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We have examined the high-energy, fixed-angle behavior of exclusive scattering amplitudes in the
context of renormalizable field theories. We find that renormalization-group techniques, asymptotic
conformal invariance, and reasonable conjectures about the existence of the zero-mass limit of such
theories allow one to understand simple power laws for fixed-angle scattering of the type proposed by
Brodsky and Farrar and Matveev et al. Since our techniques rely on the existence of a smooth
infrared limit of the underlying quantum field theory, they are unfortunately not powerful enough to
discuss theories with vector mesons. Consequently, it remains moot whether the classical examples of
asymptotically free theories really manifest simple fixed-angle scaling.

I. INTRODUCTION

In models where the physical hadrons are loosely
bound collections of fundamental constituents it is
possible to give heuristic arguments for simple
scaling behavior!+? of exclusive scattering ampli-
tudes at high energy and fixed center-of-mass
scattering angle:

A (S! gc.m.)~ S_"F(ac.m. ) *

The index n depends on the process and is related
to the minimum number of constituents which
participate in the process. In broad outline, this
picture is consistent with the available experiment-
al information and the question naturally arises
as to whether such scaling behavior can be ex-
tracted in a reliable way from quantum field
theory.

One would like to tackle this problem using the
renormalization-group techniques which have
proven so effective in studying the asymptotic be-
havior of semileptonic processes. There are,
however, two new elements which make the dis-
cussion considerably more complicated: Firstly,
all particles are on the mass shell (unlike, say,
electroproduction where one of the participating
particles is very far off the mass shell) so that
the detailed nature of the infrared singularities of
the theory is important. Secondly, it makes a
great deal of difference to the fixed-angle asymp-
totic behavior whether the physical particles are
directly describable as fundamental fields or
whether they must be regarded as bound states.
Both of these problems can be finessed in discus-
sions of electroproduction, but must be faced up
to squarely in the fixed-angle scattering problem.
They are very difficult problems and we have
found only partial solutions to them (and so only
partial justifications of the dimension-counting
scaling rules). Since the problem is so interesting
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we take the liberty of presenting incomplete results
in the hope that it will stimulate somebody to do
better.

In Sec. II we discuss how the renormalization
group can say something about fixed-angle scatter-
ing. We find simple results only for theories with
tame infrared behavior (thereby excluding theories
with fundamental vector mesons from considera-
tion). In Sec. III we discuss the modifications to
the simple picture which arise when the physical
particles are bound states. We show how, with
the help of conformal invariance, one can extract
(almost) the information about the bound-state wave
function needed to discuss the fixed-angle limit.

In Sec. IV we turn our attention to scalar bound
states and explicitly display the interesting limits
of the bound-state wave function. In Secs. V and
VI we apply our accumulated wisdom to a study
of meson form factors and meson-meson scatter-
ing and discuss the extent to which the simple
dimension-counting rules apply.

II. RENORMALIZATION GROUP
AND FIXED-ANGLE SCATTERING

To discuss high-energy on-mass-shell process-
es, we shall make use of the “improved” renor-
malization-group equations.®'* To obtain these
relations, it is necessary to consider n-particle
Green’s functions

r'(n)(pl . .pn;g)my IJ')

which have fwo mass parameters, m and p: u
describes the off-mass-shell point at which re-
normalization subtractions are carried out and m
is a parameter related to, but not identical to,
the physical mass. The crucial point is that for
m = 0, one obtains the Green’s functions of the
zero-mass theory and p then is just the mass
parameter needed to define the renormalization

2905



2906 CURTIS G. CALLAN,

subtractions in the zero-mass theory. The “im-
proved” renormalization-group equations are

0 3
(45 +8(0 =+ @)+ g | T = 0

(2.1)

and they have the solution
. Ydyo
F‘"’(Ap;g‘,m,u)=>\“'"exp[nf S v(g(k’))}
1

X T B; g, m(A), ), (2.2)

where
Agkgm:mgun g0)=g

x%m(x)= [=1+5M)]m0).

In the event that B(g) has an asymptotic fixed point
g, and $(g,)<+ 1, m(X) goes to zero as XA -~ and
we have the simple asymptotic solution

T0p; g, m, p)~ A="1=Y6Q I H (5 o0, 1)
(2.3)

We shall assume that both conditions are met so
that we may in fact make use of this asymptotic
solution.

To discuss on-mass-shell processes we simply
replace momentum arguments Ap by Ap + A", with
p2=7r%=0. Then, in I' (Ap+ \7'r), as A grows,
all the momentum invariants grow like A? except
for the external masses, which remain fixed.

The on-mass-shell high-energy limit is then

Tp+X7'r;g,m, W)= X D(p+ X725 gA), m(), )
g )‘4-’”! r( P; go’ 07 “') ] (2-4)

where d =1 - y(g,). The high-energy behavior is

a power determined only by the anomalous dimen-
sion of the fields so long as T™(p; g, 0, p) is finite.
This would be automatic if all possible partial
sums (29 p;) of momenta were ronlightlike. We
can and do arrange that all partial sums involving
two or more momenta be nonlightlike (nonexcep-
tional momenta). This is easily seen to mean that
the original massive-particle amplitude is being
considered in the limit where all particle energies
go to infinity at the same rate while all center-of-
mass scattering angles remain fixed. The indivi-
dual p; are, however, automatically on the light
cone and the question is whether this introduces
any singularities.

The answer to this question depends strongly on
the theory under consideration. Singularities as-
sociated with the usual sort of multiparticle thresh-
old (in s, f, etc.) are avoided by the nonexception-
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al-momentum requirement. Singularities associ-
ated with thresholds in the external particle mass
cannot be avoided and correspond to the real decay
of a zero-mass particle into other zero-mass
particles. The only dangerous decay is into two
particles, since decay into three or more particles
has vanishing phase space. If the two-particle
decay (into collinear massless particles) has
vanishing matrix element, then the mass thresh-
old singularity does not occur. This is the case in
A¢* theories (since only even numbers of mesons
participate in any process) and in Yukawa theories
(when the fermion part of the matrix element for
collinear massless decay vanishes), but not in ¢3
or vector-meson theories. (It should be noted that
in the Yukawa case it is the zero-mass S -matrix
element which is free of singularity—the Green’s
function has singularities that are removed by
supplying external fermion spin projections.)
Therefore, barring the effect of more exotic pinch-
type singularities, it would appear that the zero-
mass S matrix exists for Yukawa and \¢* theories.
Since we have no systematic way of examining the
more exotic singularities, we cannot prove this,
but we shall assume it to be true henceforth. If
we are right, then the asymptotic behavior of
amplitudes at other than exceptional-momentum
points is given by the renormalization-group
powers, as in Eq. (2.4) and nothing else. If we are
wrong, then, in Eq. (2.4), the amplitude
T'(p; &, 0, 1) has singularities (probably only log-
arithmic to any finite order) which may well suc-
ceed, when summed to all orders, in modifying
the renormalization-group power. Since we are
trying to predict asymptotic behavior, we want to
minimize this possibility and we restrict our at-
tention henceforth to Yukawa theories. (At this
point we might remark that although the zero-
mass problem is very difficult for a general am-
plitude in a gauge theory, it is much simpler for
amplitudes having no ckarged external lines. Since
the modern gauge theories of strong interactions
more or less require the physical particles to be
gauge neutral, there is some hope that our tech-
niques may be applicable. We hope to return to
this point in a future publication.)

To summarize: In Yukawa and A¢* theories,
the high-energy, fixed-angle behavior of on-mass-
shell scattering amplitudes is (energy)f x (function
of center-of-mass scattering angles), where P is
constructed from the anomalous dimensions of the
fields participating in the amplitude, and, for
canonical dimensions, is just the naive dimension-
al power. Thus, for canonical dimensions
A(mm~ )~ s°f(6), A(NN- NN)-s"'f(0), etc.
Furthermore, it should be noted that f(6) is a
scattering amplitude computed in the zero-mass
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theory. Since symmetry breaking is usually the
fault of mass terms we are therefore saying that
the fixed-angle limit should possess the full sym-
metry of the underlying field theory. This has
dramatic consequences which we do not wish to
explore here.

The power-behavior result is encouraging, but
the actual powers, if dimensions are nearly canon-
ical, are much too small to have anything to do
with the real world. The question then naturally
arises whether this numerical situation remains
true when the external particles are actually bound
states rather than described directly by fundament-
al fields.

III. THE RENORMALIZATION-GROUP PROPERTIES
OF BOUND-STATE AMPLITUDES

In the preceding section we have analyzed the
asymptotic behavior of on-mass-shell amplitudes
with the aid of the renormalization group. In
theories in which the zero-mass singularities could
be controlled this behavior was determined by the
dimensions of the elementary fields involved. It
is apparent, however, that this has little direct
relevance to the real world, since hadrons are
believed to be bound states rather than elementary
particles. We therefore analyze, in this section,
the properties of bound-stated amplitudes. The
new ingredient that enters into the construction of
such amplitudes is the bound-state wave function.
It, however, is determined by the Bethe-Salpeter
equation, whose kernel is simply a Green’s func-
tion with appropriate topological properties. We
therefore are able to establish, for a large class
of bound states, that the bound-state wave func-
tions and thereby the resulting amplitudes obey a
renormalization-group equation. One could hope,
therefore, to employ the methods developed in
the previous section to discuss the asymptotic
behavior of such amplitudes. On attempting to do
this, one discovers that the zero-mass singular-
ities of amplitudes involving bound states can be
quite significant. Indeed they can, and do, modify
by powers the asymptotic behavior one expects
from naive dimension counting. Furthermore,
knowledge of the scaling behavior of the bound-
state wave function which follows from the renor-
malization group alone is not sufficient to deter-
mine these singularities. One must, in fact,
possess quite detailed information on the behavior
of this wave function as various momenta become
lightlike, information which is not determined by
overall scaling. To obtain such information we
investigate the constraints of conformal transfor-
mations. This will be employed in the following
section to analyze the zero-mass singularities of
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amplitudes involving bound states.

Let us consider the bound-state wave function of
a scalar meson. We shall for the moment, con-
sider fermion-antifermion bound states. In other
words, the meson is a dynamical pole in the J = 0
fermion-antifermion scattering amplitude. The
wave function is defined to be

Tos(b; 4,9, gmu)
- constx f d'x e (p|(Falx)05(0), [0,

(3.1)

where we have exhibited the dependence of T upon
the coupling constants of the theory (represented
by g), the mass parameters (represented by m )
and the renormalization point. The mass of the
bound state is p? = mg2.

The above bound-state wave function is a solution
of a homogeneous Bethe-Salpeter equation® (see
Fig. 1):

dk
Tos(P; 4,955 gmu) = f Gy Topr(ps k=0, k; gmu)

X TaB.c('B'(k -py k; qy1, 9y gm“') .
(3.2)
The kernel of this equation, T, is the two-
particle irreducible fermion-antifermion Green’s
function with two external propagators attached.
Let us now apply the homogeneous renormaliza-
tion-group operator

D= g+ B2+ Hem (3.3)

to this equation. One might be concerned that this
is not allowed, since Eq. (3.2) is only valid when
pP=mg? and mg, of course, is a function of the
dynamical parameters u, g, and m. However, a
physical parameter such as a bound-state mass is,
of course, independent of where one chooses to
perform the renormalization. In other words,

all physical parameters, including mgz, must
satisfy the homogeneous renormalization-group
equation

Dmb(gy m, “) =0
so that one can apply D to Eq. (3.2) with impunity.

U ok q
p==(T) =@ (1) _
q, k 2

FIG. 1. The Bethe-Salpeter equation for the bound-
state wave function.
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One thereby derives, symbolically, that
DIr=DOI)3T+TI3IDT.

However, T itself satisfies the homogeneous re-
normalization-group equation

DT=0. (3.4)

The fact that T is not the full Green’s function,

but only the two-particle irreducible part, does

not invalidate this equation. The requirement of
two-particle irreducibility is a topological require-
ment on the Feynman graphs that contribute to T
that does not affect the fact that it is primitively
convergent. Thus, it, like the full amplitude, has
a skeleton graph expansion in terms of the primi-
tively divergent propagators and vertices of the
theory. Since these obey an appropriate renor-
malization-group equation one establishes that

the full Green’s function does. The absence of
anomalous dimensions in Eq. (3.4) is a consequence
of the fact that T is “half amputated,” i.e., that

it contains two external fermion propagators. It
therefore follows that DI" obeys the same homo-
geneous Bethe-Salpeter equation as does I'. If, as
seems reasonable, the solution of the Bethe-
Salpeter equation is unique, then DI must be
proportional to I', i.e., DI'= aT.

The value of o will of course depend on how the
bound-state wave function is normalized. Although
this normalization is totally arbitrary, and can
have no ultimate physical significance, it will
affect the value of . It is clear that one should
choose a normalization which makes sense in the
zero-mass theory, since in the renormalization-
group approach, the zero-mass theory governs
asymptotic behavior. We therefore normalize I
by requiring that at p? = mg’ the fermion-anti-
fermion four-point Green’s function I'“( p,p,p.p,)
be equal to

T(p; 0102)T 66 (P)T(D; P3P, (3.5)

where I'gq is the “propagator” of the operator

6= Jy. This two-point function shares the bound-
state pole, and, like IY, is renormalized in the
new improved manner so as to have a well-defined
zero-mass limit.

Applying D to Eq. (3.5) and remembering that
DT = =4y, T® and DIy = =2y Tge (¥4 and ve
being the anomalous dimensions of the fermion
field and of @), we derive that & = y4 — 2y, so that

{ u—a% + B(g)é% + ¥ gm & + [Zn(g)—w'e(g)]%

raﬂ(D;‘th): 0. (3.6)
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According to the above normalization I" has
physical dimension four so that we derive in the
standard fashion, using dimensional analysis
and integrating Eq. (3.6), that

T(xp; Mg, Agy; g1 1)
= AT'T( b5 4,455 g(A), m(X), p)

Con
XeXP‘UI %— [2y,(g2")) - 7e(g‘(K’))J} .

(3.7)

Thus, when A approaches infinity, we relate the
bound-state wave function evaluated on-shell,
A2p? = mg?, and with large momenta to the bound-
state wave function evaluated in the zero-mass
theory [as long as m (A) vanishes in this limit]. If
say, the theory possesses an ultraviolet-stable
fixed point g,#0 [and §(g,)<1], then

b

To5(AD; Mg Aq,; gmps)
o~ AT TYO T p (D5 4,9,; 8001 .
(3.8)

A consistenty check on Eq. (3.8) is provided by
considering the large-g limit of Eq. (3.1) with the
aid of the operator-product expansion. The above
dependence is an immediate consequence of the
fact that for short distances we have

TW0) B2, TU(0) (o) -76 72,

This argument also clarifies the special role
played by the composite field Jy. As an interpolat-
ing field for the bound state ¥y has, of course, no
special significance—any operator with the same
quantum numbers would be equally good. The
reason that the dimension of Jy controls the large-
momentum behavior of the bound-state wave func-
tion is that it is the operator of lowest dimension
for the quantum numbers of the bound state.

It should also be pointed out that in writing Eq.
(3.8) in the first place, we are making an implicit
assumption that the zero-mass limit of ',z exists.
This is not really guaranteed by anything we have
said so far. In fact, if we think about how one
would treat this problem by directly writing down
the full operator-product expansion for (x)y(0),
it is not too difficult to see that our assumption is
correct, provided that the anomalous dimensions
of the twist-two operators of spin greater than
zero are all greater than the anomalous dimension
of the operator of spin zero. In the simple model
we are studying this in the case, although one
could imagine circumstances in which it is not.

One is now in a position to apply the renormal-
ization group to amplitudes involving bound states.
These amplitudes are constructed from I'" and
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from two-particle irreducible Green’s functions.
In Fig. 2 we illustrate this construction, where
the amplitude T’ represents a two-particle ir-
reducible amputated Green’s function. Since we
have seen that I" obeys the renormalization-group
equation, where the bound state has an effective
anomalous dimension equal to yg(g), it trivially
follows that all amplitudes in which it appears
will also satisfy the renormalization-group equa-
tion.

Therefore, in the standard fashion, one can at-
tempt to calculate the large-momentum behavior
of bound-state amplitudes by employing the re-
normalization group to relate them to the zero-
mass theory. Consider, for example, the scalar-
meson electromagnetic form factor F,(q; pE= byt
= mg?). This can be constructed from the bound-
state wave function and the amplitude 7',, which
is the amputated current four-fermion Green’s
function, two-particle irreducible in the meson
channels (see Fig. 3).

It thus satisfies the renormalization-group
equation, from which one derives [(Ap;? = mz?]

F,(\g; \p,AD,; g, m, )
):-:_,w)\-a-zye F"(q; b1P2; 8os m(x), p).

Now if the form F, has a finite limit as the inter-
nal mass parameters vanish [m(x) -~ A"1* 7€ | and
the external bound-state masses vanish (p;%=
mp2/A"%), then one derives for the invariant form
factor

F“(q, plpz) = (p1 _pz)uﬂqz)
that
F(g)~ (-g?) B 6% . (3.9)

However, the existence of such a zero-mass
limit for the form factor, as well as for any other
bound-state amplitude, is highly unlikely. This is
because the bound-state wave function I'yg( p; 9,4,)
in the zero-mass theory is a homogeneous func-
tion of ¢,2 and g,% of degree 2+ yp —3vg. This
means that

Tus(D; 4,425 801) = ((112(122)-[1*{7"/2)-(Ye/é)]F(qlz/qzz) ,

with the function f undetermined by overall scaling.
If the anomalous dimensions are small, this im-
plies that the singularities of I',g as either ¢,® or
g,® vanishes could be quite severe. Certainly one
expects a more singular behavior than the 1/4
singularity which would appear if I' ;5 described
the coupling of an elementary scalar meson to two
fermions. This can then lead to zero-mass sin-
gularities for amplitudes constructed out of I' (as
in Fig. 2), even in theories, such as Yukawa
theories, where these are absent in the on-mass-

FIG. 2. The four-particle bound-state amplitude.

shell amplitudes of the fundamental particles.
These singularities will, in general, lead to power
divergences of the zero-mass bound-state ampli-
tudes. Thus, for example, F (q;p,Dy; 8N
could diverge like a power of A as the internal and
external masses vanish. As a consequence, the
naive power-counting behavior of Fig. 2 will be
altered by powers of g2.

The only statement one can make with certainty,
at this point, is that Eq. (3.9) provides a lower
bound on the possible falloff of the form factor.

To say more one must have information regarding
the behavior of the bound-state wave function as
the fermion masses vanish.

For the applications we have studied it appears
that the necessary extra information can be ex-
tracted from the conformal invariance of the zero-
mass theory at the fixed point. Since the meson
bound-state wave function is essentially a three-
point function, it is completely determined in the
zero-mass limit by conformal invariance and we
shall exploit this fact in what follows. Were we to
study three-body bound states (the nucleon, for
instance) we would need more powerful methods,
based on the operator-product expansion.

The conformal properties of the bound-state
wave function can be established from the confor-
mal Ward identities satisfied by the Green’s func-
tions of the theory.® It has been shown that renor-
malizable, zero-mass theories, with the couplings
set equal to fixed points of the renormalization
group, are conformally invariant. (Gauge theories
require special treatment. This will be explained
below.) Actually a broken conformal Ward identity
holds even when 3# 0 and the masses are finite.
However, these equations, unlike the scale invari-
ance Ward identities, cannot be written as simple
differential equations for the Green’s functions,
and appear to be useless. Since we are only con-
cerned, however, with the properties of the bound-
state wave function in the zero-mass, fixed-point
theory, we will restrict our attention to exact con-

9
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FIG. 3. The bound-state electromagnetic form factor.
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formal invariance.

The conformal Ward identiies have the following
form for the one-particle irreducible Green’s
functions G™(p,- - p, _,):

K,G™= Y KP(p)G™(py -+ pn_y)

in1
=0, (3.10)

where K(‘f)(p) is the conformal differential operator
appropriate to a field of spin J; and dimension d;:

WY p)= — LoV B g B
K= =2 dy+ b ) 55+ 0y ot T g
(3.11)

where Eff,, is the Lorentz transformation matrix

of a field with spin J; (i.e., Z0,6=0, =}/
= %il)"u 'Yu]zpy etc.).

The kernel of the Bethe-Salpeter equation for
the bound state is not a full one-particle irreduc-
ible Green’s function and so it need not in general
satisfy Eq. (3.10). However, as we pointed out in
discussing the renormalization-group behavior of
the bound-state wave function, we have arranged
things so that the kernel has a skeleton expansion
and is constructed by integrating products of the
fundamental primitively divergent Green’s func-
tions of the theory. The conformal generator,

Eq. (3.11) has a distributive property which guar-
antees that if the primitive Green’s functions
satisfy Eq. (3.10), then so does any amplitude
constructed via the skeleton expansion. The Bethe-
Salpeter equation for the zero-mass, fixed-point
version of the bound-state wave function of course
has a kernel constructed out of the primitively
divergent Green’s functions of the massless fixed-
point theory. Since these objects are conformal-
invariant then so is the kernel, and by an argu-
ment similar to the one used in discussing renor-
malization-group properties of the wave function,
so is the bound-state wave function itself. We
shall use this fact in the next section to derive

the explicit asymptotic form of the meson wave
function.

Although we have focused attention on fermion-
antifermion scalar bound states in a Yukawa
theory, it is clear that the results have much
wider applicability. The renormalization-group
equation derived for the bound-state wave function
will be valid for any bound state or theory, as
long as the kernel of the Bethe-Salpeter equation
which generates the bound state satisfies such an
equation. Thus a fermion- antifermion bound state
of spin J will satisfy Eq. (3.6) if we replace g by
the anomalous dimension of the lowest-dimension
operator with the quantum numbers of the bound

state (i.e., the operator $7u15uz v gu,, ¥). Similarly,
a three-fermion bound-state wave function (say,
the nucleon wave function in a quark model)
I'($,4,49,4,) Will satisfy

9
{“ -a% + ﬁ(g)gg; +y(g)m 5% +3y,(8) - 73(8’)]
XT($:14,4,495)= 0,

where vy, is the anomalous dimension of the opera-
tor ¥3.

An exception to this list is a scalar bound state
of two scalar mesons in a ¢* theory. Since the
four-point scalar Green’s function is primitively
divergent the two-particle irreducible kernel of
the Bethe-Salpeter equation will not satisfy the
standard renormalization group equation. A
modified equation could probably be derived for
this kernel, and thus for the scalar wave function.
However, it is unclear whether the analog of 8 in
such an equation would share the fixed points of
B. We must therefore exclude from consideration
all bound states which can appear in two scalar-
meson channels. If we consider a quark model
with a neutral singlet Yukawa coupling, we need
only exclude singlet mesons. In a gauge theory
which does not involve scalar mesons no such
problem arises.

These wave functions will then be conformally
invariant in the zero-mass theory at the fixed
point of the renormalization group. Conformal
invariance for such bound states will, however, be
much less informative. A three-body bound-state
wave function is essentially a four-point function,
which is not totally determined by conformal in-
variance. Gauge theories require special treat-
ment. The conventional gauge-fixing term that
one must add to a Lagrangian which is invariant
under gauge transformations of the second kind is
not conformally invariant. Thus the standard
Feynman rules for gauge theories do not give con-
formally invariant results for gauge-dependent
amplitudes, even in the zero-mass, fixed-point
theory. This difficulty can be overcome by working
in a special nonlocal gauge,” where the vector-
meson propagator in position space is given by

(1) 2 =y
Dpu(x,y)‘<4_1>axp ayvln(x ))

If the gauge parameter B, is taken to transform
like a position four-vector under conformal trans-
formations, then D, is conformally covariant. In
the limit B, ~ 0 one recovers the usual Fermi-
type gauges (if x= 0, then as B, ~ 0 one recovers
the Feynman gauge). With this choice of gauge
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the bound-state wave function will again be con-
formally invariant in the zero-mass, fixed-point
theory. The price that one pays, however, is that
the wave function depends on an additional four -
vector, B,. Thus a two-body bound-state wave
function will not be completely determined by con-
formal invariance and we will require additional
input.

Asymptotically free thecries again require spe-
cial treatment. This is because the ultraviolet-
stable fixed point of such theories is at zero cou-
pling. One cannot, therefore, discuss the asymp-
totic properties of the bound-state wave function
by examining the fixed-point theory. Here, differ-
ent methods, based on the operator-product ex-
pansion, will prove more useful.

IV. MESON WAVE FUNCTION

The net result of the arguments of last section
is that the form of a two-body bound-state wave
function, I'(¢,?, ¢,%), is completely determined in
the limit ¢,% ¢,% ~= (g,?/q,? arbitrary) by the con-
straints of the conformal invariance. Since it is
essentially this limit which governs the interesting
practical applications, we would like to work it
out explicitly for the meson wave function.

We are interested in computing

Tup( b, x)= (m(p)| (P (x)§ (0)) [0)
= 0p(x%) V162, (p - x, x2p?)
+ (B, #lap(x?) @72 (p e x, x2p?).
(4.1)

In writing I’ out in terms of explicit covariants we
have (a) rejected solutions with odd numbers of y
matrices in the high-energy or zero-mass limit
(one must have either even or odd numbers of y
matrices and perturbation theory suggests we
should choose even, and (b) explicitly displayed

[u(l - u)J(de—a)/z

(2-d+ 3dg)

the correct x— 0 behavior required by the short-
distance expansion.

We require the zero-mass fixed-point version of
this three-point function in order to determine the
high-energy behavior of the wave function. The
conformal-invariant three-point function is of
course defined for all p?, while the bound-state
wave function is of interest only for p?= 0. Thus
we should construct a conformal-covariant three-
point function which has a smooth p* - 0 limit.

The full conformal-covariant three-point func-
tion is obtained by solving®

K, (x)T'(p, x)= K, (p)T(p, x),

where
K,(x)=2x,(d+x-8)=x%, + 3y, ],
- 9 9 92
K, (p)= 2(d9 +p- %‘) W‘Pu 5
d=f§_+y, dg=3+7yg.

Since we want I' at p>= 0, and by assumption the
p?*—~0 limit is smooth, it is enough to set p?=0
inside Eq. (4.1) and ignore all terms proportional
to p, (since they arise from differentiating the
PPx* dependence of the g;). We are left with three

independent equations for g;(p - x), the coefficients
respeCtively of [7‘17 Jf] ’ 7/“1 xulﬁy JfJ

%gl +(p- x)g2= 'Ziagz -2ip-xg,’ ,
ngl + Zp * X8y = _2l‘[dg|,+ (P 'X)gl”l y
(dg+1)g,+2p-xg," = =2i(d+ 1)g," —2ip-xg," .

These equations have the solution
1
gi(p-x)= f dul u(1 — w)|e-D/2giur x|
(o]

(2 — 1 1 )
&(px)= w'{ dulu(1 - u)|@e-r2giup x|
do-1 ),

which yields, when Fourier transformed,

[u(l _ u)J(de -1)/2

1
To5(4:9,) = éaﬂl du[q12u+ 2,°(1 - )P @627 +

The most important feature of this expression is
that while T falls like A~(2*@6-2¢V3 yhen both g,
and ¢, are growing like A, it falls like A~[2*(@e-2072]
when only one of the two momentum variables is
growing like A (as long as d<3). For canonical
dimensions, the two powers are (¢%)"2 and (¢?)"},
respectively, so that it is the “corner” ¢,%>— o,
fixed g,* which will dominate asymptotic behavior.
In fact if we evaluate I' in the region where
4,2/q,%~ =, we find

dg—1

(#, 4~ dzJaB _[ du [qlzu + g2 (1 - u)Prlg-2drz -

1\ @e-v/2/ 1 \5/2-d
Tos(0:9,)~ <q—,2> <a'2'2'>

(10 Lt ~4.)
2q,® '
Finally, we remark that the calculational tech-

nique we use is, strictly speaking, accurate only
in the limit that ¢,*> and g, are both large com-
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pared to the internal mass scale. Thus we can
assert that T behaves like (g,%)"“6~"2 for growing
¢,% and fixed g,? only for ¢,? large compared to in-
ternal masses. It turns out that to discuss form
factors, it is necessary to know how I" behaves
for growing ¢,® and ¢,* fixed and not necessarily
large. We will assume that the large-q,% behavior

for fixed ¢,? is insensitive to the value of ¢,%, so
that our asymptotic evaluation is adequate.

By way of illustration, we have solved the Bethe-
Salpeter equation for the ladder approximation to
a Yukawa theory. The solution is in fact given by
Eq. (4.2), as we have argued on general grounds
that it must be. Details are given in the Appendix.

V. FORM FACTORS

In this section we shall study the asymptotic behavior of bound-state form factors using the results de-
rived above. We shall first discuss the simplest of all cases—namely, the electromagnetic form factor
of a scalar-meson bound state of two fermions in a nongauge theory. The electromagnetic form factor of
such a bound state, V,(q; p,p,), can be calculated in terms of the bound-state wave function I', 4 as follows

(see Fig. 4):
V (q; p10,) = (by = b,) . F(q?)

d‘k
= f (2_1,)4tr[r(pl; _pz + k; k)ru(q; Pl + k; -k + Pz)r(pz; _k; k+ pa)rz(k)]

4, 74
dkdktr

G (Cy; =30, + Ry, =3P, = k)

X Ty(q; 3Dy = Ryy 3Dy + Ryy 3Dy = Ray 3Dy + Ry)T(Dy; =30, +Ryy =30, = By)]. (5.1)

Here I'; is the 1PI (one-particle irreducible) vertex function of the electromagnetic current for the fer-
mions, T, is the inverse fermion propagator, and T, is the 1PI connected fermion-current vertex function.

T

y is also, of course, two-particle irreducible in the bound-state channels (see Fig. 5). We have explicitly

separated out the disconnected part of T, which is given by the first term in this equation.
Since all the amplitudes in Eq. (5.1) satisfy the renormalization group, it follows that so does Vy. In

fact, one easily derives that

a °] . 9
[uﬁ + B(g)é; ”(g)ma_;{ - 2“/9(8’)] V,(g;p.br58mm)=0.

Solving this equation one would then derive that

e (3

if the zero-mass fixed-point limit of V,, were to
exist. This, of course, is the naive dimension-
counting result, the bound state behaving like a
field of dimension dy. However, this is wrong.
The vertex function does contain zero-mass singu-
larities, and these will cause the form factor to
vanish less rapidly.

The reason we have separated in Fig. 4 the con-
tributions to I'; coming from the disconnected and
the connected graphs is that these have quite dif-
ferent zero-mass singularities. The zero-mass
singularities of the totally disconnected graphs
are easily analyzed. We are interested in possible
divergences for these graphs in the zero-mass
theory, when the external masses are of order A2
as A ~(g?)V?~ =, The singularities arise because
of the threshold singularities in p,? and p,> when

FIG. 4. The connectedness structure of the bound-
state form factor.
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these vanish. Focusing on the singularity which
arises as p,>~1"?~ 0, we see that such a singular-
ity will occur when K2~0, (K + p,)*~0. The
strength of this singularity is easily derived by
power counting. The bound-state wave function

of one meson contributes a factor of (A2)?*%¢/2~%,
The bound-state wave function of the other meson
contributes a factor of (A\2)32~% arising from the
vanishing of one of its legs. A factor of (\2)#¥~3/2
arises from the inverse fermion propagator, and
the phase space for this threshold yields a factor
of A7%. All in all, this means that V, behaves like
(x%)*d6/2=4y in the zero-mass fixed-point theory
when the external masses vanish like A72. If this
is the dominant zero-mass singularity, the net
effect is to change the behavior indicated in Eq.
(5.2) to

Flg')- <?,17>46/2+ " (%) T (5.3)

It is easy indeed to verify that the connected con-
tributions, included in T, cannot contain such a
strong zero-mass singularity. The disconnected
contribution dominates since it contains a fermion
line common to both bound-state wave functions,
whose mass-shell singularity is thereby doubly
enhanced.

An alternative way of deriving the above result
is by a direct investigation of the various contri-
butions to V, as ¢*~ «, keeping p;* =m,’. The
disconnected contribution in Fig. 4 is easily ana-
lyzed. Here the large momentum, g, flowing
into the graph, must pass either through one of
the legs, p;tk, or through all internal legs. In
the latter case, we of course recover the naive
behavior, for large ¢?, as given in Eq. (5.2). The
dominant contribution, however, arises when the
large momentum flows through the line carrying
momentum —p, =k (or p, — k), so that ¢* ~(p, + k)®
—~ o, First, we get a contribution of (1/4?)" 76/
from the bound-state wave function. This then
must be multiplied by the large-¢® behavior of the
1PI current fermion vertex. With the insertion of
an inverse fermion propagator, with momentum
(=p, - k), this vertex is essentially given by

(ps- ‘f d'x e’ * T, (x)9(0) .o>

In the large-g limit we can use the operator-pro-
duct expansion, which is dominated for small x*

by the operator y itself: J,(x)y¥(0)~ #y,¢/x*. Thus,
since J, has no anomalous dimension, the 1PI ver-
tex will only differ from its canonical behavior
owing to the inverse fermion propagator, and thus
can be replaced with v, [(p, + k)*]"" ~v,/¢#". This
result could also be established using the renor-

"
+
+

FIG. 5. Graphs that contribute to the one-particle
irreducible fermion current vertex function.

malization-group equation for the vertex plus the
fact that this vertex has »no zero-mass singular-
ities. Multiplying V, by (p, - p,), we therefore
obtain from this region that

¢F()~ fd‘kf(k,plpz)q. B/(g)" 7072
- @ /()

in accord with our previous analysis. In fact, the
dominant region analyzed here is exactly the same
region which gave rise, when all momenta were
scaled down by 1/(¢%)'/?, to the dominant zero-
mass singularity.

The fact that the contributions coming from the
connected graphs represented by T, fall off faster
for large ¢? is even more transparent following
the above line of reasoning, even if we concentrate
on a region for which the large momentum g flows
out of T, through only one fermion leg (other pos-
sibilities are obviously suppressed). This is be-
cause the operator y can no longer contribute to
the operator-product expansion of T, for its
contribution is not two-particle irreducible in the
bound-state channels. This is illustrated in Fig.
6. Consequently, the leading contribution will
arise from a dimension-four-or-greater operator
(e.g., J,¥= ¢v,¥/x*) and thus will be less singular
on the light cone and give rise (for canonical
dimensions) to a term behaving like 1/¢* or faster
in F(¢?).

The extension of the above results to gauge
theories, even at a nonzero fixed point of 8 where
we are able to determine the asymptotic behavior
of the bound-state wave function, is not straight-
forward. The zero-mass singularities of gauge
theories are so strong that they destroy the above
arguments. In fact, in gauge theories the con-
nected amplitude T, can give rise to zero-mass
singularities of comparable strength to the dis-

L]
+

FIG. 6. The contribution of the operator ¢ to 7.
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connected contributions. This is easily seen using
the ultraviolet analysis, since in the presence of
gauge fields the operator-product expansion of

Jy and ¥ can contain operators of the form

ch;é-yu ¥/x*, which are of comparable strength to
#v,4/x~* and can arise from two-particle irreduc-
ible graphs (for example, Fig. 6 contains such a
term). Thus the analysis of bound-state form fac-
tors in gauge theories, including asymptotically
free theories, is much more involved, and will be
discussed elsewhere.

The reader might wonder why we have gone
through such contortions. After all, the form
factor is constructed from amplitudes which, at
the fixed point in the zero-mass theory, are ex-
plicitly conformally invariant. Thus one would ex-
pect the form factor itself to be conformally in-
variant, and therefore one should be able to deter-
mine the large-¢® behavior by imposing conformal
invariance on the zero-mass theory. This was the
method we employed to determine the asymptotic
behavior of the bound-state wave functions without
having to analyze specific Feynman diagrams.
However, it is easily verified that if one demands
that the zero-mass form factor be conformally
invariant, one does not recover the ¢ behavior,
Eq. (5.3), derived above. This apparent paradox
is resolved by the realization that even though V,
is constructed from conformally invariant ingredi-
ents, I'), F, and I, say, it does not satisfy the
conformal Ward identity. In fact, if one applies
the conformal operator to V,, i.e.,
[K,(q)+K,(p,)) + K ,(p,)]V,, one finds that the
integration by parts required to show that this
yields zero is not allowed owing to the increased
infrared singularities generated by the bound-
state wave function. Thus there exists in bound-
state amplitudes an infrared conformal anomaly.
It would be very nice if one could control this
anomaly, since the use of conformal invariance
would probably greatly simplify the above discus-
sions. Most inportant it would allow us to treat
gauge theories directly.

VI. MESON-MESON SCATTERING

The generic amplitude for “7-7" scattering is
displayed in Fig. 2 where four pion bound-state
wave functions are tied together by an eight-quark
scattering amplitude which is two-particle irre-
ducible in each single external meson channel.
Our “renormalization-group” analysis has told us
how the bound-state wave function behaves when
one or both leg masses is large and also how the
fundamental field scattering amplitude behaves for
large energy in all channels. Both pieces of in-
formation will turn out to be essential.

Fixed-angle scattering is notoriously complicated
to analyze, in part because of the many possible
connectedness structures of the eight-quark ampli-
tude appearing in Fig. 2, each of which seems to
have different asymptotic behavior. Several pos-
sibilities are shown in Figs. 7(a)=7(c). Figures
7(a) and 7(b) essentially correspond to the parton
interchange model and Fig. 7(c) corresponds to
the “pinch” graph considered by Landshoff.?

It would be supererogatory on our partto redo the
entire two-body scattering problem. Much wisdom
has already been accumulated by parton-model
enthusiasts® in the study of particular diagrams,
and there is a consensus that the “pinch” diagram
of Landshoff is the winner. Our aim will be to
show that the detailed information contributed by
the renormalization group on the manner in which
bound-state wave functions fall off at large mass,
as well as on the way asymptotic logarithms sum
to powers, can render these parton model calcula-
tions more precise.

Let us begin by discussing Landshoff’s pinch
graph, since it is a convenient place to introduce
notation that we will need. The typical graph we
are concerned with is shown in Fig. 7(c). In the
fixed-angle high-energy limit, the momenta p and
q,, taken in the center-of-mass frame, grow like
V's. We adopt Landshoff’s notation throughout, so

peq=p'-q=0,
pzzp’2=—q2+m2=7y

P'P’=M',

s~21(1+X), t~=-41, u~21(1=2),

where m is the pion mass and 7 - « with A fixed.
The eight momenta &,;, & are parametrized in

(a) (b)

(c)

FIG. 7. Possible dominant configurations for large-
angle scattering: (a) and (b) parton-exchange graphs,
(c) the Landshoff graph.
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terms of 16 scalar parameters as follows:

k, Xy (p'
_ . _(p'+rq) 2,
k{ - l_x1 (p+q):t)1]_r(x2__1)|1/2ixlniz,rq’

- (2" =1q) 2
ké = 1—X2 (p_(I)i,Vz [T(Kz—l) 1/2*"2”127‘1:

kg X3 ( 2

- p b +2\q) zy
r) ™ \1-x,) P T DN GEIDIE F gr O

ky ) Xy (P —a)s (p=-2rq) iKn:ti"
k. 1-x, q 3’4[7()\2_1)1/2 N5 4d,

where n is a spacelike unit vector orthogonal to
p, ', q. The virtue of this parametrization is
that for finite x;, y;, z;, k; in the center-of-mass

frame each k&, is a finite fraction of the correspond-

ing p; plus a finite orthogonal vector. Next, we
record the masses of the &, in the limit of large s:
k2= —xz,+m?x? -y =k>,
B2=(1=x)z, +m*(1=x, P =y 2=k?,
By = =%z, + mP? =9, = k%
B2= (1= 1)z, + mP(1 =%, =9,° = 1%,
k2 = =Xz + mPx? =92 = k3®,
B = (1= xy)zg + m?(1 = xf = 95° = K37,
k= =xz,+mixl -y 2 —«k?,
B2=(1=x)z,+m*(1=x,P —y2 =Kz,
The parametrization has of course been chosen so
that these masses are finite in the high-s limit

for finite values of the parameters x;, v, z;, K;.
Finally, the momenta k; satisfy one constraint:

tk,+p+p'=0.
i=1

This means that, in the large-s limit one may in-
tegrate over the 16 parameters x;, y,;, 2;, k; inde-
pendently if we supply the constraint®

1
Tew 8(x, + x5 = 1)8(xz + x, = 1)
X8(x, =%, + X3 = X)O(Ky + Ky + Ky + Ky)

Now we can discuss the asymptotic behavior of

J

DI

the graph. First of all, the three x; & functions
leave one x to be integrated over, which we shall
call £. In the high-s limit, the two four-quark
amplitudes become I*(tp,, ..., tp,) and

(1 -¢)p,,...,(1-£)p,), which are just fixed-
angle high-energy quark-quark scattering ampli-
tudes. If the appropriate spin projection operators
are supplied, our renormalization-group discus-
sion yields,

T(EDyy -y EP) = (EVS) O OT (D, ..., Dys 8ym =0, )
= (&Vs)1(0) ,

where d is the anomalous dimension at the fixed
point, g,, of the Fermi field, p, = limp,/V's is a
lightlike vector, 6 is the center-of-mass scatter-
ing angle of the problem, and f(6) describes the
angular dependence of the zero-mass quark-quark
scattering amplitude at the fixed point. f(4) is of
course not known and will make the angular de-
pendence of the overall meson-meson amplitude
unknown.

Next we must concern ourselves with the energy
dependence of the bound-state wave functions.
Barring a divergence in the y;, z, «; integrations
(which does not occur) the bound-state wave func-
tions, T ,g(p;;kik;), are needed for finite k2, k2
but large k;, kj. Since

Top = 84p8:(R)7% k) + [léu }élxl Y- AUNN kllz) s

it is apparent that the largest contribution will
come from g, since the term [¥,, ¥,] can grow like
Vs. Consider the [, ¥,] term. According to the
parametrization of Eq. (6.1), the leading contri-
bution in the center-of-mass frame is

. e
[’éu“l]' _[ﬁu Kﬂfﬂxmm}

This is the only place where y,, as opposed to v 2,
appears in the calculation, so that the y, term is
odd and automatically integrates to zero. The
same cannot be said of the k, term since the «;
integrations are constrained by 6(k, + k, + K3 + K,).
Therefore, what survives is

[’éi, ]é;]= - K:[ﬁu?ﬂ" k{\[g[i’;, ?ﬂ .

The B can be regarded as acting either to the left
or the right since # anticommutes with % and
supplies the spin projection which we needed in the
previous paragraph to guarantee the existence of
the zero-mass limit of the quark-quark scattering
amplitude. Because of the factor of Vs it is clearly
favorable to pick the g, covariant at each vertex.
The overall integration to be done is then

F(G)fdﬁ[ﬁ(l-ﬁ)]-q(d-”f rIdy‘dz‘dxib(ziq)x,gz(k‘z,k;z), (6.1)
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where F(6) is a product of two zero-mass quark-quark scattering amplitudes and the various x; 6 functions

have evaluated the x; such that
k= =tz +mPE -y -k,

kiz =(1- 5)34 +m?(1 ‘&)2‘3’42 - Kiz .

To discuss this integral it is convenient to write the «; 6 function as fda e'®Zki  The amplitude then be-

comes

( 1)“" 2 F(6)

S

where

()= fdxdydz ket*og, (?, k'?).

EOD [ iz -p)e [ dagia),

(6.2)

To appreciate the relevant features of the integral over g,, we choose the form of Eq. (4.2), augmented

by a mass to put thresholds in the right place:

gz(k2) klz) = fldu [u(l _u)}E-l)/z
° (1 =u)+ k%M +ic]

[u(l - u)](a‘-x) /2

) l U= D=0 + @+ M) —m B ) + (1= EPul- el *

If ¢ is outside the interval between 0 and 1, the z
integration contour can always be closed in either
the upper or lower half plane in such a way as to
avoid all singularities. By the same token, when
0 <& <1, it is only at = £ that the z integration
does not, by contour deformation, give zero. Thus
the z and u integrations cast up a factor of

[£(1 - £)]@-9/2 3¢ each vertex. The remaining
integrals are all splendidly convergent and yield a
function ¢ which is smooth in £ and falls off ex-
ponentially in « so long as the reasonable thresh-
old condition 2M >m is met. The final answer for
the amplitude is

4(d -3/2) 1 —
(3)™ £ [ arlsa-ore-Dac),

where a() is a smooth function of £. For nearly
canonical dimensions, 2d~d, and the £ integra-
tion converges. Since d~3, we find that the over-
all power behavior of the amplitude is nearly s™%%,
while the angular distribution is a p»iori undeter-
mined.

Note that the £ dependence of the integrals over
g, was essential to render the £ integration in
Eq. (6.2) finite. What was critical was the power
of u(1 —u) in the Deser-Gilbert-Sudarshan (DGS)
representation of g, [Eq. (4.2)] which in turn
governs the falloff of g,(k?, k’2) when k%~ with k’?
fixed. As discussed in Sec. IV, the conformal
argument gives the power falloff in %* with k* large
and k" fixed and large compared to the internal
mass scale. We have assumed that the same power

r

obtains for k’% not large, and so long as that is so,
the essential features of the previous analysis
remain unchanged. The interesting point about this
set of graphs is that the bound-state wave functions
are needed near the mass shell only and the re-
normalization group comes in only to control the
growth of the internal quark scattering amplitude.
The off-mass-shell behavior of the wave func-
tion does play a crucial role in the class of
graphs shown in Fig. 7(b). Although they are
relatively less important than the “pinch” graphs,
we shall discuss them in order to illustrate how
the wave function enters. There are two indepen-
dent loop integrations to do, and we will paramet-
rize them as follows:

ky=x(p+q)+ zy—Tq+ K,

ky= (l—x)(P+q)-%q—f<,
ky= =k, +2q=—k, +(p, - b,),

where « is a two-dimensional spacelike vector
perpendicular to p, ¢ (similar definitions for the
other loop). The corresponding masses are

k2= —xy+m2®+ K%+ O(s™"),
k2= (1 -x)y+m3(1 =xP+ k% +0(s7™),
k2= =41 =x)(T-m?)+2y+ k2.

Thus, for finite x, v, « in the limit s -~«, k,% and
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k,? remain finite while k,* grows.

The line with momentum £k, is supplied with an
inverse fermion propagator: since we have de-
fined the bound-state wave function to include the
fermion propagator there is a double-counting
problem when two bound-state wave functions are
jointed directly together. In the large-s limit, the

J

leading contribution of the inverse propagator is
(1 =x)$, = Vs(1-x)8,. The fixed lightlike vector
Z’: eventually serves as a spin projection operator
on the internal quark-quark scattering amplitude.

The internal four-fermion scattering amplitude
is evaluated in the high-s limit with the following
momentum arguments:

F(pr (1 - X)‘Dl _pzy x'[’4, (1 - X')pq— p3) ~ (‘/—S_)Q(I-d)r(xl;p (l - x)ﬁl _ﬁzy .\"]34, (1 - —\‘,)[)4 - i)a; oy = 01 “-) .

This simple scaling law of course only holds so
long as the zero-mass lines are acted on by the
appropriate spin projection operator, provided,
in fact, by the inverse propagator.

Finally, the bound-state wave function at the p,
vertex falls off like (s)™® -1’2 gince one leg mass
is fixed while the second is growing like s. Here
again, our assumption that the power behavior of
the wave function in the limit ¢,> -, ¢,? fixed
may be evaluated in the zero-mass theory comes
into play. There are two such factors; one as-
sociated with the left-hand loop and one with the
right-hand loop. One may easily verify that the
two covariants in the bound-state wave function
behave the same way. Once all of these explicit
factors of s have been factored out, it is not too
difficult to verify, by arguments similar to those
used already for the pinch graph, that the x, y, «
integrations converge.

The result of these arguments is that the over-
all power behavior of the graph is

- 1, -1Nd - -1\d - -
It s)z(fg)q\l d)(s 1)(a /2 _ (s 1)(d 1)/2+2(d -3/2) ,

while the angular dependence is unknown and re-
lated to that of the fundamental fermion-fermion
fixed-angle scattering amplitude. For canonical
dimensions, the asymptotic energy dependence is
s~2 and the parton-interchange graph is therefore
expected to be less important than the “pinch”
graph.

In other theories and/or other processes, the
relative importance of these various topological
classes of two-body scattering graphs may well
be different. Nevertheless, the technique illus-
trated here should suffice, if applied with sufficient
care, to extract the dominant behavior.

VIil. CONCLUSION

The net result of our discussion is that simple
dimensional scaling of on-mass-shell processes
seems just as reasonable in the context of quantum
field theory as in the context of a naive constituent
model. By this we mean that the semireliable fea-
tures of bound-state wave functions provide a
natural source of asymptotic powers over and

r

above renormalization-group powers and that if
anomalous dimensions are small, the net powers
in field theory and in the constituent model agree
with one another. When exotic infrared singularit-
ies are important (such as pinch singularities in
meson-meson scattering) they affect both ap-
proaches in a similar fashion.

The main failing of our discussion is that it has
nothing to say about vector-meson theories in
general and asymptotically free theories in partic-
ular.'® The basic difficulty is that whenever vec-
tor mesons are present, the zero-mass s matrix
is very badly infrared divergent, whereas it is
precisely this quantity which governs on-mass-
shell asymptotic behavior. Therefore, until we
can reliably sum these infrared singularities we
cannot say anything about vector theories. Since,
in four dimensions all asymptotically free theories
involve vector mesons, we have therefore not
said anything about such theories. This is unfor-
tunate, since the vanishing of the asymptotic ef-
fective coupling constant would allow us to aug-
ment the general scaling statements by more
specific statements about angular dependence and
the like.

APPENDIX: THE BOUND-STATE WAVE FUNCTION
IN THE LADDER APPROXIMATION

In this appendix we shall explicitly solve the
Bethe-Salpeter equation for a scalar bound state
in the ladder approximation!! to a zero-mass
Yukawa theory. This provides a concrete example
of such a zero-mass bound-state wave function
which can be compared with that constructed in
Sec. IV using conformal invariance.

The Bethe-Salpeter equation for the bound state
in the ladder approximation takes the form (see
Fig. 8)

FIG. 8. The ladder approximation to the Bethe-
Salpeter equation.
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dk

41r(py 4y, qz)dz =5 I(b; q, +&, q,-k),

(A1)

where p?= 0, x= g?/16n% (g being the Yukawa cou-
pling), and we have performed the Wick rotation.
The matrix I must be even in y matrices, so that

AND DAVID J. GROSS 11

We can now transform Eq. (Al) into a set of
coupled integral equations for ¢, and ¢,. These
simplify if we make the ansatz:

2 2 ! &)
0i(9,%, ¢;°) = f [ql o (;22(1 P LEL

with g;(«) and D to be determined. With this
ansatz Eq. (Al) implies the following equations

T'= ¢o(q,%, 4.%) + [y, o] 01(a:% @57) . (a2) for g;:
1 1 q 2, q 2 _ 2X ! (u)
R e d R e e 50 = 5epy | WP
(A3)
! 2 (9,° = 47 _ 221 4 &o(w)
| e A R R e RO M v WA e

If we set ¢, = ¢,? in Eq. (A3) we will determine

D, since one then derives that
(D-1)2-D)=x, D=5[3+(T=4X)"7].

Inserting this value of D into Egs. (A3) and inte-
grating by parts so as to yield common denomina-
tors, one shows that these equations are satisfied
as long as

g,(w) = D(1 - 2u)g,(u),
Dgy(u)= 4D - 1)g,(u) + (1 - 2u)g,(v)’.
The solution of these equations is

go=clu(l )2,

_._D D-1
gl—cD_l[u(l—u)] ,

so that
clu@ =u)]?-
ql U+ q, (l—u)]

D[dlLdl]u(l - u)
% [1 T -1g,2+ g1 -w)] } :
(A4)

This is precisely the bound-state wave function
derived in Sec. IV if we identify D as

r(p; )= [ du

D=2+14yg=24+1dy ~d, (A5)

and if v, were zero.

This is altogether reasonable since in the ladder
approximation 3 is zero, there being no coupling-
constant renormalization, so that the zero-mass
theory should be conformally invariant for all g.
Furthermore, the fact that there is no renormal-
ization of the fermion propagator in the ladders
implies that vy, = 0. On the other hand, the opera-

tor 6= Py requires renormalization in this approxi-
mation, the relevant graphs being shown in Fig. 9.
To lowest order in g2 it is trivial to calculate the
anomalous dimension of 6. One finds

ve(g®) = —g°/81,
consistent with Eq. (A5), which implies that
ve(g?)=(1-g*/4m)? -1

._£
- - £ 0. (A6)

Although we have not calculated yg directly (from,
say, the graphs of Fig. 9) there is no question but
that Eq. (A6) is indeed y¢ in the ladder approxima-
tion.

The bound-state wave function can also be ex-
plicitly constructed in the ladder approximation
to massless QED.!? The equation to be solved is

4, T(D; 4,9,)4,

A v
-4 [ %y (s 4, 4 By 4= R DLL ),

(AT)

FIG. 9. The la_dder approximation to the anomalous
dimension of 8 =y.



where D, (k) is the massless vector-meson pro-
pagator. This we choose in an arbitrary Fermi-
type gauge

i kR,
D, )= = (s - gl

1 1 q 2 +q 2
d _ -4 T4
fo “Tatu+ eI =w)P [g°(“) q,2u+ g2 (1 — u)

11 FIXED-ANGLE SCATTERING IN QUANTUM FIELD THEORY 2919

We make the same ansatz as above for the form of
T, which reduces this equation to the following
equations for g;(u):

_ e ' g,(u)
gl(u)] " DD+ 22)(D -2) -0[ du [qlzu +¢,2 (1= u)]?

(A8)

These equations then determine D,
=3{3+[1-4r(4-¢€)]V2},
and g(u),
golw)= Clu(l —w)]?-12,

g,(u)=§2% Clu(l —w))B+v2 |

where

(D-1)e
T2(4-€)D+2)°

N

B=3D-1

Now once again one can easily check that D
=2+ 3y¢. This is to be expected since in this ap-
proximation B= 0 and y, = 0, and the above value
of D then follows from the fact that the wave func-
tion should obey the renormalization-group equa-
tion. The fact that the wave function is nof given
by the conformally invariant form derived in Sec.
IV is also to be expected owing to the fact that
here we are dealing with a gauge theory. The
arguments presented in Sec. IV to the effect that,
as ¢,°/q,>~ 0, T should behave as

! 1 (q12 - (122)28'1(“) _ %A(4 - 6) ! Iy (u)
{ du lg%u+ q.2(1 - w)]? [(q‘z + 4")80(w) - a,%u+ g,%(1 —u)] ) ,O[ dut ;

S (D-1)@2-D )P

q,2u+ g1 -—u

1 \e/2 /1 \17%
r-(Ge) ()
412 7’

do not apply here since we are not summing a
gauge covariant set of graphs. Indeed one finds
from the above that in this limit (if 3> 8>~ 3)

1 B+1/2 1 3/2+ygl2-B
raa)- (Gz) ()
(p; 4y, 45) P P

The main lesson to be drawn from this calculation
is that the behavior of the I" calculated in a non-
gauge-covariant approximation is very sensitive
to the value of the gauge parameter. Thus it
clearly is meaningless to use such an approxima-
tion for purposes of determining asymptotic be-
havior. One could derive quite different results,
say, for the asymptotic behavior of bound-state
form factors in the ladder approximation by chang-
ing gauge.

Note added in proof. A discussion of on-shell
applications of the renormalization group, similar
to our Sec. II, has been given by G. C. Marques,
Phys. Rev. D 9, 386 (1974).
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