (4.4) to write all of the time de-
rivatives of 6 and ¥ in (4.5) in terms of @, @, and
the values of the fields (but not their derivatives).
We next write expressions for the components of
the classical isospin in terms of these variables:

I,=w, fdxp2 sind cos? sin® 0 + w, fdxpz(sinzw +cos?Pcos?h) +w, fpa sinfcosécos¥,

I =w, fdxpz(coszw+ sin*¥cos’h) +w, faixp2 siny cos¥ sin®f - w, fpz sinf cosfsiny, (4.6)

I,=-w, | p?sinfcosfsind+w, [ p®sinbcosbcosy+w, | p? sin®f.
3 1 3

Using (4.6), we can obtain  in terms of I. If we
write the equations which follow from the fact that
df/dt =0, we can also obtain an expression for @
in terms of I and the values of the fields. Substi-
tuting into (4.5), we can now obtain a set of dif-
ferential equations involving only spatial deriva-
tives. If we solve these and then let the fields
develop in time according to (4.4), we will have
obtained the desired classical solutions.

Rather than exhibit the most general form of
such equations; we note that any field configura-
tion in which 6 and ¢ are independent of space,
though not necessarily of time, satisfies (4.4). In

r

such a case, it is easy to show that the static solu-
tions of the classical effective equations must sat-
isfy

0=—0" __0.+o3 +dp20’,

4.7)
0==2p" +(f +0* ~ 1)p+p° (

A(NE\ I
a\aZ T rpzdx]z_p’
where we have rescaled as in (3.1). These equa-

tions are of just the same form as the ones we ob-
tained in the U(1) example (3.8). Therefore, we
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can immediately apply all the results of Sec. III to
the present example, merely substituting isospin
for charge.

It is important not to confuse the representation
under which the fundamental fields transform with
the representation under which the bound states
transform. The latter may be any representation
which can be obtained from the decomposition of
direct products of the representation of the funda-
mental fields. Thus, in the above example the iso-
spin of the bound states may take on any integral
value, within the limits imposed by the dynamics.

We need not, however, have taken the funda-
mental fields to be in the adjoint (/ =1) representa-
tion. As an example of an alternative representa-
tion, we consider the theory with the same La-
grangian, but with ¢ now being an isospin doublet
and with |¢|?= ¢"¢. Again, it is most convenient
to work in terms of “radial” and ‘“angular” fields
defined by

alx,t) +ib(x,t)
D=\ (e, ) vid(x, 1)) *

a(x, t) +y(x, ) ]
2 b

b(x,t) ==plx, t) cos3B(x, t) sin [%ﬁ—;}/-m]

[a(x, -y (x, t)}

a(x,t) =p(x, t) cos3p(x, t) cos[
(4.8)
c(x; t) =p(x, t) sin3B(x, t) cos

d(x, ) =p(x, t) sin}p(x, ) sin [au, -y(x, z>]

Once again, there is the complication that the sym-

metry coordinates cannot be simply defined. How-
ever, for weak coupling we can make the same as-
sumptions that we did in the triplet example and
proceed as we did there. In particular, if we re-
strict ourselves to cases where the angular fields
are space-independent, we will once again find
that the classical solutions we seek must once
again satisfy (4.7). There is, however, one dif-
ference from the previous example. Since the
fundamental fields now belong to a half-integral
representation, I can now take on both integral
and half-integral values.

No new complications in principle occur when
these methods are applied to other groups or rep-
resentations; however, it may become more dif-
ficult to obtain the classical field solutions. In the
examples we have considered, it was possible to
obtain globally rotating classical solutions from
truly static ones simply by a change in the mass
parameter. This is unlikely to be true for larger
representations in which there are more than one
“radial” field. [ For example, the / =2 representa-
tion of SU(2) will have two “radial” and three “an-
gular” fields.] Nevertheless, we expect that in
the weak-coupling limit there will be bound states
of increasing internal quantum numbers whose
energies can be obtained from corresponding clas-
sical globally rotating solutions.
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