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Extended particles in quantum field theories*
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The method of collective coordinates developed in the study of strong-coupling theory is used for the
quantization of the kink solution of a two-dimensional nonlinear field theory. The position of the kink

is treated as a collective coordinate, which represents the position of a particle. It is separated from the
rest of the coordinates, which represent the internal degrees of freedom of an extended particle. Two
similar but different methods are presented; the one is nonrelativistic and suited for the weak-coupling limit,
while the other is relativistic.

The present discussion is in the same spirit as
our recent papers on strong-coupling theories. ''
The method of collective coordinates used in these
papers is fairly general and especially suited for
the description of extended particles in quantum
field theory. As an example we consider in this
paper the two-dimensional field theory described
by the Lagrangian

g = —
q B~ (P B~ Q + q Q 4x'

Q is a real field and a convenient unity of mass has
been chosen. This field theory is well known to
possess the so-called classical kink solutions"

if we restrict (3) to the case where the argument
of the 6 function vanishes only once at every time,
namely if we consider the case where there is only
one kink. Note that the argument of the 5 function
vanishes at least once because of the boundary
conditions. Inserting (4) into (3) we exchange or-
ders of integrations over @ and X and let Q(x, t)
= Q (x -X(t))+q(x, t). The 6 condition which has
been inserted by means of formula {4) now deter-
mines how the kink-position degree of freedom is
specified as functional of Q. This condition has
been chosen such that the term involving 0P, 'dt=—g
can be rewritten as

x —X
@'{x-X) =—A. tanh

V2
(2)

The parameter X indicates the kink position.
In quantum theory, we start from the transition

probability between initial and final states de-
scribed by the wave functions 4; and 4«,

S&, = Sgexp i dxdt g(g) 4'& Q(x +~

where

2&2
Q

eq x, t) ops(x -X(t
Bx Bx

where one integrates over Q with the boundary
conditions f-+ A. for x —+~, and consider quan-
tum fluctuations around classical solutions with
kink parameters determined as functionals of the
field f. Two different methods will be discussed.

First we can write

The Hamiltonian formalism is established in a
similar way as described in Ref. 1 through the
functional integration in phase space. We insert
the identities

~4 (x -X(t))

1= DX(t) e dxy(x, t) && exp —— dxdt Fr'(x, t)

J= dx P(x, t)
a'y'(~ -x(& })

Bx

(4) into the functional expression of S&, and perform
the following change of variables to eliminate the
explicit X, rj dependence from the Hamiltonian:
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P =P —XM0 1+—

ago&& -x(t))
M0 BX

(7)

In order to decouple X and q in lowest order in

1/X we go to the kink fixed coordinate system by
another change of integration variables:

X(P, t) =q(P+X(t), t),
A ~XP=P+ dpm —.

Bp

The final result gives

0 0

S~, = SXSP SXSm 5 dpi' 6 dp X
Bp Bp

~ exp i dt pX+ dame -H 4f X,g(, x O'; X(- ) X(-

BX
d

ff=Mp+
2M(1 ]/ )2

+ dP 2v +
2 2

I
X2 X +X2 0 (P)X +4X2 X (10)

To leading order in I/X the term j v(aX/ap) dp
does not contribute and H separates into H,„and
H0 fi 1d where

ly

V0+ V, t —X I+X
(12)

p'
2M0

H0 ffeg dp

H« is the correct nonrelativistic Hamiltonian,
and the quantization of H0f' fd by expanding g and w

in terms of eigenfunctions of the corresponding
wave equation [t.e. , —a'X/a p' —(1 —3p"/X')X= ur'X]

has been discussed in Ref. 4. From the 5 condi-
tion introduced through formula (4) it follows that
the mode of u = 0 should be dropped, in agreement
with Ref. 4. It is then straightforward in principle
to determine (10}order by order in perturbation
theory, and the first-order correction toll10 is
given by (O~B«;„d ~

0), which agrees with the re-
sult of Ref. 4. Unfortunately, however, this sepa-
ration of kink variables is not Lorentz invariant.
Without explicitly taking pair creation of kinks
into account, we cannot be sure that Lorentz in-
variance will be restored by considering higher
orders in 1/A. .

In order to have Lorentz -invariant separation
we use a boosted version of formula (2). It in-
volves a parameter 6 which later on will be re-
lated to the canonical momentum of kink coordi-
nates. We shall use light-cone coordinates to
avoid the difficulty of pair creation of kinks, name-

(13)

and instead of (4)

1= SY~ e(T aE, o(E, z,z, , (S4)

where

F, —= ~ do —u @(o T),
d d(P'(u}

BahF, -=v2e dau

rr BF
~ ~,~ atI(~)

BE,
' ~,~al(r)

We insert this formula into (3), exchange orders
of integrations, and let p(o, r) = p'(u)+ X(u, r). In
this case we go directly to kink fixed coordinates
(u, r) since no transformation similar to (7) is
needed. One gets

and specify the kink position by X (T), which we
denote by Y. Thus, we write instead of formula
(~)

eel)
p'(u) = X tanh(u/v 2 ), u = ~ [o —I'(r )]

sf ' SYSPSX5 E, 5 E2 cJ,4'f 4; exp i dTL, I. = YP + + dn
BX BX.

where
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(16)

dQ +— dg —— — — — 1 —3 2 $ + 2@ g +

f.(u) =f.(-u),

h„(u) = —h„(-u),
(17)

and SOJ, =OP was used.
In order to see the Hamiltonian formalism more

clearly we expand g in terms of orthonormal func-
tions f„(u), h„(u) (n = 0, 1, . . .) which have the prop
erties

where Bg' is a function of P; and q, (i = 1, . . . , ~),
the explicit form of ' being calculated by insert-
ing (17) into (16). The Feynman path integral (15')

is then the functional integration in the phase space
spanned by Y', P, q;, and P;, and it can be shown

to be relativistically invariant.
It is instructive to write down the corresponding

Schrodinger equation from which Feynman path
integral is derived:

X(u, &) =g q (r)f (u)+-' p p.(T)(& ') „h„(u),
n=O nt, n

where

Bh„A„= du —"f .
Bz(

It is then easy to see that Sg 6(E,)~(F,) J, can be
replaced by II dp dq 5(q, )5(p, -p, (q;, p;)) so
that the q, and P, integrations can be done. The
Lagrangian is given by

1'p p p
&& (pc~qI)+ Q']; +

&=1

This equation is the Klein-Gordon equation ex-
pressed in terms of light-cone variables (12), and
%' is the mass operator of the extended particle.
The coor dinate s g; represent the internal degrees
of freedom of the particle, and the mass spectrum
is simply obtained by the eigenvalues' of N'.
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