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A regularization and renormalization program for dual models in the critical dimension is discussed.
The counterterms required for regularization are shown to be multiple insertions of zero-momentum
dilatons. A heuristic summation of all such insertions leads to a slope and coupling-constant
renormalization, and also to an intercept shift. The faults of the heuristic argument are discussed, and
it is proved to lowest order and conjectured in general that the correct treatment leads to no intercept
shift but only to renormalizations.

I. INTRODUCTION

In dual models, as in normal quantum field the-
ory, amplitudes in general can be evaluated only
in a perturbation expansion. Amplitudes then be-
come sums over Feynman graphs, each one con-
structed from known vertices and propagators. '

Just as in field theory, however, some of the am-
plitudes thus constructed diverge, and it is nec-
essary to regularize the amplitude by subtracting
off an infinite piece. In renormalizable field the-
ory these pieces may be considered simply cor-
rections to the bare parameters of the theory.

It has long been believed that the same is true
for dual models. ' In the region where all invari-
ant masses are below the appropriate thresholds,
the amplitudes only diverge if there are tadpole
loop insertions. 4 These loops may be re-ex-
pressed in terms of emission of Pomerons into
the vacuum at zero four-momenta. The amplitudes
diverge because they are evaluated at a mass
squared greater than the lowest Pomeron mass
squared. This suggests' ' as a regularization
procedure first giving an incoming momentum to
each tadpole, so that for sufficiently spacelike q'
the amplitude is well defined. One may then ana-
lytically continue around the singularities. If we
are in the critical dimension (for which the Pom-
eron singularities become acceptable poles rather
than unitarity-violating cuts} the singularities
are poles in q'. The infinities due to tachyon
poles automatically become finite thereby, but
there is always a scalar massless Pomeron called
the dilaton which gives an infinity as q -0 sim-
ply because we are sitting on the pole of its prop-
agator. Thus, the regularization procedure which
I shall use is to analytically continue in q' and to
subtract all contributions involving a dilaton van-
ishing into the vacuum. If these subtractions are
equivalent to a change in the arbitrary param-
eters of the theory, that is, the slope and cou-
pling constants, then the theory is renormaliz-
able.

This paper is devoted to a discussion of whether
the theory is renormalizable. That is, can we
show that the counterterms are equivalent to re-
normalizations of the slope and coupling constant,
the only free parameters of the theory'P While
having no definite results, I will show how the
conjecture of renormalizabiiity is satisfied in the
one insertion counterterm and discuss the dif-
ficulties in higher orders.

In the next section the divergences are displayed
as dilaton insertions, and the regularization pro-
cedure is discussed. I give a heuristic summation
of the counterterm to all orders in Sec. III. To
first order this leads to a slope and coupling-con-
stant renormalization, but in second order (and
higher) the heuristic argument indicates the nec-
essity of an infinite intercept shift. In Sec. IV
I discuss the two inadequacies of the heuristic
argument in higher order, and present a conjec-
ture. The last section corrects one of these in-
adequacies in second order, and shows that most
of the intercept shift is due to improper analytic
continuation.

II. THE DIVERGENCES

A general term in the expansion of a dual am-
plitude corresponds' to a two-dimensional mani-
fold with boundaries. Each external particle is
represented as a current source at a point on one
of the boundaries. The amplitude is then the ex-
ponential of the heat generated, integrated over
the positions of the current sources and all the
conformal invariants of the manifold. If all the
products of incoming momenta are sufficiently
spacelike, these integrals converge except for the
integral over the size of holes which have no in-
coming momenta. Each hole may be viewed as the
emission of Pomerons into the vacuum, as shown
in Fig.

Consider a one-loop planar diagram for n ex-
ternal particles. The amplitude may be written'
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as

2 = c (0 i U A (0) Uh i T (k„.. . , k„)}, (2.1)
(a)

as shown in Fig. 1(c). Here U is the transition
operator which turns a Beggeon into a Pomeron,
T (k„.. . , k„) is the usual Reggeon tree, and a„
and A~ are Reggeon and Pomeron propagators.
As the Pomeron states require a doubled set of
oscillators, the operator U takes one from the
Reggeon Hilbert space described by a single set
of operators a„„to a doubled space A„„, A„'„. The
Pomeron propagator is then

1

a (q') = der "' "o' o f'(r') 5 ~ (2.2)

(bj

(O]U+

where f is the partition function and I.o and I.o
are made of primed and unprimed A oscillators,
respectively, without zeroth modes. Inserting a
complete set of Pomeron states after the 6„, we
immediately see that the states i0l and A, "A,'„i 0)
give contributions which diverge as r-0, while
all other states are finite. By analytic continua-
tion in q ', the r "' ' ter m is also a finite con-
tribution. The infinite part of the loop diagram
may therefore be written

, (Oi (A",A,'„—2) Ubs i T(k„.. . , k„)),8w'

(2.3)

where we have used the expansion f'(r ')
=1 —2r +

The U operator, as well as doubling the oper-
ators, maps the interval (0, 1) onto the unit circle.
The A operators then correspond to operators at
0 and infinity, and we may do a Mobius trans-
formation back to the configuration' with the Reg-
geons on the positive real axis. The counterterm
corresponds to an insertion of a superposition

FIG. 1. A planar loop insertion in a diagram (a) may
be deformed (b) to look like a tube, or Porneron, which
disappears into the vacuum. In terms of Feynman-like
graphs, we may picture this insertion as in (c), with the
wavy line a Porneron propagator. The X represents the
coupling for a Pomeron to disappear.

pling-constant renormalizations, at least when
inserted into tree graphs. We are thus more con-
cerned with the summation over the normal-
ordered dilaton.

We use a regularization scheme similar to the
one suggested by Cremmer and Neveu. " The un-
regulated n-loop graph consists of a counterterm
of order g'" corresponding to all the loops con-
nected via a dilaton to the rest of the graph, a
sum of graphs involving lower-order counterterms,
and a regularized piece. All of the counterterm
insertions are proportional, being an infinite con-
stant times a physical dilaton insertion at q =0.

Summing all counterterm insertions to a given
graph gives

S=D—d-6
8m

where D is the normal-ordered dilaton vertex
and T is the tachyon vertex:

(2.4} Z" n

OTAL

Ilx)(q;, ) Gi0
nt

(2.6)

, :exp (i(q/2)[Q(z)+Q(z *)]j&"(zH' (z *):,1 d'z
Izf'

(2.5}

T= &'z (Imz}'i" ': e xpi[(q 2/) [Q(z)+Q(z+}]]:.

In D we have dropped some terms which vanish
as q'-0. Each of these vertices is integrated
over the upper half plane, with a ( z i ordering in
the positions of the operators relative to the Reg-
geons. The tachyon vertices were considered by
Neveu and Seherk' and shown to contribute cou-

where G is the product of operators which de-
scribes the graph without counterterm insertions.
The n! ' factor eliminates the overcounting of the
insertions in the i

z
i ordering, ensuring that we

count the n-loop insertion with unit weight.
Rewriting the operator in terms of propagators,

we see that the effect of the counterterm insertions
is to replace each propagator h, in G by

h~ = lim hz Q II z d9B(q;, e' ) bs
n=O 0

(2.7}



RENORMALIZATION OF DUAL MODELS 293S

III. HEURISTIC SUMMATION OF ALL COUNTERTERMS

M, =(4v) ' 2 7f

d8:P(e' ) P(e 'e):

= —' P,' —g —'n(at'+a„') . (3.1)

Using" the position and momentum of the string

I will now present a heuristic argument which
shows that the insertion of arbitrary numbers of
D's is equivalent to a slope renormalization, cou-
pled with an infinite intercept shift. The argument
was discovered independently by Scherk" and by
Lovelace" and an equivalent argument was dis-
covered by Ademollo et al." In the q-0 limit
D becomes

V(k, e, 1) = e" "e.P(1) . (3.10)

Because k' = 0 and c k = 0, there is no need for
normal ordering, and we find that, using

Q(l, a, a ) =e Q(1, B,B ),
P(1, a, a ) = e P(1, B, B ),

(3.11)

(3.12)

the photon vertex transforms as a simple rescal-
ing of the momenta

function renormalization (or, equivalently, a cou-
pling-constant renormalization of cosh2X), and
introduces a transformation on the operators. We
must therefore transform the vertices as well.

The effect of the Bogoliubov transformation on
the vertices is particularly simple if we use ex-
ternal physical "photons, "with vertices

V(k, e, 1, a, a ) = V(e k, e &, 1, B, B ) . (3.13)

v ( r, o) = -,
' [P(z) + P(z *)]

we find

(z=e ), (32)

(3.3)

Ja~aE~ g0 1 Z Mo ~ (3.4)

The propagator is now quadratic in a's and a~'s
We diagonalize with a Bogoliubov transformation

B„=a~ cosh' +a„sinh~,

&„=a„cosh& +a„sinh~,

Po =e Po,

where

tanh2A. =Z .

(3.5)

(3 6)

In terms of the new I.,
20 = I.o(PO, B, Bt ) = —,

' Po' + g n B„B„,
we find

bz =(2, —a,) 'cosh2A,

where

(3.7)

(3.8)

o., = cosh2A+ (sinhA)' d g n . (3.9)

Thus, the effect of the M, insertions is three-
fold. It shifts the intercept, introduces a wave-

This is just the Lagrangian of the string, "and it
seems reasonable that insertions of the free La-
grangian should be equivalent to changing the con-
stant multiplying it, which is just the reciprocal
of the Regge slope.

When we sum all such insertions to the prop-
agator (2.7), we find

Notice that the external momenta transform by the
same scale as the momentum operator. Thus,
these changes amount simply to a rescaling of all
momenta, or, equivalently, a redefining of the
unit for measuring momenta, i.e. , a rescaling
of the Reggeon slope a'- e'"o.'.

We have still not discussed the action of the
Bogoliubov transformation on the vacuum state.
To lowest order iri X there is no effect but there-
after it is ill defined. We may avoid such prob-
lems by factoring a larger amplitude at poles on
each end. This gives us an amplitude which is
the same as the original one except that the slope
and coupling constant have been redefined and the
intercept has been shifted, because the new prop-
agator is (2, —o.,) '.

IV. DEFECTS OF THE HEURISTIC ARGUMENT

The infinity in a, cannot be handled as a renor-
malization because the intercept is not a free pa-
rameter in the unrenormalized theory, but must
be 1 in order to have the Ward identities which
permit the Pomerons to be physical particles. "
Even if ao were finite, we mould still have an un-
acceptable nem amplitude because it is constructed
with the normal vertices but with a shifted prop-
agator, which ruins dual behavior. We shall see
that this intercept shift is a result of the inade-
quacies of the heuristic argument and not a real
defect of the model. There are two problems with
our approach which arise when more than one
dilaton is inserted.

The first is that we have used the Lorentz-in-
variant dilaton insertion, which is not a physical-
state vertex. At the single-insertion level this
does not matter because the extra, spurious piece
mill give zero contribution if all the external par-
ticles are physical. At the tmo-insertion level this
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cancellation is no longer automatic and one should
really use

1 d'z
, :e~{i(q/2) [Q(z) + Q(z +) J }

U(x g) x(zp-1)/cnsh 2 x
t

Lo —ZNO -c(X)

where 2, = L,(B, B' ) and

(4.4)

xP„{z) "e'P, ( z*):, (4.1) c(A) = 1 —dsinh'A gn
1+2 sinh'A,

(4.5)

o„'=(I+ Z+ ) n, ' (4.2)

(from the normal-ordered dilatons) and a change
of coupling constant

g' = [1—,'- (d —6) Z + J g (4.3)

from the tachyon piece. " There is no change of
the intercept to lowest order.

This leads us to speculate that t:he correctly
done summation of counterterms to all orders
will result only in a, renormalization of g and n'.
Of course, the necessity of evaluating the n-in-
sertion amplitude with arbitrary momenta before
analytically continuing ruins the summability we
saw in the heuristic argument, so it is a difficult
conjecture to prove.

The conjecture is that each unintegrated prop-
agator x 0 ' in the expression for 6 is converted
by the counterterm insertions into

with c symmetric and q„e"'=0. The extra, spur-
ious contributions are not constrained to be gauge
invariant or even Mobius invariant, so might easily
cause the kind of intercept shift we have here.

The second problem, which is actually the source
of the infinite intercept shift, is that by first taking
each q; -0, the integral expression for the two-
dilaton amplitude must diverge, because we are
above the lowest pole in q' =(q, +q,)'. Having fac-
torized in the crossed channel this divergence is
manifest in the divergent sum on n. Our regular-
ization procedure tells us that we should evaluate
the amplitude for arbitrary spacelike q', subtract
out the dilaton insertion (which has already been
lumped into the higher-order corrections to Z),
and analytically continue around the tachyon pole.

As these difficulties arise only to second order
in Z, we may trust the first-order results. Thus,
to lowest order the counterterms effect a change
of slope

Our heuristic argument gave c(P.) =1. If the con-
jecture is correct we can scale T =in&- r cosh2A,
and do the Bogoliubov transformation on each ver-
tex by scaling the momenta k; —e k&. We are
then left with an amplitude exactly like G except
for an overall factor of cosh2A. for each propagator,
corresponding to a wave-function renormalization
or, equivalently, a coupling-constant renormal-
ization.

In the next section the effect of dilaton insertions
on the propagator is evaluated to second order.
The failure to project out spurious states will
leave some finite piece in the intercept shift, but
it will be shown that the infinite Qn is a mani-
festation of improper analytic continuation.

V. RENORMALIZATION TO SECOND ORDER

The insertion of two dilatons onto an unintegrated
propagator x o ' gives an operator

r
d2z

-g iz, l' Iz2I'

where A is the region x& ~z J& I, 0&argz &x. If
our conjecture is correct, this must be equal to

1
U(~ y) ~' 0

8=0

ld ld
'M, {p,) m, (p, )+ —,'(2+d g n) lnx.

P2 0, Pl
n

(5.2)

The normal-ordered product of the M, 's or of the
D's have no singularities and we may take the

q; —0 limits immediately. We will not consider
the spurious-state problem in this paper so we
may take D's with e„,-g„,. The q-0 limit of
these is just M„so the normal-ordered terms
coincide. The remaining terms in (5.2) give

~n pl ~ +n p2 + — n lnx

= ——g [2n lnx+ {1—x'")]a„a„——P (1 —x'") + —lnx . (5.3)2" 1

Before we take the q; -0 limit in (5.1}we must extract the singular pieces as z, —z, . These terms arise
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from the expansion of the products of the operators

:exp (i (q, /2) [Q(z, ) + Q(z~)] j P(z, ) ~ e, P(z,*}::exp (i (q, /2) [Q(z, ) + Q(z,*)] ] P(z, ) ~ e, ~ P(z,*)

(z z ) {z z +) 'lf'z2 2

:exp (i (q, /2) [Q(z, ) + Q(z,*)]+i (q, /2) [Q(z,)+ Q(z,*)]$ 0:, (5.4)
Z ]Z2

x exp (i (q, /2) [Q(z, ) + Q(z,*)] ) exp (i (q, ,/2) [Q(z, ) + Q(z,")] J: (5.5)

where 0 consistsof 119terms arising from the normal ordering of the P's of one vertex with the P's and
Q's of the other.

Of these, the ones which are analogous to the ones which occur in Mo M, are those involving no contrac-
tions of Ps with the exponential factors. This leaves the terms with no contractions, with one contraction
between two Ps, and one with all P's contracted. The first is nonsingular, and the second has a singularity
as z 1 z2 which van ishe s on angular integration, so that both of the se terms give exactly the re suit of the

corresponding terms in MOM, . For the last term, however, we have a contribution given by

d'z d'z, ' ' ' ' (~z, -z, ~-'+ ~z, z,*~-'}
R Z gz2

The two terms in parentheses are equivalent as
the rest of the integrand is symmetric under
z, —z, , or z, —z,*. For the first we must expand
the exponential around z, =z„discarding terms
with enough powers of q, —q, and enough powers
of z, —z, to vanish in the limit q„q, -0. What is
left of the exponential is

Z2

41z, I

'

The first piece in the expansion, 1, gives a con-
tribution

—8 Tr(e, e,}P (1 —x'") .
fl= 1

(5.7)

The second piece gives a form quadratic in q; but

divided by q' because it is a contribution to the
dilaton pole. There are many other such terms
coming from terms in 0 which involve contrac-
tions of one or two of the P's with Q's. If q; ~ e; =0,
then explicit calculation shows that all these terms
add up to give the dilaton pole piece. As internal
dilaton insertions have already been subtracted
out by the regularization procedure, this piece
should be thrown away.

Reverting to the Lorentz-invariant dilaton e-g,
we see that the correctly continued (5.1) agrees
with our conjecture (5.3) except for the term —,

' lnx.
Such a term would amount to a finite intercept
shift (for finite Z) if we believed it. 1 believe,
however, that it is instead a result of not having
used physical dilatons. The physical dilaton in-
sertions (with finite Z) are on-shell Pomerons

and must give a dual amplitude. Now that we see
that we have a well-defined amplitude (with no
infinite parameters) the answer should certainly
be dual, which means there cannot be a finite
intercept shift. The residual & lnx term is a mani-
festation of the spurious states. A proof that this
is true will have to wait for a detailed investiga-
tion of the gauge properties of the counterterms.

Vl. COMMENTS AND ACKNOWLEDGMENTS

I have presented a proof that the dual model in

the critical dimension is renormalizable to lowest
order in g', and have argued that this is also true
to higher orders. This implies the renormaliza-
tion is not responsible for the shift of trajectories
which we need to get rid of all tachyons in dual
theories. I believe this shift will have to await
an understanding of the breakdown of the vacuum
against tachyon emission.
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