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We examine some problems associated with the low-momentum behavior of gauge theories and other
renormalizable field theories. Our main interest is in the infrared structure of unbroken non-Abelian
gauge theories and how this is affected by the presence of other heavy fields coupled to the massless
gauge fields. It is shown in the context of a simple model of gauge mesons coupled to massive
fermions that the heavy fields decouple at low momenta except for their contribution to renormalization
effects. This result is used to discuss the mass-shell structure of the fermion propagator. The decoupling
theorem is then stated for a general renormalizable theory and applied to some interesting examples.
One is a more general gauge theory which makes use of the Higgs mechanism and attempts to unify
the elementary particle forces. Another is the connection of the linear and nonlinear o models in the

limit m , — .

I. INTRODUCTION

Developments in gauge theories over the past
few years! have led to a reexamination of the old
question of infrared behavior in quantum field
theory. In this paper, we make some remarks
about this problem and establish one result which
should prove useful for future work.

We will examine the infrared behavior of Green’s
functions in perturbation theory and make use of
renormalization-group methods when possible to
go beyond perturbation theory. Our primary
interest is in theories which contain an unbroken
Yang-Mills gauge group (massless, self-coupled
fields) along with other massive fields. The mass
of the fields can arise through the Higgs mechanism
or simply be present in the Lagrangian. Our
interest in such theories is partly motivated by
the fact that asymptotic freedom® seems to re-
quire the existence of an unbroken Yang-Mills
subgroup.?

We will discuss the role of the heavy fields in
the infrared behavior of the theory. We will show
that the only role of the heavy fields in the low-
momentum behavior of graphs without external
heavies is their contribution to coupling-constant
and field-strength renormalization. The heavy
fields effectively decouple and the low-momentum
behavior of the theory is described by a renormal-
izable Lagrangian consisting of the massless
fields only. This result is used to discuss the
behavior of the effective coupling constant of the
renormalization group at low momenta and then the
mass-shell structure of the heavy field propagator.

The decoupling theorem applies not only to
theories with massless fields but in fact to any
renormalizable theory with different mass scales.
At momenta small compared to the larger masses,
the dynamics is determined by the light sector of
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the theory. The effective low-energy renormal-
izable Lagrangian may or may not contain inter-
actions. In the case of theories with massless
non-Abelian gauge bosons it certainly does. An
example of the other situation is the linear o -
model in the limit m;~>. Here, the chiral sym-
metry forbids the existence of renormalizable
interactions involving only the pion field. In
these cases, interactions will be found only by
keeping terms proportional to inverse powers of
the large mass. This will be discussed in Sec. IV.

It is interesting to compare the infrared struc-
ture of non-Abelian gauge theories to the infrared
structure in quantum electrodynamics. In order
to have some points of comparison, we will de-
vote Sec. II to a few comments about infrared be-
havior in quantum electrodynamics. This section
should be skimmed or skipped altogether by the
learned. Section III is the main part of the paper.
It is devoted to the elucidation of the decoupling
theorem in the context of a model with massless
Yang-Mills fields coupled to massive spin-3
fields. This result is used to discuss the mass-
shell structure of the fermion propagator and to
compare this behavior with the analogous problem
in quantum electrodynamics. Section IV is a dis-
cussion of the decoupling theorem for a more
general class of renormalizable theories. Par-
ticular attention is paid to a Higgs model which
attempts to unify all the elementary particle for-
ces and to the linear 0 model.

II. A REVIEW OF QUANTUM ELECTRODYNAMICS

The most familiar infrared problem in quantum
electrodynamics is the Bloch-Nordsieck problem*—
the calculation of transition probabilities that are
free of infrared divergences. By now it has been
shown that this can be done to arbitrary order
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11 INFRARED SINGULARITIES AND MASSIVE FIELDS 2857

in perturbation theory,® and this fact serves as

the foundation for the important task of calculating
the radiative corrections to scattering experi-
ments. A coherent-state formalism has been
developed by many authors® which provides even
firmer theoretical support for the perturbative
results.

The observation underlying the coherent-state
formalism is that, because of the emission and
reabsorption of massless particles, the renormal-
ized electron propagator S ;(p) does not have an
isolated first-order pole at p? =m?, but rather a
branch-point singularity. Perturbation theory to
nth order gives the behavior

®* - m*)™ [In(p® =m?)]",

and it can be shown that the logarithms sum to the
exact infrared behavior

(P —m?+ €)™Y () (2.1)

where y(a)=a/m holds to lowest order in « in
the Feynman gauge.”*®® The singularity struc-
ture (2.1) means that the conventional reduction
formalism must be modified. This is precisely
what is done in the coherent-state formalism.

We will summarize without proof the origin of
the above power-law behavior in order to show
why such power laws do not necessarily emerge in
the non-Abelian theory. Following Bogoliubov
and Shirkov,® the behavior of the electron propa-
gator can be expressed in a renormalization-
group equation. This equation becomes particu-
larly simple in the limit m? - p*<m?. The near
mass-shell equation is particularly simple be-
cause the only graphs that survive in this limit
are those in which photons are emitted and re-
absorbed without interacting with each other and,
more importantly, without self-energy insertions.
The self-energy insertions are suppressed since
the conventional charge renormalization at £2=0
defines the exact photon propagator to behave
like 1/k%+ 0(1/m?) for k2<mi?, and it is this
region of 42 that determines the p* - m? behavior
of the electron propagator. Consequently, graphs
with self-energy insertions are suppressed by
factors of (p? - m?)/m? relative to the dominant
graphs. Diagrams with photon-photon scattering
insertions are suppressed for the same reason.
That is, these insertions are of order (k/mY
p=1)for k<m.

As a consequence of this low-energy behavior,
the renormalization-group equation for the elec-
tron propagator in the p? — m?< m? limit becomes
free of charge-renormalization effects (the effec-
tive B function is zero) and it turns into a simple
scaling equation. The equation asserts that the

logarithmic terms of the electron propagator
exponentiate, and the resulting anomalous dimen-
sion v (a) can be calculated as perturbation ex-
pansion in a=1/137.° All of this simplicity is
due to the absence of self-coupled massless fields
in the theory.

It is also interesting to consider QED with
m=0. Green’s functions can still be defined pro-
viding the wave-function renormalization of the
photon propagator as well as the electron propa-
gator is performed off shell.'° The mass-shell
behavior of the Green’s functions can be discussed
as in the m #0 situation. The behavior is more
complicated now since coupling-constant renor-
malization must be taken into account in the re-
normalization-group equations. However, since
the origin is an infrared-stable fixed point, the
Green’s functions exhibit free-field infrared be-
havior up to logarithmic corrections.

A Yang-Mills theory is similar to m =0 quantum
electrodynamics in most ways. Green’s functions
exist in perturbation theory and properly defined
transition probabilities can presumably be cal-
culated as a perturbation expansion in some re-
normalized coupling constant (see Ref. 10). It
parts company with m =0 QED when the pertur-
bation expansion is resummed using the renormal-
ization group since the origin is now ultraviolet
stable. The Yang-Mills theory with other massive
fields has some features of both m =0 and m # 0
electrodynamics. The decoupling theorem says
that the massive fields play no role in the low-
momentum dynamics (as in the m # 0 case). The
self-coupled massless fields, of course, play an
important role (as in the m # 0 case). We now
turn our attention to such a model.

I1I. THE DECOUPLING THEOREM

This section is devoted to the decoupling theorem
and some of its consequences. We choose to
work with a specific model in order to be as con-
crete as possible, but we emphasize again that
the theorem is quite general. The model contains
a set of massless gauge fields A,,(x) (the light
fields) coupled to a set of massive spin-3 fields
¥,(x) (the heavy fields). This is a prototype for
a possible realistic model of the strong inter-
actions. The Lagrangian is

L(X)==5Fou FLY' =Ty, D" ¥ = Im¥ - 6 m¥¥,
(3.1)
where
Fopy=0uAuw = 3,A0u = 8 CapyAgAy, (3.2)

and
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(Dy¥)y=0,%, = (! Jum YAy (3.3)
The Lie algebra of the gauge group is
[ta,tg)=iCagyly. (3.4)

The theory is quantized in the usual way and the
Feynman rules can be generated. We will work
in the Landau gauge so that the vector-meson
propagator is transverse and so that a change in
the renormalization point does not have to be
accompanied by a change of gauge.!* Regulariza-
tion'? and renormalization also follow conventional
lines. The mass counterterm 06m is adjusted to
make the one-particle-irreducible (1PI) fermion
self-energy vanish at #=/n to each order in per-
turbation theory. In order to avoid infrared di-
vergences, the remaining counterterms must
be adjusted to effect subtractions at off-shell
Euclidean points. We will introduce a single new
mass scale p to characterize these points.

The gauge meson propagator, for example, is

of the form
kR 1 k2 m?
_1‘;2_2".> ? d <“_25 u_zygu> y

(3.5)

with the normalization condition d (-1, m®/u?, g,)
=1. The coupling constant g, is defined by this
normalization convention along with a similar
condition on the 1PI three-vector-meson vertex.
The appropriate counterterm can be adjusted to
normalize it, for example, at the symmetric
Euclidean point p? =g2?=7%= ~ u2. Its general form
at a symmetric point p?=¢q%2=r2=k? jg'?

STHUN _ k_z Z.'l_z_ BogUA
ZFezB'y"G “’2,“'2 »8p [(p-‘I) g

+g=7)"g"+(r = p)* 8"IC sy

D..u(k)=< 4o -

+ terms involving three powers

of the momentum, (3.6)
with G(- 1, m?/u?, g,)=1. The terms not explicit-
ly written down are superficially convergent to
each order in perturbation theory.

The remaining part of the renormalization pro-
gram, including the proof of Ward-Slavnov iden-
tities, can be developed following Ref. 11. The
only further piece of the renormalization program
we will discuss in detail is the wave-function re-
normalization of the fermion. Following Bogoliu-
bov and Shirkov,® we take

a@®)p+b(P*)m
P -m? ’

with Z, adjusted so that, say, a(p*/u? m?/u? g,) is
normalized to 1 at p?= - p2. The functions a(p?)

SANE (3.7

and 6(p?) become infrared divergent as p? - m?,
containing arbitrarily high powers of In(p? = m?).
We will return to a discussion of this mass-shell
behavior.

Before getting into the decoupling theorem, it is
useful to have recorded the renormalization-group
equation!® of the theory for general momentum.
The effective coupling constant is defined as

B k2 m?
8r= 8r F;F, gu)

_ k2 mZ " k2 m2

= guG<;Tz—) u—g,g;) as (F’ el g,,), (3.8)
where g, (- 1, m®/u?, g )=g,. It satisfies the dif-
ferential equation of the renormalization group

9 n?
kz -(;—k_z gb =B<'/_k2_) gk> y (39)

where

m? 9 m?

ﬂ(:?‘w‘) = 5;& (3', jk—z.x>
To discuss physics when all momenta are large
compared to m (and Euclidean, of course), it is
useful to take pu >m. The analysis of Kinoshita!®
can then be applied to show that in each order of
perturbation theory m can be scaled to zero with-
out encountering any infrared singularities. The
conventional discussion of the short-distance be-
havior using the m — 0 limit of Eq. (3.9) can then
be carried out.

We now consider the low-momentum behavior of
the theory and establish the decoupling theorem.
For any 1PI Feynman graph with external vector
mesons only but containing internal fermions, we
will establish the following fact. When all the
external momenta are small relative to m, then
apart from coupling-constant and field-strength
renormalization the graph will be suppressed by
some power of momentum / relative to a graph
with the same number of external vector mesons
but no internal fermions. When the graph under
consideration is ultraviolet convergent (the graph
and all its subgraphs are superficially convergent)
the proof is straightforward and we shall treat
this case first.

When ultraviolet divergences are present, then
each graph is accompanied by counterterms which
make it finite. By adjusting the counterterms so
that the normalization mass is on the order of the
external momenta (< m), we claim that the re-
normalization effects we have referred to will
be automatically absorbed into g, and the field
strength. Then any graph with external vector
mesons only and internal fermions will be sup-

(3.10)

y=1
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pressed. The entire effect of a shift from u>m
(appropriate for discussing high-momentum be-
havior) to p<<)n appropriate for low momenta is,
of course, just a rescaling of g, and field strength.
The effective coupling strength g, is defined to be
invariant under this rescaling.

To begin with, we will consider graphs with
n =5 external boson legs and which contain no
divergent subgraphs. An arbitrary 1PI Feynman
graph with » external legs has degree of diver-
gence d =4 —-n. Thus, if there are no internal
fermion lines and all the external momenta are
on the order of k, the amplitude behaves like
k*™". Now consider a graph, still with # external
bosons lines but which contains internal fermion
lines. For #<m, we will show that all such graphs
are suppressed relative to £*™", We focus on any
one of the internal fermion loops. Any such loop
can be severed from the parent graph by cutting
enough vector-meson lines. Suppose that the
minimum number of severings required for the
fermion loop under consideration is f.

We will consider the cases f= 7 and f <n sepa-
rately. In the case f=n, we consider the vector-
meson lines attached dirvectly to the fermion loop.
Suppose that it is possible to sever the loop from
the parent graph by cutting F (= ) of these lines.
These F lines are the external lines of a subgraph
S which, as m goes to infinity, behaves like
m*~F._ This follows from power counting and the
fact that because of the mass of the fermion all
the momenta flowing into S can be scaled to zero
without encountering singularities. Scaling m to
infinity corresponds to shrinking the subgraph S
to a point and to get the behavior of the overall
graph G, we must yet analyze the reduced graph
which contains a single vertex of F lines in ad-
dition to the usual vertices. The degree of diver-
gence of the reduced graph is dg =F —n. In fact,
since we are considering the case f=n, this over-
all degree of divergence of the reduced graph is
the maximum degree of divergence to be found
anywhere in the reduced graph. This apparent
divergence is, of course, cut off by the shrunken
graph S which, at high enough momentum, ceases
to act like a point. Thus, the behavior of the
entire graph G, for k<<m, is m*F mF" =m*™"
which is strongly suppressed relative to #*™" .

Next suppose that f<#. A set of f lines which
can be severed to remove the fermion loop from
the graph is the external lines of some subgraph
S’ which contains the fermion loop. As m goes
to infinity, we can apply the result of case 1 to
the subgraph & to conclude that it behaves like
m*~f . The degree of divergence of the reduced
graph obtained by shrinking S’ to a point is
dg: =f —n<0. If there are no fermion loops in the

’

reduced graph, it is proportional to 2/~ " so that
the entire graph behaves like m*~ £2/~"  which,
since f =2 5, is suppressed relative to £*™". If the
reduced graph contains other fermion loops, the
graph will be even further suppressed.

We next consider the general case of 1PI graphs
and subgraphs with two or more external vector
mesons. The degree of divergence of any such
graph is d =4-n, which, in the case of n=2 or
n=3, is reduced to zero by making use of the
transverse structure (3.5) of the propagator and
the tensor structure of the three-point vertex.
Accompanying any graph is a set of counterterms
which effectively reduces the degree of divergence
of the superficially divergent graphs one step
further, to —1. Furthermore, because the sub-
tractions are performed at a momentum scale
k< m, the loop momenta are cut off at momenta
small compared to . For comparison purposes,
1PI graphs with n (= 2) external vector-meson
lines and with »o internal fermions behave like
£*™" up to logarithms.

We again focus on any fermion loop in the graph
and consider the f = case and f <n case sepa-
rately. In the first case, the above argument can
be repeated with the following modification. If
F< 4, then the #<m behavior of S with its counter-
terms will be

k* ¥ X terms of order 2/m or u/m. (3.11)

The first factor comes from the transversality of
the propagator and the tensor structure of the
three-point function. The second factor is present
because the counterterm subtracts the logarithmic
divergence at a low mass u relative to m. Sche-
matically,

Lo <o) ~[ogr off )]0 ()

(3.12)

It is now easy to repeat the rest of the argument to
show that this second factor produces a suppres-
sion of at least 2/m or u/m relative to the be-
havior of graphs without internal fermions. The
case f<n can be carried through as before by
making use of the f =n case.

An immediate consequence of the decoupling
theorem is that order by order in perturbation
theory the general 3 function of the theory (Eq.
3.9) reduces to the 8 function of the pure Yang-
Mills theory in the low-momentum limit

m?
B<—,g> B (&), (3.13)
—R2 7R ] 2/m2y . @2fm2y—o T CF

The entire renormalization-group formalism can
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thus be applied to this low-momentum region with
the heavy fields omitted. This will be discussed
further in the next section.

The decoupling theorem can be applied to the
problem of mass-shell behavior as well as low-
momentum behavior. As an example, we examine
the mass-shell structure of the fermion propa-
gator. As pointed out in Sec. II, this is a soluble
problem in QED because charge-renormalization
effects drop out of the renormalization-group
scaling equations. In the Yang-Mills theory,
what can be shown is that the only graphs that
contribute near the mass shell are those with no
fermion loops, so that the mass-shell structure is
essentially governed by the light sector of the
theory.

The general structure of the propagator is
given by Eq. (3.7). In probing the limit
m? = pP<m?, it is useful to perform the wave-
function renormalization subtraction on the fer-
mion close to its mass shell. Thus, suppose this
subtraction is performed at p* =m? - u? with
12 < m? rather than at p* < m? as done before.
Gauge invariance will then require subtracting
the vector-meson—fermion—-fermion vertex near
the fermion mass shell as well. Now, note that
the proof of the decoupling theorem did not depend
on where these subtractions were performed
since fermion lines entered only as closed loops.

With the new renormalization point, it can be
seen that any graph G without fermion loops gives
a contribution to, say, «(p?) of the form

o 58 ) (B o 8.

The decoupling theorem ensures that graphs with
fermion loops are suppressed in this limit simply
because the momentum flowing into them is small
compared to the mass of the fermion. This is
because one is very close to threshold and because
the subtractions are also being performed close

to threshold. Thus, if the sum of the perturbation
expansion has the same structure as each term

in the expansion, the function « (»?) becomes a
function of the dimensionless ratio (p% — m?)/u?
and the coupling constant g, in this limit. Now

the renormalization-group scaling analysis can

be applied to this function with the behavior of

8, governed by the 3 function of the pure Yang-
Mills theory. A power-law behavior, for example,
would emerge if the pure Yang-Mills theory pos-
sessed an infrared-stable fixed point.

IV. CONCLUDING REMARKS

In this section, we will make a few remarks
about extensions and other applications of the

decoupling theorem.

(1). As pointed out in the introduction, the de-
coupling theorem applies to any renormalizable
field theory in which different mass scales exist.
In particular, the internal heavy lines need not
occur only in closed loops. The theorem has
recently been applied to a unified model of the
strong, electromagnetic, and weak interactions
in which an overall simple gauge group SU(5)
is broken down to the group SU(2)xU(1) XSU(3),,,,
through the ordinary Higgs mechanism.'®'®* The
mass scale associated with this breakdown is
very large, on the order of 10" GeV. At labora-
tory momenta (of order 10?*! GeV), the super-
heavy vector and scalar meson fields associated
with the breakdown decouple except for their con-
tribution to renormalization. The resulting three
direct-product groups communicate with each
other only through superheavy exchange so that
they are effectively decoupled. A consequence of
this is that at laboratory momenta, one has three
effective coupling constants, each obeying its own
renormalization-group equation. These equations
can be used to trace the behavior of each of the
effective coupling constants down through the
momentum region where each of them is small.
This includes momenta small enough so that the
SU(3) ., coupling constant has become much
larger than the weak and electromagnetic coupl-
ings. Thus, the decoupling theorem plays an
important role in understanding a possible uni-
fication of elementary particle forces.

(2). We have so far applied the decoupling
theorem to situations in which the effective low-
energy theory [derived by throwing away terms
of order 1/m(heavy) or smaller| is described by
a conventional renormalizable Lagrangian with
interactions. Just on dimensional grounds, one
can see that this effective theory will never be
nonrenormalizable, but it can be noninteracting.
A simple example of this situation is the Yukawa
theory in which the mass of the scalar field is
taken much larger than the fermion mass. In
such cases, interactions will appear only to order
1/m(heavy). These effective interactions will,
on dimensional grounds, have a nonrenormaliz-
able structure. The apparent nonrenormalizable
divergences are, of course, cut off at momenta
on the order m(heavy).

Perhaps the most interesting example of this
situation can be found in the 0 model.!” What
happens here is that the chiral symmetry forces
the interaction to vanish to leading (zeroth) order
in 1/my%. Nonvanishing contributions are found
only when terms of order £%/m,? are kept. These
are the usual nonrenormalizable interactions of
the nonlinear ¢ model.'®
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(3). We return to the Yang-Mills theories to
make one last point. We have noted that without
knowledge of the infrared behavior of the pure
Yang-Mills theory, the mass-shell structure of
a heavy field coupled to the gauge field is unknown.
Thus, in any theory with an unbroken non-Abelian
subgroup, nothing is known about the mass spec-
trum of the theory. The only calculations that
are completely trustworthy in such a theory are
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