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A nonperturbative approach to the relativistic bound-state problem is tested in a simplified version of
quantum electrodynamics. The approach used is based on applying Fade approximants to a perturbation
series of quasipotentials derived from an inhomogeneous quasipotential equation. The resultant

nonperturbative form of the quasipotential is used in solving the homogeneous quasipotential equation
(relativistic Schrodinger equation). The size of the nonperturbative results of the Lamb shift is

compared with that of the perturbative results. As with real quantum electrodynamics for point
particles, this simplified model we use to test our approach gives complex energies if the coupling
constant is larger than some critical value. The change of this critical value of the coupling constant
which results from using a nonperturbative form of the potential is computed.

I. INTRODUCTION

Todorov has recently proposed a new local ver-
sion of the quasipotential equation for the rela-
tivistic bound-state problem. ' The quasipotential
equation, unlike the Bethe-Salpeter equation, is a
three-dimensional one-time formulation of the
two-body problem. Although the equation is rela-
tivistically invariant, Todorov's particular one-
time formulation of the problem leads to a bound-
state equation similar to the Schrodinger equation.
This feature, together with its locality, is a very
desirable aspect since it permits simple numerical
techniques for solutions of the eigenvalue problem.
If the Born term in quantum electrodynamics is
considered, then exact solutions are obtained which

are accounted for in a much more complicated way
in other approaches. ' In addition, in the static
limit, this approach yields equations that are the
conventional one-body bound-state equations for
spin-0 or spin--,' particles in a Coulomb field,
namely the Klein-Gordon and Dirae equations. It
yields predictions for the n fine-structure split-
tings for the two-body problem in a much simpler
way than the more conventional approaches. '
Krapchev, Rizov, and Todorov' have recently com-
puted the a'lno. corrections due to radiative effects
in the case of scalar electrodynamics with vector
photons with this approach for arbitrary particle
masses m, and m, .

In this paper we exa.mine the quasipotential ap-
proach to quantum electrodynamics for the case
where the coupling constant is not small. Thus,
in this approach, we wish to examine the size of
the Lamb shift for large Z or, equivalently, bound-

state energies for strongly coupled QED. This
necessitates a nonperturbative approach to the
bound-state problem. Here we consider a simpli-
fied version of QED with scalar photons instead of
vector photons. We also consider only the static
limit in which one of the particles becomes in-
finitely massive.

In Sec. II a review is given of the quasipotential
equation for scalar particles. We follow very
closely the discussion given by Todorov in Ref. 1.
The relativistic Balmer formula derived there,
and also given in this paper, has two shortcomings
when the coupling is not weak. First, it includes
only the effects of the lowest-order diagram. Sec-
ond, it leads to complex energies if the coupling
strength a is large enough. This latter aspect is
related to the problem of singular potentials. One
might speculate that by incorporating higher-order
corrections in a nonperturbative way, he might not
only adjust the first shortcoming but might also
modify to some extent the problem of the singular
potential, which seems to be a common problem
of many relativistic bound-state equations.

Any nonperturbative approach must agree in
the limit of sma, ll coupling with the perturbative
results. In Sec. III the higher-order corrections
are considered perturbatively. In the process,
it is found that the local feature of the quasipo-
tential cannot be maintained. In order to avoid
the infrared problem, the quasipotential is modi-
fied by accounting for the fact that the bound par-
ticle is off its mass shell. Within the context of
this quasipotential approach, which is an on-en-
ergy-shell equation, this leads to a nonlocal con-
tribution to the potential. As it turns out, this
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II. QUASIPOTENTIAL EQUATION
FOR SCALAR PARTICLES

A. Off-shell kinematics and covariant form
of the quasipotential equation

The quasipotential equation is a relativistic
Lippmann-Schwinger type equation for the invari-
ant scattering amplitude T

T+ V+ VGT=0 . (2.1)

In this paper T will refer to the elastic scattering
of two spinless particles of masses rn, and m,
with initial (final) momenta P, and P, (q, and q, ).
Its relation to the S matrix is given by

nonlocal formulation leads to a comparatively
simple determination of the ground-state energy.

In Sec. IV Pade approximants' are used to cal-
culate the ground state of scalar hydrogen non-
perturbatively. The quantity that is computed non-
perturbatively is the quasipotential. As the Pade
approximants are derived from a perturbation
series, the nonperturbative form of the quasi-
potential necessarily reduces to the perturbative
form in the limit of small coupling. By applying
dispersion techniques to the approximation, one
obtains a form of the quasipotential equation that
has the same structure as the per turbative form
of the equation. Although the perturbative results
can be computed exactly, numerical techniques
are needed to compute the nonperturbative results.

In a problem such as the one presented in this
paper, the primary aim of numerical calculations
is not to obtain agreement between theory and ex-
periment. Strongly coupled real QED deals with
spin--,' particles and massless vector gluons
rather than scalar particles and massless scalar
gluons. Also, a realistic calculation of large-Z
Lamb shifts should take into account finite nuclear
size. Nevertheless, numerical calculations have
a theoretical importance. There are two basic
questions that must be and can only be answered
by numerical calculations.

For a &1, the size of the nonperturbative values
of the Lamb shift must be compared with the per-
turbative values. Are the differences large or
small, and for what value of n does the difference
become significant? Second, only a numerical
calculation will determine whether or not the value
of n at which complex energies appear is altered
when one sums up the perturbation series of po-
tentials into a nonperturbative form. If it is, is it
displaced upward or downward from n =1 and by
how much? The results of the calculation and the
techniques used are discussed in Sec. V.

(q,q, ISIP,PP = (2w) 4P', P,'5(q, —p, )6(q, —p, }

+(2n} i5(py+Q'2 py p, }

x T(q,q„pp, ) . (2.2)

Rather than regard (2.1) as an off-energy-shell
equation, as is usually done, we define it as an
off-mass-shell (on-energy-shell) equation. One
proceeds off the mass shell in such a way that
the 4-momenta squared always satisfy the rela-
tion

q, '-q, '=p, '-p, '=-(m„'-m, ') .

The total 4-momentum is the timelike vector

P =qi+Q2 pl+p2& ~ 0

(2.3)

(2.4)

The center-of-mass energies E, and E, of par-
ticles 1 and 2 are defined in the invariant way

+m —mE =-—P'q = ——PP2 ~) 2 ~ 2 2

(2.5}

with their sum given by the center-of-mass en-
ergy m. The relative 4-momenta q and P are two
spacelike vectors defined by

p ~pE E E
(2.6)

and are orthogonal to P: P'q =P P =0. In the
nonrelativistic limit, when w-m, +m„we have

1 m;
M~ +Pl2

i =1, 2 (2 7)

so that q and P go into the conventional nonrela-
tivistic relative momenta.

The quasipotential equation, unlike the Bethe-
Salpeter equation, is a three-dimensional one-
time formulation of the two-body problem. Bather
than ascribe an individual time variable to each
particle, a single spacelike surface defined to be
perpendicular to the total four-momentum P acts
as the time variable in the problem. Further-
more, it follows from the orthogonality of the
relative momentaP and q to the total momentum
P that the relative time variable vanishes in the
center-of-mass frame. ' As a consequence, the
troublesome concept of relative time plays no

role in this approach.
Todorov postulates the equation

In the center-of-mass frame, where

= 0 . (2.8}

d4I
Tgq, p)+ & (q,p)+, V, (q, u)G, (u)r, (u, p)6(p u)
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P =(w, 0), q=(0, q), P =(O, p), (2.9) shows how one can obtain a relativistic form of the
Schrodinger equation from (2.10):

the time components of all relative four-momenta
(including the intermediate variable k) vanish. In
this frame, the covariant quasipotential equation
takes on the three-dimensional form

d'A, '

T (q, p)+ V (q, p)+ },V (q, k)G (k)T (k„p,) =0,

(2.10)

where G (k) =G~(k}/w.

8. Definition of the quasipotential and Green's function:
The homogeneous quasipotential equation

+V„(r) 0 (r)= g (r),(
v2

PR m QJ

where m is the relativistic reduced mass

(2.15)

2w4' —b'(w)}g (q)+ 2, V (q, k)g (k)=0 .

(2.14)

If the quasipotential V is local [V = V„(q —k)],
then (2.14) is equivalent to a local Schrodinger
equation (homogeneous quasipotential equation)
in coordinate space:

The quasipotential equation is identical in form
to the Lippmann-Schwinger equation of nonrela-
tivistic quantum mechanics. In nonrelativistie
quantum mechanics, this equation (on energy
shell} allows one to construct the scattering ampli-
tude T from the potential V. In quantum field the-
ory, it is not the potential that is given but rather
the perturbative expansion of T. The link between
T and the quasipotential Vis made by imposing
the following assumption.

(i) Equation (2.10) is satisfied order by order by
the Feynman perturbative expansion of T.

In particular, with G assumed to be independent of
the coupling constants and T = T, + T,+, the
quasipotential V has the perturbative expansion
V= V, + V2+' ' ', with

(2.11)

The second and third assumptions fix the Green's
function G uniquely.

(ii) For a Hermitian potential Eq. (2.10}should

imply the on-shell elastic unitarity condition.

(iii) For spinless particles, (G (k}) is a
linear function of ~. These lead to'

m 1m 2
P7

ZU

and

( )
1 d, ke' ''V (k)

(2v)' 4m~m2

(2.16)

Notice that for weak binding m„-m, m, /(m, +m, ),
the nonrelativistic reduced mass.

III. SCALAR ELECTRODYNAMICS
WITH SCALAR PHOTONS

A. The relativistic Balmer formula

The model we wish to examine is a simplified
version of quantum electrodynamics consisting
of two charged (complex) scalar fields $, and P,
of masses m, and m, interacting by way of a neu-
tral scalar photon field &. The Lagrange function
describing the interaction is patterned after real
electrodynamics and has the normal-ordered form

2, (x) = [g, :g,*(x}g,(x):+g, :g*,(x}y,(x):]A(x) .
(3.1)

As Vy T] the lowest -orde r approximation for
the potential is

G (k}=—(k'-b' —fe) ', (2.12} V = V, = r,g, /(q p-)'- (3.2)

where

b'(w) =, [w' —2(m, '+m, ')w'+ (m, ' —m, '}']1

(2.13)

is the on-shell value of the center-of-mass mo-
mentum squared of each of the two particles.

The Green's function G has the same form as
that which occurs in the nonrelativistic Lipmann-
Schwinger equation. By making appropriate as-
sumptions regarding the factorization of the resi-
due of the pole of T at the bound states, Todorov

2
y r) y r) (3.4)

In the rest of this paper we take Z, =Z, = 1 and n~

The coupling constants g, and g, have the dimen-
sions of mass. In order to emphasize the similar-
ity between this model and quantum electrody-
namics, we introduce a dimensionless quantity n

by setting

g g2 = 16am, m 2ZiZ~ e = 16n'm, m a

This leads to a relativistic Schrodinger equation
of the form
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= e.' As has been pointed out by Todorov, ' the en-
ergy dependence of m along with the m depen-
dence of 6', (2.13), take proper care of relativistic
recoil effects, which in other approaches are ac-
counted for in a much more complicated way. In

particular, (3.4) can be solved exactly giving the

0(4)-symmetric result

u ' = m, '+ m, '+2m, m, (1 —u'/n')~' . (3 5)

In the limit of small coupling, the binding energy
is

Z/2

(m, +m2) su=-m, +m, 1 —1 —2 ' ~, (1-(1—a'/n')'~')
(m, +m, )'

m, apl, Q 2

mi+~2 2

mgQ 2

2n2 (3.6)

m —g =m(1 -(1 —o')'i'), m =m, (3.7}

where $ is the total energy of the bound particle.
The corresponding Schrodinger equation is

(
V' n Q2

——y(r) = —y(r), b' = b' —m' . (3.8)
2PPl & 2 YPl

This, of course, is the usual nonrelativistic
Balmer formula.

Let us consider the ground state m=1. If the
coupling is strong enough so that e &1, then the
energy becomes complex. Such occurrences of
complex energies for large enough couplings arise
in the solution of other relativistic bound-state
equations, the Dirac equation being a prime ex-
ample. Case has demonstrated that this is an
indication that the Coulomb potential for the Dirac
equation is a singular potential' for large enough
coupling. In the Dirac equation, the radial wave
function has an essential singularity at the origin
if n is large enough. By more careful handling of
this singularity in n, Case demonstrates that one
may in fact obtain a real spectrum for larger n,
but the resulting spectrum depends on an undeter-
mined constant. He interprets this constant as a
cutoff parameter to be determined by using a more
realistic potential that does not display such sin-
gular behavior.

The present example is similar to the Dirac
case in that complex energies appear if a is large
enough. In order to see how it is different, we

simplify matters by considering the case m, -~
and n=1. In this case, the binding energy is

and does not display an essential singularity for
large coupling as does the Dirac case. In other
words, viewed as an eigenvalue equation with the
eigenvalue b'/2m, real eigenvalues are obtained
for all n. However, real energies are found only
for a. restricted range of t2 if g' =m'+6' is to re-
main positive.

In spite of these differences, it is probable that
if the n singularity can be eliminated (or shifted
to larger values of n) in this simplified problem,
then a similar solution can be found in the more
realistic theories that involve spin and vector
photons.

B. Higher-order corrections: The case of scalar hydrogen

The bound-state energy formula given in Eq. (3.5)
gives complex energies for n &1 if n =1. Evenfor
n smaller than 1, however, (3.5) is not correct,
as the radiative corrections have not been ac-
counted for. One might speculate that by incorp-
orating these higher-order corrections in a non-
perturbative way into the quasipotential (thereby
using a more realistic potential} we can obtain a
formula for the Lamb shift for e & 1 and extend
the range of o for which real bound-state energies
are obtained.

The nonperturbative technique to be employed is
the Pade approximant. ' The Pade approximant
uses the perturbative expansion, however, and
therefore a series expansion of V must first be
found. The expansion we shall use for V is

The ground-state wave function and solution are V= Vx+ V2 ——-Tj T2+ TjGT (3.10)

-r /a

spy2
u= = — (3 9)

The Born term is T, . The sum of vacuum-polari-
zation, vertex with self-energy corrections, box,
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and cross-box diagrams comprises T„and Ty G Ty

is the iterated Born diagram. In this paper we ex-
amine scalar hydrogen, that is, the one-body
problem. In Appendix A it is shown that in the
static limit m, -~ the iterated Born diagram can-
cels the sum of the box and cross box contribu-
tions. ' The diagrams are given in Figs. 1-5. The
only diagrams that contribute are written in sub-
tracted dispersion form in the momentum transfer
t. The various subtractions are used to account
for charge, mass, and wave-function renormal-
ization:

P,

FIG. 1. Born diagram.

—16m 4m' t" t' —t —je

4 2
", 1 (t' —4m'')' '+(t' —4m')' ' 1

2 t'(t" —4m '&')~' (t' —4m ')' ' —(t' —4m')~' t' —t —2E
(3.11)

The first term of the quasipotential is the Born
diagram. The next term refers to the subtracted
vacuum polarization diagram and the third term
is the subtracted vertex diagram. This quasipo-
tential has been modified to apply to the bound-
state problem. In particular, the infrared diver-
gence has been avoided in the last integral (the
vertex) by accounting for the fact that the bound

particle is off its mass shell:

p2 (pO)2 p2 $2 p2 m 2 (m 2 (3.12)

This same method of dealing with infrared diver-
gences is used in Ref. 2. This technique for avoid-
ing the infrared divergence is similar to the one
used by Erickson and Yennie, 'but, as we shall
see, is simpler to implement.

C. Nonlocal potentials and the infrared problem

for bound states

In many cases the quasiootential is local. How-

ever, this local feature cannot be maintained, as
it depends on the potential's being a function of

(p -q)'. In particular, in order to avoid infrared
divergences one accounts for the binding of the
particle by taking it off its mass shell (on energy
shell). In the case of the vertex, this leads to a
p' and q' dependence in the last term of the quasi-
potential (3.11). The self-energy term is, of
course, local and is written as a weighted sum of
Yukawa potentials. The vertex form appears in
the quasipotential as the integral

(3.13)

q

FIG. 2. Vacuum polarization. FIG. 3. Vertex (off mass shell, on energy shell).
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P

I

I

I

I

I

q

FIG. 4. Box and cross-box diagrams.

FIG. 5. Iterated Born diagram. This cancels the con-
tribution to V" of the diagrams in Fig. 4 in the static
limit (mt —).

If this is transformed to r space, then one ob-
tains the form

(3.14)

where' is the double Fourier transform of Vin
the variables p and q. A particularly simple form
can be found for '0(r, r') by writing the spectral
function in the vertex integral as a spectral inte-
gra.l over the variable mz,2. That is,

($' 4m 2)+2 y ($' 4m2)~/2 l l

2 t' (f' —4m~')'/' —(t' —4m')' (f"—4m~'t')V t' —t —fe

"dt' 1 " dv'
. p(t', v'), (3.16)

4 2 t' t'- t-ie 4 2 V'-4~~2-ig

where p(t', v') is the double-spectral function in the momentum transfer and the particle mass:

9(t' —v')
P (, ) —

t ll/2 (fl I )v2 (3.16)

Using this and

v' —4m ' = v' —4m'+4 pal+45' (b' = -5'},
one obtains the following integro-differential quasipotential equation:

(3.17)

g 2 b2

2m r
——+V(r) p(r)+ d'r'V, (r, r')g(r')= —g(r),

2 YPl
(3.18}

where

V(&) =—2yyg2/2 t' 4~ / 2 ] e~™
p

m
t'2 r

(3.19}

and, has the symmetric form

dt'
Vv(r~ r ) =

16 2
4m 4

e(&' —v') e ' ' e r™exp{~[-(v' —4m'+432)'/'JIr —r'I)
[fI (P s)]l/2

(3.20)

Notice that the term involving Ir —r'I has a rather long-range contribution for v'-4m2, unlike the other
Yukawa parts. In spite of this nonlocal form, one can compute the perturbatkm analytically for small n.
By avoiding the infrared divergence in this way (off mass shell, on energy shell) one obtains a simple al-
ternative to the more conventional techniques. Furthermore, when numerical solutions are needed, the
semilocal form (3.18) is easier to handle than the momentum-space form.

D. Perturbative calculation of the ground state of scalar hydrogen

In order to examine nonperturbative techniques for computing the Lamb shift for the relativistic one-
body problem (scalar hydrogen) we must obtain a perturbative answer as a check on the small coupling
limits of the nonperturbative result. The wave function is an S state, and one may write the resultant
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radial equation as

1 d Q m n
2m dr2- r r

4~2
gt2 gl r u(r)

e e-rut ' -r '~tdt' g(t' —v')
tI [tI(t I )]j/2

sinh(r'A. (v'))e ' ~" &6(r' —r) , , b'u(r)x, + (r—r') u{~') =
Z(v') 2m

where

&(v')=z(v' —4m'+45')=x .

The ground-state wave function is

u(r) = 2re ' "/a' t', a =1/m et .

Taking expectation values gives (after appropriate changes of variables)

(3.21)

(3.22)

(3.23)

d y(1 yP'2

2m 2 4&, (ny'~'+ 1)'
dg g 1

+ v, „(1-z)' ' (n(xz)' '+2)' -X'y'z'dx
1

(u +Z)' 4(o.(zx)'i'+1)' (3.24)

If the integrands are expanded in powers of a,
the integrals that appear in the coefficients of n'
can be evaluated exactly, giving

6' ma' m(y' 2m Q'
+ ln —,-2 —2ln2

2m 2 15m 3m

(3.25)

u n' 2a 18=m 1-———— + ln —,-2 -21n2
2 2 15m 3m' n'

(3.26)

as the energy of the ground state. Our result
differs from the result given by Fronsdal and
Huff. ' In place of the term -2 —2ln2 they have
approximately —~4 —2 ln2. A detailed compar ison
of this method of handling the vertex with the more
conventional Bethe sum approach and the Erickson
and Yennie approach will be presented in a future
paper on the nonperturbative treatment of real
hydrogen (vector photons and spin--,' particles). "
Any nonperturbative approach should yield the
above energy for small n.

IV. PADE APPROXIMANTS AND A NONPERTURBATIVE
CALCULATION OF THE GROUND STATE

OF SCALAR HYDROGEN

A. The Lamb shift for general 0. and related problems

In studying the Lamb shift for general n there
are two related aims to keep in mind. From the

point of view of atomic physics, one could obtain
nonperturbative Lamb-shift calculations for large
Z values and perhaps for superheavy elements
(Z &13't)." For superheavy elements, one would
run into the problem of complex energies unless
a way of introducing some type of cutoff is found.
Pieper and Greiner are able to shift this singular
behavior away by using the Coulomb potential of
a charge distribution rather than a point. "
Erickson extrapolates the spectrum for the Lamb
shift from small Z to general Z by using conve-
nient functional forms for the spectrum that are
correct for small Z, are finite for all Z, and
vanish for infinite Z." In the context of the quasi-
potential approach, what we wish to do is obtain
an improved Lamb shift for larger coupling
(Z or n) by extrapolating the potential by use of
Pade approximants of the perturbation series of
the potential. Conceivably, the n singularity will
be deflected by including higher-order terms non-
perturbatively without imposing a charge distribu-
tion. "

From the point of view of particle physics, a
study of the Lamb shift for general n is of interest
in light of what it might say about the problem of
strong binding and quark models. For example,
Schwinger has speculated that the quarks may in
fact be magnetic monopoles with a magnetic charge
n*-13'1 (as opposed to n- »~)." The Lamb shift
may play a major role in determining the spec-
trum that such a quark (dyon) model would imply.
Barut has examined a dyon model by relating it to
representations of groups such as O(4), O(4, 1),



28S2 DANIE L A. ATKINSON AND HORACE W. CRATER

and O(4, 2).'~ However, he is not faced with prob-
lems of complex energies at large coupling con-
stants. " There are two problems that must be met
by the quasipotential approach in this context. Is
it possible to obtain real energies for large a and,
if so, is the binding deep?" As this second prob-
lem is a two-body problem, it will not be treated
in this paper. "

B. Pade approximants

Any nonperturbative scheme for computing the
energy spectrum must agree with the perturbative
answer for small coupling constants. The Pade
approximant' has this feature. The reason is that
the Pads approximant (PA) is derived from a per-
turbation series (or Taylor series) in the coupling
constant {or expansion variable). Given a formal
series expansion of the form

f(x)=Qf x",
m=0

(4.1)

the [X/M] PA is uniquely defined as the ratio of

polynomials

~N +n
f (N/g](x) Zn oP n=

m =0~ e-~

=f(x) + O(x "'~"
) . (4.2)

Pade approximants give one a way to extrapolate
the partial sum of a series. In many instances it
provides a way of accelerating the convergence of
a slowly convergent series or of resumming a
formally divergent series into a convergent se-
quence of approximants. '

Unlike a power series, PA's allow one to ap-
proximate functions near their poles. The stability
of the position of these zeros of the denominator
is an important aspect. This feature was used by
Basdevant, Bessis, Zinn-Justin, and others to
compute the masses of meson-meson resonances
by finding the pole positions of the PA s to the
scattering amplitude. " Pade approximants appear
to be the most successful method of obtaining phys-
ical features of strongly interacting systems from
a formal Lagrangian field theory.

Quantum electrodynamics is a success of the
perturbative approach to field theory. As n -g37,
the PA's do not differ significantly from the per-
turbation series. However, if Z is large or one
wishes to consider strong-coupling QED, then the
perturbative approach is inadequate. Crater, "
Gammel and Menzel, "Garibotti, Pellicoro, and
Villiani, "and Graffi and Grecchi" have examined
the convergence of PA's in the case of QED.

Crater showed that the [1/1] Pads approximant of
the Born, ladder, and cross-ladder diagram has
poles that display the correct O(4) symmetry but
do not have the right positions. However, this sit-
uation changes if more terms are included. In par-
ticular, Gammel and Menzel" and Crater~ dem-
onstrated that one could find the bound states very
accurately by locating the poles of the diagonal
Pade approximants to the series of ladder a,nd
cross-ladder diagrams generated by the eikonal
approximation. So, given a series of Feynman
diagrams in QED, one is led to expect that the
PA's would have poles whose position would con-
verge to the correct bound-state energies. How-
ever, from a practical point of view, there is no
reason to use PA's on the series. The reason is
that one could, of course, obtain the position of
the poles directly from the eikonal form without
the use of Pade approximants. "Using the PA's in
this way is not very efficient. We intend to use
them in a more efficient way.

The eikonal approximation can be derived very
easily from the quasipotential approach, as ha, s
been shown by Todorov. ' This is essentially be-
cause of the similarity of the quasipotential equa-
tion and the nonrelativistic Lippmann-Schwinger
equation. For bound states, the most efficient way
to find the spectrum is to solve the homogeneous
equation (relativistic Schrodinger equation) rather
than look for poles in the scattering amplitude T.
This suggests a more efficient use of the PA sum-
mation scheme. Instead of computing bound states
by looking at poles of Pade approximants of
Feynman diagrams, we solve the homogeneous
quasipotential equation in which the potential V is
a. Pade resummation of a perturbation series of
V's,

Solving for the eigenvalue of the homogeneous
equation with the Coulomb potential is equivalent
to finding the poles in the eikonal approximation
to the sum of ladder and cross-ladder diagrams. '
What set of diagrams corresponds to solving the
homoge neous equation with the effective potential
defined by the Pade sum of a perturbation series
of V's? This question can be answered only in a
speculative, heuristic way. But, let us suppose
that V=nV„„„+n'V„,,. . Then Vtf
=a V„„„,/(1 —a V„,, /V„„,.). This effective potential
is essentially an iterated sum of self-energy cor-
rections. Since solving the homogeneous quasi-
potential equation is equivalent (in terms of finding
the eigenvalue) to iterating the inhomogeneous
equation to all orders, we conjecture that the
equivalent set of diagrams would be the "eikonal"
approximation of all ladder and cross-ladder type
diagrams with the exchange lines containing zero,
one, two, . . . vacuum-polarization corrections.
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C. Nonperturbative dispersion form of the quasipotential

The quasipotential given in Eq. (3.11) is of the
form

where

rr(
1

" dt'p(t')
t'(t' —t —ie )

(4.6)

V=+ V, +n'V, . {4.3) and

From this partial sum of the perturbation series
for V, we can construct the [I/1] PA (4.7)

V [1/1]
1 —n V~/V,

(4.4)
From Eq. (4.4) we find

1V=16vm'n —+ nil(t+ie ) (4.5}

This form, however, is not convenient to work
with. The reason is that it does not allow one to
perform Fourier transforms easily, as the vari-
ables t and v =4m~' in V, do not appear in a. simple
way. That is, V~ '~ is not given as a. dispersion
integral over the variables f, and v. This can be
corr ected, however, by using subtrac tion tech-
niques to rewrite (4.4} in terms of dispersion in-
tegrals.

In order to illustrate this technique, we consider
first just the Born graph and the self-energy
graph. According to (3.11), V is given by'

V t't'I(t+ ie ) = 16vm'n —
~ &

. , (4.8)
1 —ntll (I + te j

As has been mentioned, this is not a convenient
form for performing Fourier transforms. How-
ever, one can rewrite this as a dispersion integral
if proper account of the a =0 behavior is made by
a subtraction at t =0. In that case

16mm'n 16wm'n'II(t+ie)
t 1 —ntll(t+ie)

(4.9}

and one then computes the discontinuity across the
cut starting at t =4m' of the second term in this
equation. This gives

(4.10)

In the range 4m' & t' & ~, II(t'+te) has both a real and an imaginary part.
The &-space form of this potential is

vt'«&(r) = -+ — dt', . . . .
™

.n 1, p(t') e ™
t'~1 —nt'II(t'+ te) ~'

(4.11)

The second term in the potential is like the vacuum-polarization term in (3.19). The difference is due to
the appearance of the denominator I/~1- nt'll(t'+ te ) ~'.

Next, include the nonlocal vertex part in V, . Then in place of (4.8) we have

1 1Vl't'l(t+ie, v+iq) = 16vm'n-
t 1 —ntll(t+ie, v+tq)

16m''n nHI(t+se, v+sq)
t 1 — tn(1t1i+ev+iq)

where now II is defined as

(4.12)

with

4 2 )/2 ]
p, (t') = -m'

dv
, 2 t'(t' —t —i )(v'e—v —iq)

(4. 13)

(4.14)

and

(4.15)

We wish to find an expression for the potential analogous to the perturbative form (3.11). Recall that it
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consists of a Coulomb piece, a local vacuum contribution, and a nonlocal part. In (4.12), the Coulomb
term has been split off. We note that

II(t+ie, -~)= — dt' p, (t')
W 2 t' t' —t —Ze4m

(4.16)

Hence, we can extract a local piece from the second term of (4.12) by a subtraction at v =-~. This local
piece can be written as a dispersion integral and is in fact just the second term of (4.10}. The remaining
part can be written as a double dispersion integral:

all(t+ie, v+tt}) nil(t+ie, -~) 1 ", ", P(t', v')

I. —ntll(t+te, v+iq) 1 —ntII(t+ie, — ) w' 2 2 t'(t' —t —ie)(v' —v —irl}

where

(4.17)

P (t, v) = —]11„2at(II„II,„+rl„ 11„)+n't 2[11,„(ll„'- ll„' —ll„' - ll„') + 211„II„II„])

&&{[(I -«(11, +11, ))'+ a'I '(ll„+Il„)'][(I—nt(II, —II,„))'yn'I'(ll, 11, )2] }-2 (4.18)

ll(t + te, v+ r(I ) =II s +II (2 + tli g+ tii

The II's are defined by (P.V. means principal value)

1 " dt' p, (t'} 1 " dt'
II, = —P.V. —, ,' + —P.V. ,(, }

P.V.
4m 4'

P (t, &)
2

1
" dt' p, (t', v)

H, l = —P.V.
jr 4)w2

II = —P.V. , p, (t, u')+1
" du', p, (t)

4p z' —~

d5
I pg( I )

m

(4.19)

(4.20)

dt'

This permits us to write an integro-differential quasipotential equation analogous to (3.18):

V2 a a2 " dt' e r~t'-
2m r w, 2 t' ~1 —nt'II(t'+ie, -~)~'n', ,

' ",P(t', v') e " ' e " ' exp(--,'(v' —4m'+ I(')'t'~r -r'~), 5'

(4.21)

An alternative form of this equation which involves a single dispersion integral is obtained if one re-
places the dispersion integral

overman

by a Fourier transform. The following equation together with (4.21)
provide a way of checking on the rather complex numerical calculations

————+ — dt', '. . . ()(r)+ — d2r'K(r, r')4((r') = —(t((r), (4.22)
2m r vr, ~ t'~1 —nt'II(t'+ie, ~)~' 2v ' 2m

where

dp e -r~& e -r'
K(~, r') = dt', e"" ' '[n(t', P') rt(t', "}l -+ (4.23)

with

and

t')I —nt'II(t'+ie, p')~' ' ' t')I —nt'll(t'+ie, )('

1 (t' —4m ')u'+(t' —4m'}' ' 1 t' —4m'
tt —4 '"(44'(—4 ''(''~' —(4' —4 '}' ' 24 4 )'' (4.24)

(4.25)
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The term II(t'+te, ~) is the same integral as given in (4.16). In the general case

(4.26)

The radial form of (4.21) is similar to that given in Eq. (3.21) except that the single- and double-spectral
functions in (4.21}are nonperturbative forms. The radial form of (4.22) for the S state is

, ——+ — dt'rt(t', ~)e " ' u(r)+ —, dr'k(r, r')u(r')= —u(r)
2m dr r gr

and is different in that the kernel k(&, r') involves integrals of oscillating functions

'JO OO e -r~t' e -r ' v t '

k(r, r') = dpsinprsinp&' dt'[rt(t', p') -q(t', ~)] +
0 4m r r

(4.2'I )

(4.28)

However, the spectral functions themselves
appear simpler.

D. Solution of the nonperturbative form of the homogeneous
quasipotential equstioij: General comments

Before giving details of the solution of the above
equation for various values of o. , let us sum-
marize our assumptions. The relativistic
Lippmann-Schwinger equation (2.1) has a dual
role in the quasipotential approach to quantum
field theory. This is especially evident in our
nonperturbative approach to the bound-state prob-
lem. The initial use of (2.1) is to find the per-
turbation series of potential-energy terms from
a series of Feynman diagrams. One then uses
the Pade approximant resummation scheme to
obtain a nonperturbative form for V. This non-
perturbative form of V is then used in the homo-
geneous form of the quasipotential equation. As
has been mentioned before, solving this equation
is equivalent to finding the poles of the exact solu-
tion T of (2.1) for a given potential V. In our case,
the given V is a nonperturbative form. Notice
that formally iterating the quasipotential to all
orders in the potential V is equivalent to solving
the [1/1] operator PA." To see this, notice that
the first two terms in the iteration are

T=-V+ VGV. (4.29)

Viewed as an operator expansion in powers of V,
the [1/1] operator PA formed from this is

(4.30}

which of course is the formal solution to (2.1) for
a given V.

The eigenvalues we shall determine are the
ground-state eigenvalues for various values of n.
Variational methods are quite adequate for this
problem. The peculiar difficulties involved come

mainly from the nonlocal potential-energy term
which arises from the Pade summation of the
Born, vacuum-polarization, and vertex diagrams
with self-energy corrections. This term is de-
pendent on the eigenvalue itself so that the eigen-
value appears nonlinearly. Although the mathe-
matical theory of nonlinear eigenvalue problems
is not well known or extensively studied, that is of
no concern in this paper. In practice, we solve
the problem iteratively by initially guessing a
value of the energy and using this guess in the
eigenvalue-dependent potential-energy term.
This, in effect, linearizes the eigenvalue prob-
lem. The linearized equation is solved using a
variational method. The eigenvalue obtained by
solving this linearized problem is used to generate
a second estimate for the eigenvalue to be used in
the potential-energy term. This procedure, known

technically as a contraction mapping, is repeated
until the generated estimate of the eigenvalue is
sufficiently close to the variationally computed
eigenvalue.

The numerical calculations are lengthy but
straightforward. The main difficulties stem from
the fact that the nonperturbative form of the quasi-
potential involves a double integration of an inte-
grand which itself is a function of a rather com-
plex integral, Eq. (4.26). One a.iso has the addi-
tional problem of applying a satisfactory varia-
tional method to the problem. We sha, ll not dis-
cuss the details here. In Appendix B we discuss
the type of variational method used. As described
in detail there, there are three primary technical
problems in the numerical calculations. Our ap-
proach to these relies heavily on Pade approxi-
mants. No physical hypothesis is involved here
with these technical points. These points are the
generation of eigenvalue estimates, the integra-
tions, and extrapolations of variationally gen-
erated eigenvalues arising from a sequence of
disc retizations of the quasipotential equations.
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E. Solution of the nonperturbative form of the homogeneous
quasipotential equation: Numerical results

TABLE II. Binding energies for the perturbative form
of the Coulomb potential plus radiative corrections.

In Table I the exact Coulomb results a.re given.
In Table II we present the perturbative results
from numerical integrations of (3.24) for o. = 0.2,
0.4, 0.6, 0.8, and 1.0. [Equation (3.25) is valid

only for n «1.] We also give in Table II the rela-
tive change in the bindiag energy over the pure
Coulomb results of Table I. In Table III the re-
sults of treating the radiative corrections non-
perturbatively are given. The relative changes in
the binding energy over the perturbative results
of Table II are also given. Both the perturbative
and nonperturbative effects of the vacuum polari-
zation are sma11. To the accuracy employed in the

numerical calculations, there was no difference
between the two. The major effects are found when

the vertex graphs with self-energy corrections are
included. In order to facilitate comparisons with

the perturbative results we define b = (-b')'~' in

terms of which h = (m' —5 )'~ =m(I —b /m )
For the Coulomb potential alone we have b/m =n

and 8 =m(I —o'P~'.
Our final calculations are of that value of n for

which the energy 8 becomes complex. Recall that

for the ground-state Coulomb problem in this mod-

el this point is reached when e =1, Numerical
studies show that when the potential is modified to

include radiative corrections nonperturbatively

the point is shifted upward by 1.2% to o. =1.012.

V. CONCLUSION

The corrections to the energy levels obtained
with a pure Coulomb potential (-u/r) range up to

15/g and represent a repulsive contribution. The
results displayed in Table III show that the use of
a, nonperturbative calculation results in a change

up to 2% from corresponding perturbative calcula-
tions for n «1.0. The major repulsive contribu-
tions arise from the proper vertex correction with

both the perturbative and nonperturbative poten-

b/m (m —8)/m
Relative change over

Coulomb results I

0.199 70
0.39819
0.595 65
0.792 84
0.990 46

0.020 14
0.082 70
0.196 76
0.390 57
0.862 20

0.200 00
0.400 OO

0.600 00
0.800 00
1.00000

0.0030
0.0094
0.0163
0.0239
0.1480

tials. The net effect of these higher-order cor-
rections is not sufficient to produce a large shift
in the critical value of c(t where 8 becomes com-
plex.

It is not possible to provide anapriori estimate
of the accuracy of the nonperturbative approach
employed here. The convergence of the technique
might be estimated by examining the results of
higher-order Pads approximants (for example,
the [1/2] and [2/1] PA's) to the potential.

As we pointed out in Sec. III, the origin of com-
plex energies for large e is of a somewhat differ-
ent nature in this scalar model than that which

leads to complex 8 for vector photons. " Never-
theless, the fact that the qualitative features of
radiative corrections are the same for both scalar
and vector approaches suggests that a similar
small shift will occur for vector photons. Studies
on this question are now in progress.

The scalar interaction (2.1) employed here can-
not produce real bound-state energies at large
coupling c(t, at least to the order of approximation
of the potential considered here. Should this situa. -
tion persist with more accurate potentials, it might
have significant implications. Other scalar inter-
actions such as the pseudoscalar nucleon-nucleon
coupling differ from the interaction considered
here mainly in their long-range behavior. This
long-range behavior does not produce the problem
of complex 8. It is possible that such difficulties
can be avoided by using a more general (i.e., non-

TABLE I. Binding energies for the Coulomb potential.
The variable b/m is equal to n for the Coulomb poten-
tial and, like the dimensionless variable (m —8)/m,
gives a measure of the binding energy.

TABLE III. Binding energies for the nonperturbative
form of the Coulomb potential plus radiative corrections.

b/m (m —8)/m b/m (m —8)/m
Relative change over

perturbative results II

0.200 00
o,4oo oo
0.600 00
0.800 00
1.000 00

0.020 20
0.08348
0.20000
0.400 00
1.000 00

0.200 00
0.400 00
0.600 00
0.800 00
1.000 00

0.199 70
0.398 18
0.594 56
0.791 13
0.987 58

0.020 14
0.082 69
0.19595
0.388 35
0.842 88

0.200 00
0.400 00
0.600 00
0.800 00
1.000 00

0.0000
0.0001
0.0041
O.0057
0.0227
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polynomial) interaction Lagrangian or by modifying
the quasipotential equation so that the potential ap-
pears in conjunction with the mass terms. ~ The
fact that some shift of the critical n was obtained
here clearly illustrates its dependence on the
structure of the interaction.
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APPENDIX A: CANCELLATION OF BOX, CROSS-BOX, AND
ITERATED BORN DIAGRAMS IN THE STATIC LIMIT

The second-order quasipotential has the form
y('2~ — T ~2~ + T(»G T &» (A&)

The contribution to T ' for the two-particle scalar
scattering amplitude consists of the vacuum dia-
gram, the vertex with self-energy corrections,
the box, and the cross-box diagrams. We wish
to show here in outline form that in the static
limit (m, -~) the box and cross-box diagrams
cancel the iterated Born term T ' GT ' . It is
easiest to demonstrate this by use of the double
dispersion relation form. For bound-state energies
the box diagram has the form

where

2
m, m~~

1 1 1 e(1)(s', t'))
s' —s t' —t (s't')~ [q(s', t'))'/ (A2)

1)(s', t') =[(s' —(m, +m2)')(s'- (m, —m, )')t' —s'(Sm, '+ t1m2')']/s',

with

(As)

Lm]'=m, ' —m;g', z=1, 2 .

The dispersion-relation form for the cross-box diagram is obtained by letting s-u in Eq. (A2). The
iterated Born term has the double dispersion form

~(t)(s', t'))
)2 2 s —s —1e t —t —Le t / ['g(s', t )]

(A4)

(A5)

Consider now the static limit (m, -~) of (A2). In
taking the static limit the following definitions are
useful. For my»m2 we define

s = (m, + h )2 = m, 2 + 2m, g,
(As)

s ' = (m, + h ')' =m, 2 + 2m, h ' .

Performing the same type of limits for the
iterated Born contribution to V ' gives us

dg' g'
g '2

(t() 2

dt' 1 e(($"—m')t' —am')
t l 1/2 [(g l2 2)t l tu 4]I/2

Making these substitutions and then taking the
limit m, -~ lead us to the following static form
for the box:

which cancels the sum of (A7) and (AS).

(A9)

Q dg gi g

1 &((8"—m')t' —t m4)
tl1/2 [(gl2 2)tl ~4]l/2

0

(A'I )

with m =m, .
Likewise, one can show that in this limit, the

cross box goes into

d@'

S((S"-m')t'- ~m )
tl 1/2 [(g l2 2)tl ~ 4]1/2

(As)

APPENDIX B: USE OF PADE APPROXIMANTS
IN THE SOLUTION OF THE NONLINEAR

EIGENVALUE PROB LEM

We shall outline in this appendix the numerical
technique we used in finding the ground-state
eigenvalue of the integro-differential quasipoten-
tial equation. The general form of the equation as
exemplified in (3.21) and (4.27) is

oo

, u(z)+q(z, l1)u(z)+ dz' k(z, z', x)u(z')
dz

=au(z) . (B1)

As mentioned in the main part of this paper, there
are three main numerical problems involved.
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A+Bh2+Ch4+
+ Dpg2 + ~ ~ ~

(83)

At k =0, S(0) =A becomes the accelerated result
of combining the various quadratures.

Once the integrals are evaluated, a variational
technique is employed in computing the eigenvalue

A very efficient and rapidly convergent method
for determining X is to discretize the problem and

First of all, the nonlinear eigenvalue equation is
linearized by letting A. be fixed on the left-hand
side of the equation. Call this value A, The next
step involves computing the function q(z, X,) and the
kernel k(z, z', X,). This involves a double integral
of a function which is itself a function of a rather
complex integral. The method of integration used
here was rather crucial in limiting the amount of
time spent on the computer. We shall briefly out-
line it here and refer the reader to the article of
Chisholm, Genz, and Rowlandss' for a complete
description and evaluation of the method.

The integration technique used is based on ac-
celerating the convergence of a sequence of quad-
rature approxima. tions (e.g. , Simpson's rule at
3, 5, 9, 17, . . . points). The acceleration tech-
niques used are based on the type-I and type-II
Pade approximants. Suppose one has a sequence
of quadrature approximations So, Sy S2 . to an
integral S. Then the type I accelerations are per-
formed as follows. One forms the series

So+(S, —S,)x+(S2-S,)x'+(S, —S,)x'+' ' . (82)

From this series, one forms diagonal Sl "~"i(x)
PA's or off-diagonal Sl "'" " (x) PA's, depending
on whether one has computed an odd or even num-
ber of quadrature approximations. One then eval-
uates these PA's at x=1. This technique is
especially powerful in problems that have end-
or interior-point singularities, as found in dis-
persion and principal-value integrals involved in
computing q(z, W) and k(z, z', A). We used the type
II or fixed point Pade approximants when the
quadratures S, converge rather fast to S or if the
end-point singularities are rather mild or non-
existent. In the type II technique, one fits the
computed S; to a function of the mesh size that
has the form of a ratio of polynomials

obtain a sequence of eigenvalues X(h, ), X(h, ),
X(h, )' . From this sequence of variationally
computed eigenvalues one uses type II PA's to
accelerate their convergence to the desired ac-
curacy.

Let us call this result X,. One then uses this A.

in the left-hand side and goes through the entire
procedure again obtaining a value ~,. The aim
now becomes one of consistency. That is, one
would like the estimated eigenvalue and the com-
puted one to be as close as desired. The varia-
tional technique leads to an equation of the form

f(X;,)=A.;, i =1, 2 . (84)

Beyond i=2 we desire an accelerated decrease of
the difference between the estimated and computed
eigenvalue. Suppose we defined

g(z) =f(x) -z . (85)

Then the problem becomes one of finding the ap-
propriate zero of g(X). From the first two guesses
we have the equations

g(x, ) =f(z, ) -z, ,

g(~, }=f(~, ) -~, .
(86)

In the next estimate one does not use ~, but rather
one assumes g(A) has the form

g(~) =A+a~ . (87)

From (86) one obtains the coefficients A and B
and the third estimate is -8/A=X,'. This leads
to a third equation of the form

g(~,') =f(~,') -h, . (88}

Rather than use a linear interpolation again, we
use the simple [1/1J diagonal Pads approximant to
generate a fourth estimate, as this gives a much
more rapid convergence to the solution of g(X) =0.
That is, from (Bl) and (88) one finds the coef-
ficients A and B in the rational form

A+ Ek""' 1+C. (89)

The fifth- and higher-order estimates are obtained
in the same way.
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been shown by Todorov to be equivalent to the eikonal
approximation.
Unlike the case with vector photons, the scalar propaga-
tor does not have an unphysical pole for sufficiently
large t.
D. Bessis (private communication).
Complex energies appear in the vector case as a result
of the sharply attractive -o,' /~ term that arises from
gauge invariance. They can be eliminated in the scalar
case if one modifies the quasipotential equation for
scalar "photons" by incorporating the potential in the
effective mass terms that appear in the equation
[H. Crater and J. Naft, Phys. Rev. D (to be published)].
Our aim in this paper is to determine what effect rad-
iative corrections have on deflecting this complex-
energy problem in the context of the quasipotential ap-
proach.
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Comput. Phys. 10, 284 (1972).


