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Second-quantized non-Abelian field theory for hadrons with quark confinement
and scaling deep-inelastic structure functions*
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A four-dimensional second-quantized field theory with quarks bound by "colored" non-Abelian gluons

is described which has the following properties: (1) the only physical particles are color singlets

composed solely of quarks, (2) the deep-inelastic structure functions have Bjorken scaling, (3) gluon

loops and Faddeev-Popov ghost loops are identically zero in any gauge, (4) Regge trajectories are

apparently linear on a Chew-Frautschi plot, and (5) constituent motion within hadrons can be
nonrelativistic.

I. INTRODUCTION

Af te r a per iod of some skeptici sm the pos sibil-
ity that hadronic interactions might be understood
within the framework of quantum field theory is
again being seriously considered. ' This is partly
the result of the psychological climate created
by the apparently successful unification of weak
and electromagnetic interactions in a renormal-
izable field theory and partly the result of a great-
er appreciation of the variety of phenomena which
can occur in field theories.

In this article we shall describe a field-theoretic
model of hadron binding which has two major fea-
tures: (l) Hadrons only occur as quark-antiquark
or three-quark bound states, and (2) quarks be-
have as quasifree particles within hadrons. We
assume that the suggestions of an internal symme-
try called color' are correct and that the strong
interaction consists of the exchange of colored
Yang-Mills gluons. The nature of the interaction
allows only color singlet states to occur in the
gauge-invariant physical particle spectrum and

consequently the first feature will be realized by
choosing the color group to be SU(3). Since the
(Schwinger) mechanism which produces this re-
sult is an infrared phenomenon, the second fea-
ture is not precluded and the model is essentially
free in the ultraviolet region of the quark sector.

Our model is a non-Abelian version of a recently
investigated Abelian field theory which had quark
confinement and scaling electroproduction struc-
ture functions. ' In that theory the free propagator
of the massless gluon field embodying the quark-
quark interaction was proportional to

where A. is a constant with the dimensions of mass
and k is the gluon four-momentum. As a result
the Schwinger mechanism4 manifestly occurred,
and it was shown that any charged particle was

totally screened by vacuum polarization effects.
In addition, explicit calculations of the deep-in-
elastic electroproduction structure functions in

perturbation theory were in agreement with Bjork-
en scaling with corrections of O(q '), where q is
the virtual photon four-momentum. These fea-
tures of the Abelian model will also be shown to
be true in the non-Abelian version. In addition,
we shall argue that the quarks can be nonrelativ-
istic within hadrons and that the spectrum of states
has linearly rising Regge trajectories.

In spite of these salutary properties an interac-
tion of the form of Eq. (l) could be questioned be-
cause of well-known indefinite-metric difficulties
which result in the violation of unitarity. While an

optimist may hope that the nonappearance of col-
ored gluons in asymptotic (color singlet) states
might eliminate unitarity problems it is almost
certain that the approximation techniques which
will necessarily be used to find the bound states
will lead to the occurrence of negative-metric
states. Whether these states are "real'* or arti-
facts of the approximation will not be clear. In

view of this we suggested' that the gluon propa-
gator be taken in principal value rather than as a
Feynman propagator:

1
A' 2 (A'+ te)' (0' —se )'

As a result unitarity is maintained order by order
in perturbation theory. Gluons do not appear in

asymptotic states. All components of the vector-
gluon propagator are "Coulombized" and the gluon
field reduced to the embodiment of a direct quark
interaction. There are a number of other decided
advantages to principal-value propagators in the
present context: (1) no color singlet states com-
posed solely of gluons, (2) the elimination of sub-
stantial infrared divergences, (3) the suppression
of corrections to Bjorken scaling in the electro-
production structure functions by a factor of Q'
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vis -a-vis the corresponding Feynman-propagator
result which sets the stage for precocious scaling,
and (4) the elimination of closed loops of vector
gluons and thus the elimination of Faddeev-Popov
ghost loops.

In Sec. II we give a brief recapitulation of the
Abelian model. In Sec. III we describe the canoni-
cal properties of the non-Abelian model. In Sec.
IV we describe the qualitative features of the mod-
el and describe an approximation technique which
appears to be naturally adopted to "solving" the
theory. We shall restrict our discussion to the
color binding interaction and defer the introduction
of other interactions to a later work. The proper-
ties of the bound states in the non-Abelian model
are currently under study and will t e the subject
of the next report.

II. ABELIAN MODEL

The possibility that the physical particle spec-
trum of a field theory consisted only of neutral
states and did not include states of charged fields
was first investigated in massless two-dimension-
al quantum electrodynamics. ' In that case the
absence of the "electron" from the gauge-invariant
physical particle spectrum was directly related to
the acquisition of a mass by the photon via the
Schwinger mechanism. The Schwinger mechanism
was manifest in the lowest-order contribution to
the vacuum polarization (Fig. 1), and, taking ac-
count of the dimensionality of the coupling con-
stant, e-mass, could almost be considered a
consequence of dimensional analysis. These
vacuum polarization effects led to the total screen-
ing of the "electronic" charge, and, as a result,
the "electron" was removed from the gauge-in-
variant physical particle spectrum. Our Abelian
and non-Abelian models will display a similar
pattern of events.

The Lagrangian of the Abelian model contains
two gluon fields, A„'(x) and A'„(x), and the quark
field P(x):

,'F„',E'„,——,'l'A'„—A'„+P{ig —gA" —m)P,

where for typographic convenience we denote the
inner product of four vectors, a b = a„b„=apbp
-a ~ b throughout, A is a constant with the dimen-
sions of mass, g is dimensionless, and F„',

FIG. 1. A vacuum polarization diagram.

8 ltAP8 PAP ~

Following the canonical procedure we find the
equations of motion;

8 F „+gJ,=O,

(iaaf gg' —-m)g = 0,

(4)

(5)

(5)

and nonzero equal-time commutation relations
[in the Coulomb gauge V ~ A' = 0; note s „A'„=0 by
Eq. (4)1

[&l;(x),A,'(j)) = i&l', (x —v),

[E',, (x),A,'(y)] = ia', (x —y),

with i,j = 1, 2, 3 and

(7)

(8)

Ir d k s], (x-y) kik
(2 )"

It is clear from the equations of motion, Eqs. (4)
and (5), tnat A'„may be eliminated to obtain

Ua „F„'„+gA. 'J, =0. (10)

where g is constant, determined by the gauge
choice.

In Ref. 3 we showed that choosing 6„", to be a
principal-value propagator allowed us to develop
a perturbation theory which was unitary order by
order:

G„",(k') =—
~ [6„"„(k'+i@)+G„",(k' —ie)] . {12)

In addition, the equivalent of the Nambu repre-
sentation of a Feynman diagram was given and
some features of the perturbation theory dis-
cussed. Of particular interest was a calculation
of the deep-inelastic electroproduction structure
functions which scaled in the Bjorken limit. Lead-
ing corrections to scaling were of O(q ') as
q'-~ with p being the virtual photon four-mo-
mentum, and were given by the diagrams of Fig.
2(b), 2(c), and 2(d). This is to be contrasted
with the logarithmic deviations from scaling
found in pseudoscalar or vector meson models
previously studied. '

The Schwinger mechanism manifestly occurred
in low orders of perturbation theory. As a result
quarks (and all charged objects) are removed
from the gauge-invariant spectrum of physical

The form of the quark-gluon interaction and Eq.
(10) show that only the Green's function of A& is
relevant to quark-quark scattering. The perturba-
tion theory rules of @ED may be used if the pho-
ton propagator is replaced with the gluon propa-
gator for A„':

iA'( g„,—.y k„k, /k')
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dxpx (13)

d'x v'A,'
gh,

using the equations of motion in the Coulomb
gauge. By Gauss's law

(14)

states. The total screening of charge can be seen
from the following argument. ' Consider a spatial-
ly bounded system of charge density p. The total
charge is

111. NON-ABEL1AN MODEL

The non-Abelian model for the color sector of
hadronic inte ractions is a direct gener aliz ation of
the model of the last section. ' There are two
colored Yang-Mills fields, A„',(x) and A'„,(x),
which when regarded as vectors in the adjoint
representation of the color group are denoted
A „' and A '„. The Lagrangian is

d vOA,'.
gA.

' (15)
——,'Z'A' ~ A'„+ )t)(i/+ gg) —m)q

=go+ /(iv'+gg' —m)g,

(17)

(18)

&l)*)=- J d'~&ll( —.~)pb) (16)

From the definition of a Green's function, we have
with P being the quark field.

It is invariant under the local gauge transforma-
tion

in the Coulomb gauge. If, for simplicity, we
choose p to describe a static point quark charge
and use the free gluon propagator [Eq. (11)], then

Q t0. However, if we take account of the effect of
vacuum polarization processes (the Schwinger
mechanism) we find A,'(x) is a monotonically de-
creasing function of ~x~ for large ~x~ and conse-
quently Q =0 in the limit where the integration
surface is taken to infinity in Eq. (15). Thus the
spectrum of physical states does not include states
of nonzero charge. In the next section we shall
show that the proof of quark confinement is essen-
tially the same in the non-Abelian model.

S—ly

A" =S 'A'S+ —S '8 S
2

V P g
A2i —S-1A~ S

(20)

(21)

(22)

(23)

Al —Al. T
p (24)

T, is a matrix in the defining representation of G

satisfying

where S is an element in the gauge group G [which
is color SU(3) in our case], and A„' is a matrix in
the defining representation of G formed from

[T„T,] =i i,~T, , (25)

I

I

I

I

I

I

I
I

(c) {d)

FIG. 2. Lowest-order diagrams contributing to the
inelastic electroproduction structure functions. The
dashed lines indicate the only contributions to the elec-
troproduction structure functions of the absorptive part
of the forward virtual Compton scattering diagram. Ex-
ternal "wiggly" lines represent photons while internal
"wiggly" lines represent gluons.

1——9qA„B„A„. (26)

The Euler-Lagrange equations of motion are ob-
tained in the canonical manner:

(s„+gA„' &&)F„',—)).'A'„= 0,
(8 +gA' &&)E t, +gA „'„+g

(i/ + @A" —m))c) = 0.

(27)

(28)

(29)

(30)

(31)

The antisymmetry of F„', and E'„, leads to two
conser vation laws,

and T is a vector formed from such matrices. We
note that the homogeneity of the gauge transforma-
tion of A'„allows a mass term to occur in 2 with-
out breaking the gauge symmetry. We shall see
that the natural gauge-fixing term to add to the
Lagrangian has the form
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a, (gA„'xF „'„—z'A', ) =0,

which can be reexpressed as

(a„+ g A„', x)A,', =0

and

{a„+gA,', ~)J,=O

(32)

(33)

{34)

(35)

using the equations of motion. The first of these
relations acts in effect as a gauge-fixing term for
A& if a gauge is chosen for A&. The second rela-
tion has the familiar form of current-conservation
equations in conventional Yang-Mills theories.

We turn now to the derivation of the perturba-
tion-theory rules in the gluon sector. We con-
sider the vacuum-vacuum transition amplitude in
the presence of external sources':

ii'( J„',P&) = II dA&dA', exp i d'x Z, ——a„A~ ~ a, A'„+A„' ~ dt+A'„~ J'„ (36)

After some functional translations we find

»'tz,',pl= pI
— ' Jd d'y 'J„'t ) G,'!t —y) &!t|)+lPt ) r ( —y'",).Sty) (37)

and

(38)

where we have dropped an irrelevant factor in-
dependent of J„' and J'„on the right-hand side, and

d'Ae '"" k k
Gt', .»(») = —5.» (,. » g„.+(0 —1) "."

(a, +gA! X)E o+ A Ao = 0, (48)

{a,+gA,'. x }F'„~gA',. x F,', gd, = 0 . (49)

The Lagrangian indicates that the canonical mo-
menta are

(50)

and

p
2 g d SI

—it(t! ' x

)) v a» (~) g„, +(('-.!'-1) "»" II,'= Fo, , (51}

(39}

with a and b labeling color indices. The free
propagators corresponding to the time-ordered
products are

for j= 1, 2, 3 with II,' conjugate to A,', and Ao hav-
ing no conjugate momentum for i=1, 2. However,
the equations of constraint indicate that not all
components are independent. We now find the in-
dependent components. Let us define

( TA„', (x)A,',„(y)) =i G„"„»(x—y) {40)
pa paT gal.

oi oi oi (52)

( TAt,„,(x)A'„(y)) =i G„"„„(x—y). (41)
gag ~ pa (53)

The somewhat unusual Green's functions of Eqs.
(40) and (41) have their origin in the canonical
equal-time commutation relations which we shall
now find.

From Eqs. (27)-(30) we obtain the equations of
motion

oA„' = Eou+ ~o Ao+ gA~ + Ao

A„'=I'"', +g, A'+g. 4„'X Ao gA'x A

a, S,'„=(a, +gA, & )E,', -~A,'~ E' +X-'A„',

(42)

(43)

(44)

a, F'„=(a, +gA! x}F',.» gA,'x F~ gA~x F„', gd»

where

(54)

Then Eq. (48) gives

(a, ygA, '. x)a,. Q
' g'Ao= gA,'. x F'.,

and Eq. (49) gives

(a, +gA,'x) a, )I) '+gA', xa, )})
'

(55)

=gA,'x F', , +gA', . x F,',. gd, . (56)

Rewriting Eqs. (42) and {43)after taking the di-
vergence with respect to spatial components gives

and equations of constraint

(45)

(46)

(47)

(a, +gA,"&&)a, A„' = (a„+gA„'&&)a, A,'+a„a„P'

and

(a, +gA,' x ) a, A» +g A
', x a, A,'

= a, a„A,'+ gA„' && e„A,'+ gA„' & a„A,'+ a„a„y'

(57)

(58)
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If we choose the Coulomb gauge, V' A'=0, then

e~e~Ao+gA„'XO~Ao+e~a~ g =0

and
with p+q+v=0, and

+g„„(4' -xi)]. (67)

( so+gA D&&)B„A» —s~s„AO gA—„'&&a,AO gA-~ &&8„A',

A —A2~+ A2+

A"- vP'

with

g. A2~-0

(6&)

(62)

Taking the divergence of Eq. (44) leads to our final
equation for dependent variables

x'8, s„p' = sos~ 8„$' +g s„{A ' x F
q I,) . (64)

The independent dynamical variables are thus
seen to be I",'; E'„A,', and A', . Their equal-
time commutation relations are

[ Fo;, (x),A), (y)] = i6„a,", (x —y},
[F2or(x).A,', (y)] =i6„a',{ xy),

(65)

(66)

with i.j= 1, 2, 3, 6,", given by Eq. (9), and n and 6

are color indices. All other commutators of the
forms [A', A'], [A', A'], [F',F'], [F',E'],
[F',F'] are zero.

We return to our development of perturbation-
theory rules. The cubic and quartic gluon ver-
tices of our model are given by (see Fig. 3)

abc
„(P,Q,~)

bp
I

0 IDccI

( )p, I, Y,s

FIG. 3. Cubic and quartic vertices which are given in
Eqs. (67) and (68). They introduce 1/r potentials in the
model and may have an important effect in the baryon
spectrum. The numbers 1 and 2 indicate fields A~ and

4, respectively, while P, q, r, and s are momenta,2

and a, b, c, and d are color indices.

(60)

thus determining A,' and A,'. Suppose we now de-
fine

& I"~„,'. ,(P, q, &, &}= —i ~'"~'"(g~„g„„-g„„gi,)
a.cf bdf—i( t (g
adf bcf

( @kg gl p gX pSVQ)

(68)

with P+q+r+s=0„
The Faddeev-Popov ghost loops will not be rele-

vant to our line of development so we omit their
discussion. The necessity for their introduction"
is closely related to the requirement of unitarity
in Yang-Mills theories. In the present model
unitarity will be necessarily violated irrespective
of the ghost loops if the Green's functions [Eqs.
(38) and (39}]pole ambiguities are resolved by
using Feynman's ie procedure. To avoid unitarity
violation we have suggested an alternative proce-
dure where the Green's function singularities are
taken in principal value,

G„'„„(k ) = p [ G„„,(k'+is) + G„„,~(k" —ie)], (69)

in momentum space (cf. the Appendix). This
choice has the advantage stated in the Introduc-
tion. The effects are the same as in the Abelian
model' and may be summarized as: (1) Only
states composed solely of quarks contribute to
unitarity sums, (2) gluons do not appear in asymp-
totic states, (3) unitarity is achieved but at the
price of possible advanced effects whose range
is limited to hadronic dimensions and thus ap-
parently unobservable, and (4} nonscaling correc-
tions to Bjorken scaling in the deep-inelastic
electroproduction structure functions are sup-
pressed by a factor of q' vis-a-vis the corre-
sponding result using Feynman propagators with

q being the virtual photon four-momentum.
A novel feature of the use of principal-value

propagators in non-Abelian models is the elimin-
ation of closed loops composed solely of gluons.
If we consider a subdiagram consisting of a gluon
loop with P lines, then Eq. (51}of Ref. 3 gives the
Feynman parameter representation

p

I= .d. '( ""'}X," (70)
J

where C is a polynomial consisting of Feynman
parameters only, while D contains scalar products
of external momenta, X symbolizes appropriate
numerator factors, and e(n)=-*I if +~~0. Since
X can be written as a sum of terms each of which
is homogeneous in the Feynman parameters, we
can take N to be homogeneous without loss of
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l "du I n, + a, + ~ ~ ~ + u, l

0 Zt Q

we find

(72)

generality. Then scaling all parameters with u,
assuming

A(Zlf Ql RQ2 ~ Q QP) = Q X({X1 A2 ~ ~ QP) (71)

with r an integer, and using

sition amplitude embodies the combinatorics of
perturbation theory and acts as a generating func-
tion for identities, such as the Ward-Takahashi-
Slavnov identities. Thus, questions of conver-
gence of functional integrals are irrelevant —the
important question is whether identities are valid
in perturbation theory.

We define ~{J), the vacuum-vacuum transition
amplitude, by

I= I{r+'2P —2L )
P

n;da, c(o., c)t, ~ a~G N5 1—
X

k

L2( zD/Cy+2P-»

w(J ) = II dA„' dA'„dP dgexp i g, dx
x

(75}

{73)

with L, = number of loops = 1. Suppose we let o.,
——o., for all j in I. Then we find I= —I or

I= 0.
Thus any closed loop containing only principal-
value propagators is zero. Since Faddeev-Popov
ghosts appea, r only in closed loops and consis-
tency" requires we use principal-value propa-
gators for them if we use such propagators for
gtuons, we see that ghosts do not appear in our
model. Physically we can understand this result
if we remember that ghost loops were introduced
to cure problems arising from contributions to
unitarity sums of "opened" gluon loops. " In our
model "opened" loops do not contribute to uni-
tarity sums in any case so the raison d' etre for
ghosts is lacking.

We now derive the Ward-Takahashi-Slavnov
identities using functional methods. Since we take
our gluon propagators in principal value it might
appear that our use of functional techniques is un-
justified. We shall take the view that the func-
tional representation of the vacuum-vacuum tran-

with
12 =2 ——s&At ~ B„A', +A„' ~ J„'+A& ~ j&+ jq q+g,

with 2 given by Eq. (17). Under the infinitesimal
gauge variation

(8 +gA'x) g

{JI' —ig 8

p- p+ ig {T)'6

with 8 = T ~ 8, g is invariant but the remaining
terms in g lead to

(78)

(77)

(78)

(79)

8g =-- [(s„+@A„'&&)s, s„A'„+@A',&&8„a,A„'] e
1

(3 +gA1)( }J& . g gg2)& g2

+i g p87J —i gF76$. (8o)

Since a transformation of the integration variables
does not change the value of the functional integral,
the variation of W with respect to 8 can be taken
to be zero and our equivalent of the Ward-Taka-
hashi-Slavnov identity is

1 6 5 ~ x 5 6 — 5

with

{81}

5Jl -'p'g 5JI (82)

In order to investigate the structure of the gluon propagators we shall obtain the proper vertex identity
equivalent to Eq. (81). We focus on the novelties of the gluon sector and neglect the quark field terms in
Z and Eq. (81). Let us define

Qj'(g ) e 5z(ef)

5Z(J )
p gg5

r{a)= Z(Z}+ d'~(Z„'. a„'+Z'„a'„.

(83)

(84)

(85)
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where I'(B) is the generating functional of proper vertices. An immediate consequence is

(86)

and as a result Eq. (81) can be rewritten in the form

{87)

If we apply 8/5B' to Eq. (87) and set B„' = 0 after-
wards, we find II { 5) v gB2 (90)

O'I'
1 158 f)t 58 II ~ 3 1 - g2 -

P

=0. {88)

The second-order functional derivative of I' is the
inverse of the full propagator G„"„'„and Eq. (88)
implies that the proper part of (G„",'„) ' is purely
transverse. We note that the "free" propagator
(Eq. 39) contribution to (G'„",„) ' is not one- par-
ticle irreducible and thus not constrained by Eq.
(88). Therefore we find the general form

This implies

(G(a, ~ (

5aa(b'av

—kaka /k ) kaka '5aa
If vab j 612

or

Having now developed the general form of the
propagators we now will define the gluon vacuum
polarization tensors,

(89)
"u'.a(k) [G,"'.a=(k)l

' -[Gt'„.a(k)l ',
11„"„., (k) =[G„";., (k)]- [G„„„(k)l-

(93)

(94)

so that the longitudinal part of the full propagator
is not renormalized.

The longitudinal part of the full propagator
G„",'„(k) is also not renormalized. This may be
seen by applying 8/DB'„ to Eq. (87) and setting
B„'=0 afterwards:

k II
& Ii vay = k II

H
If vent

= 0 . (95}

Rather than write the Schwinger-Dyson equations
for our polarization tensors we have given a dia-
grammatic representation in Fig. 4.

which are transverse by our previous discussion:

FIG. 4. Diagrammatic representation of the Schwinger-Dyson equation for the proper gluon self-energy, H 'v, ~. The
numbers at the end of a gluon line specify whether A& or A„correspond to that end. The quark propagator is denoted
S while F denotes the appropriate proper (one-particle irreducible) vertex function. A similar diagrammatic expres-
sion can be written for ll„v, q .
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IV. OBSERVATIONS

The Schwinger mechanism forces quark con-
finement to bound color singlet states in a manner
which is identical to the Abelian case as described
in Sec. II. In order to demonstrate that only color
singlets exist in the gauge-invariant physical par-
ticle spectrum it is sufficient to show

(96)

where

for any physical state /pe) cor responding to a
spatially localized distribution of quarks. We
consider a single static quark located at the origin
and choose to work in the Coulomb gauge (V ~ A'
=0). Then the time components of the equations of
motion [Eqs. (27) and (28)] lead to (at large dis-
tance)

g2+1 gp2g

if we take into account the elimination of gluons'
degrees of freedom through the choice of princi-
pal-value propagators and their consequent in-
ability to act as sources. We may now repeat the
arguments of Eqs. (13)-(16)for the Abelian case
after noticing the occurrence of the Schwinger
mechanism in the non-Abelian case which can be
verified in low orders of perturbation theory for
II„"„„.Thus the expectation value of the charge
in the one-quark state is zero. Since the one-
quark state is a charge eigenstate, we find Eq.
(96) to be true in this case and more generally
through the additivity of the charge operator.
Thus only color singlet bound states of quarks are
physical. "'

While the infrared behavior of the theory leads
to quark confinement, the ultraviolet behavior
allows the quarks to appear quasifree. This is
particularly noticeable when we take A.

' = 0 in our
Lagrangian and examine the corresponding per-
turbation theory. Taking A.'=0 is equivalent to
examining the short-distance behavior of the theo-
ry. The only diagrams which exist in this limit
are given in Fig. 5. The quark sector of the theo-
ry is free. The only nontree structures are one-
quark-loop diagrams for the scattering of gluons
associated with A'„(which of course can only be
generated by a hypothetical external source). (As
a point of comparison we have shown in Fig. 6 the
additional diagrams which would occur in the even
that Feynman propagators were used —these dia-
grams necessarily involve gluon loops which
principal-value propagators force to be zero. )
The vital role of the A. 'A&A& term in the Lagran-

gian in generating the interacting theory and the
fact that X' has the dimensions of (mass)' allow a
natural approximation procedure in this model.
This is perhaps best seen within the context of
deep-inelastic electroproduction. Just as in the
Abelian case we find that the structure functions
scale with leading corrections of O(q '), where q

equals the virtual photon four-momentum. We can
establish a parton picture of scattering wherein the
photon is absorbed on one of the quasifree nucleon
constituents [as in Fig. 2(a)] if ~q'~»g'X'. Then
leading corrections to such a picture [e.g. , the
diagrams of Fig. 2(b) —2(d)] will be suppressed by
(g'A'/q')'. Thus the dimensional nature of the ef-
fective coupling constant allows a particularly
simple picture to exist of the region of large
spacelike virtual photon mass and the parton
picture emerges as a natural approximation.

The k ' form of the quark interaction also ap-
pears to have decidedly good features as far as
the bound-state structure is concerned. Ignoring
the numerator tensor (which does not affect our
conclusions), we find the Fourier transform of
the gluon propagator,

IR
Q = ~A/W

pavab 2 I

FIG. 5. Some examples of the surviving diagrams in
the A, = 0 limit of the non-Abelian model with principal-
value gluon propagators. Except for the class of one-
fermion-loop diagrams only tree diagrams exist in this
limit. Note that there are no four (or more) external
quark line diagrams and no two (or more) external A~

gluon "external" lines.
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1
G(lt) = P—,, (99)

that the average momentum of the bound constit-
uent in the s state satisfied

to be proportional to

G(x) = 6(x') . (100)
(104)

Since G has a smooth finite limit as x'-0, the
shor t-distance limit, ar guments can be made "
that low-mass bound states can occur in this
model. In addition, Dalitz" has pointed out that
the linearity of trajectories on the Chew-Frautschi
plot would follow from a flat-bottomed, smooth
interaction —a criterion which is met by Eq. (100).
[It is interesting to note that had we used a Feyn-
man propagator rather than principal value, then
G would have been ln(x') and thus the general
criterion just stated would not have been met.
This would appear to be another point in favor of
our choice of principal-value propagators. j

Another property which is desirable in the
bound-state solutions is nonrelativistic motion
of the bound-state constituents. " Again an inter-
action of the form of Eq. (99) appears to realize
this feature —even in the strong-binding limit. To
see this we shall first take account of the Schwing-
er mechanism and in the spirit of Hartree-Fock
theory modify the quark interaction to

with m being the quark mass. Thus for elm small
the quark motion is self-consistently nonrela-
tivistic.

In conclusion, we have shown that a four-dimen-
sional, Lorentz -invariant second-quantized field
theory of hadron binding is possible with scaling
electroproduction structure functions, only zero-
triality physical particle states, and, apparently,
linearly rising Regge trajectories and nonrela-
tivistic constituents. A detailed study of the bound
states is now in progress.
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(101)

If we now take Eq. (101) to be the Green's function
for the effective gluon field and calculate the
"Coulomb potential" of a static, point quark
source located at the origin we find

(102)

where Q, is a constant independent of p.. In the
limit p. -0 we find

(103)

The first two terms of Eq. (103) correspond to
choosing Eq. (99) rather than Eq. (101) as the

gluon Green's function (in the limit p - 0). Equa-
tion (102) includes vacuum polarization effects
which damp the interaction at large distances.
Thus Eq. (102) imperfectly reflects the possi-
bility that a quark-antiquark pair can separate
and induce another quark-antiquark pair to be
created from the vacuum so that two color singlet
mesons will result (presuming it is energetically
favored). At shorter distances Eq. (102) appears
to be a reasonable approximation. This exponen-
tial potential was studied within the framework of
the Schrodinger equation in the strong-binding
limit (Qo/p, large) by Greenberg. " He showed

FIG. 6. Some additional diagrams which occur in the
A, = 0 limit of the non-Abelian model if Feynman gluon
propagators are used. In addition, there will be Fad-
deev-Popov ghost-loop diagrams depending on the choice
of gauge.
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APPENDIX

In Ref. 3 semiclassical arguments based on
Dirac's theory of constraints were given to intro-
duce the use of principal-value propagators. We
will now describe a second-quantized realization
of those arguments for the case of a scalar Klein-
Gordon field Q(x) with the Lagrangian

(Al)

with the consequence

[Ap, Ap )={A),A-, )

=0.
Equations (A5), (A6), and (A10) imply

(A9)

(A10)

The generalization to vector gluons is immediate.
The canonical equal-time commutation relations
are

[P(x, f ), (P(y, f )] = —z5'(x - y) .
If we expand Q(x} in plane waves,

g(x, f ) = g (A ke
' '* +A-e "'* ),

k

(A2)

(A3)

(A4)

We therefore require

(A6)

then the q -number Fourier components Ak must
satisfy

(A5)

(A6)

for consistency with Eqs. (A2) and (A3). Now the
time-ordered product satisfies

T(4(x)@(X))= «(». —y.) [e(x), A(y)1

(A7)

with e. (xo) = s 1 for xo »«0 and f A, BJ =AB +BA.
The first term on the right-hand side is a c num-
ber completely determined by Eqs. (A5) and (A6).
If the second q-number expression were zero,
then we would obtain a principal-value propagator
from Eq. (A7):

&Le( 14(y)) = f 2

Ak, Ak =AkA, =0, (A11)

A ~ A q, = 2 5'(k —k '},
A„Ag = ——,5'(k -k')

for all k and k'. Thus quadratic terms in A and A~

are reduced to c numbers. It should further be
noted that the multiplication rule is not associa-
tive. " In fact, the multiplication rules of the A
and A" operators in Eqs. (All)-(A13) are realized
by taking multiplication to be

(A12)

(A13)

Uv=-,'[U, v] (A14)

for U, V being any Ak or A~, . If we take an analo-
gy to Lie-algebra theory seriously, where the ad-
joint representation of an algebra has a multipli-
cation rule defined by commutators

(A15)

then we could call Eqs. (All)-(A13) the adjoint
representation of the Fourier components of @.

The c-number nature of AA, A A, or AA can
be understood physically in the following manner.
Since the P field has principal-value propagators
it is not associated with a particle but is merely
the embodiment of an interaction between other
objects (which we have suppressed in our La-
grangian). Consequently an emission of a Q field
quantum must be directly correlated with a sub-
sequent absorption —it cannot propagate into empty
space. The c-number nature of AA~ reflects this
correlation between emission and absorption.

Finally, it should be noted that the existence of
a vacuum is inconsistent with Eqs. (All) —(A13).
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