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The possibility of dynamically induced spontaneous symmetry breaking is investigated in a general
non-Abelian gauge theory with fermions. We present arguments which demonstrate how an

asymptotically free gauge theory with fermions can lead to massive vector mesons without the presence
of canonical scalar fields. In particular, the asymptotic freedom of the theory is exploited in an

investigation of the relevant Bethe-Salpeter equation beyond the conventional ladder approximation.
Differences between the Abelian and the non-Abelian gauge theories are discussed.

I. INTRODUCTION

Spontaneous-symmetry-breaking solutions in
non-Abelian gauge theories have received con-
siderable interest in recent years. In all models'
(for weak and strong interactions) that have been
studied so far, the presence of canonical scalar
fields in the Lagrangian is necessary for the
generation of masses for the vector (Yang-Mills)
mesons via the Higgs mechanism. However, there
is no suggestion from experiments that scalar
particles play any important role in weak or
electromagnetic interactions. Furthermore, in

strong interactions, it is difficult to retain the
desirable feature of asymptotic freedom in the
presence of canonical scalar fields.

Recently the alternative possibility, namely,
spontaneous symmetry breaking without introduc-
ing scalar fields into the Lagrangian, has been
revived by Jackiw and Johnson, ' and Cornwall
and Norton. ' They studied the case of Abelian
gauge theories. There, the mass of the vector
meson emerges when IT(q2) in the vacuum-polar-
ization tensor

Il„.(q) = (g„.q' —q„q.)II(q')

acquires a simple pole at zero momentum trans-
fer with residue g'A'. Then the complete vector-
meson propagator D»(q) in the Landau (trans-
verse) gauge becomes, for small q', with
n(q') g'x'/q', -

1
D»(q)= -f(g» —q„qvlq ) Q Qn( 2)

= —& (gn v qnqv lq ) n n) n ~

Such a pole arises from a massless bound excita-
tion in the fermion-antifermion channel, when the
fermion acquires a mass term (an additional mass

term in case the fermion has a bare mass already)
which breaks some symmetry of the Lagrangian.
To see this more explicitly, let us l.ook at the
following Ward identity:

q.I",(p, p+q) =» '(p+q) ~ '(p)T--
AP (p'),

a ~0

where S is the fermion propagator and I'~ is the
fermion-fermion-meson proper vertex with 7.'

symmetry [ T= y, = —T for chiral symmetry' and
T= T = T, for O(2) symmetry' in the Lagrangian].
A fermion mass term which does not commute
with T implies the left-hand side to be nonzero as
q-0. Thus j. ~ must have a pole. This pole gen-
erates via the Dyson-Schwinger equation the mass
of the vector meson discussed above.

In this work we extend this approach of symme-
try breaking to the case of non-Abelian gauge
theories. The motivation is clear. It is the non-
Abelian case that is physically most interesting.
What is more, it is the only known asymptotically
free' renormalizable field theory which has pro-
perties vastly different from those of the Abelian
case.

We consider an asymptotical. ly free non-Abelian
gauge theory with fermions, ' where dynamical
symmetry breaking occurs in such a way that the
vertices remain proportional to the structure
constants f ' of the gauge group In this .case,
it is consistent to assume that all the vector me-
sons can have a common mass generated by dy-
namical symmetry breaking, and the only Gold-
stone bound-state pole present in momentum q in

the limit q„-0 is the one in the fermion-anti-
fermion channel. The resulting Bethe-Salpeter
equation for the corresponding bound-state wave
function B '(p, p+ q) is very similar to that in the
Abelian case, except here the vertices have
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asymptotically free properties.
In fact, because of asymptotic freedom, we are

able to obtain an asymptotic solution for B(p, p+ q)
in the forward direction (i.e., q„-0) with large
p' (group indices suppressed)

where A is a number determined by the gauge

group and fermion representations. Assuming
that the Green's function with a mass operator
and a meson operator insertion, &I'(q), does not

have a pole in q„, then A is an explicitly deter-
mined number independent of the coupling con-
stant g. [The function b. l'(q) arises in the dis-
cussion of the asymptotic behavior of proper ver-
tex functions. ] The asymptotic solution for B(p')
is in contrast to the Abelian case, where the
Bethe-Salpeter equation can be solved only in the

ladder approximation. " To our knomledge this is
the first time where a Bethe-Salpeter equation
can be treated beyond the ladder approximation in

any relativistic renormalizable field theory. Thus

asymptotic freedom not only makes non-Abelian

gauge theory physically interesting in the realm
of strong interactions, but it also provides the

hope that nonperturbative calculations are indeed

feasible, despite its formal, non-Abelian com-
plications.

In the process of solving for B(P'), we shall also
demonstrate the consistency of asymptotic freedom
and the massiveness of vector mesons. This dy-
namical generation of mass is preferable to the

Higgs mechanism if one desires asymptotic free-
dom and the absence of scalar particles.

We also briefly discuss how a Goldstone bound

excitation in the two Yang-Mills meson sector
can arise. This may generate masses for the

vector mesons themselves in the absence of both

fermions and scalar mesons. Throughout, we do

not consider any physical bound states, a study
of which is an interesting project by itself.

In Sec. II we derive the Ward identity for pro-
per vertices in a non-Abelian gauge theory with

fermions. In Sec. III we discuss how symmetry
breaking can generate poles in II(q'). To simp-
lify the discussion, we consider, for the moment,

only the case where the vector mesons' masses
are all equal. Then it follows from the Ward-
Takahashi (WT) identity that the only Goldstone
bound-state pole present in any channel. with
momentum q at q„-0 is the one in the fermion-
antifermion channel. The resulting Goldstone
bound state decouples from all physical processes.
In Sec. IV me obtain a solution for the forward
fermion-antifermion bound-state wave function

B(p ) for large p; the renormalization equation,

II. PRELIMINARIES

In working with gauge theories it is convenient
to introduce a condensed notation. ' The sum-
mation convention mill be extended to include in-
tegration, and a simple general index i,j, k, . . .
may stand for all relevant indices and variables.
Whenever a more explicit notation is required
group indices will be denoted by a, b, c, . . . and

Lorentz indices by &, p„. . . ; e.g. ; a gauge field
will be denoted by A'„(x) or, in the condensed
notation, by A,

We consider a general system of fermions inter-
acting with non-Abelian gauge fields. We do not

commit ourselves to any specific model and, at
least for the moment, we leave the underlying

group unspecified. Explicitly, the Lagrangian is
given by

where

(2.1)

(2.2)

f ' are the structure constants of the (compact,
semisimple) group and [g] =g, 5 the correspond-

Wilson's operator-product expansion, and asymp-
totic freedom supplement the Bethe-Salpeter equa-
tion such that together they enable us to obtain an
asymptotic solution for B(p'). An illustrative
model where the vector mesons' masses can be
set to be equal is provided. In Sec. V we observe
that, if the pure multimeson channels also have
Goldstone bound-state poles (i.e. , via the WT
identity, the vector mesons do not have equal
masses), the leading contributions of such poles
to the mass generation of vector mesons are
identically zero. This seems to indicate that the
Goldstone pole in the fermion-antifermion channel.

plays a dominant and direct role in the mass gen-
eration, even in the presence of pure meson chan-
nel Goldstone poles. In this section we also argue
that the symmetry-breaking fermion mass Z" (p)
vanishes asymptotically as Z (P)-(lnP') ', inde-
pendent of the presence or absence of pure multi-
meson channel poles. It implies via the WT iden-
tity that the asymptotic behavior, B(P') -(lnP ) ",
as obtained earlier, remains unchanged even when

the vector mesons' masses are unequal. . This ex-
tends the validity of the discussions in Sec. IV.
Section VI contains the conclusion. In the Appendix
higher-order contributions to the Bethe-Salpeter
kernel discussed in Sec. IV are examined. They
do not contribute to the leading behavior of B(P ).
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ing gauge coupling-constant matrix. 8 is invari-
ant under the simultaneous transformation

Green's functions is given by'

W[J,q, n[ = f [ )Adydv [(d tM)

xp i ~ —~~2+J

4n 0n ~ Tnrn fm ~ (2.3) + 0i )[)i + Qi [[)i) d (2.4)

g„+gQ T „(d

We have defined the (real, antisymmetric) ma-
trices (f')[„=f~„. The group matrices T' be-
longing to the fermion representation may con-
tain parts proportional. to y' as well as 1. We can
take T' to be Hermitian. T' is defined by

y, T' = T'yo, i.e., it is equal to T' with all y"s
replaced by —y'.

As is well known the generating functional of

where detM is the Faddeev-Popov determinant
and I; is a gauge-fixing term. By performing
gauge transformations on t:he variables of inte-
gration with ' restricted by

u, = [M ')~ w[, , A, arbitrary (2.6)

and setting the variation equal to zero we obtain
the Ward-Takahashi (WT) identities for the gen-
erating functional of Green's functions'

1 5 t 1 5 ~ -, 1
+a 6J + i f[J 6J + ij M ~ 6J in[Tjj ~

6
— ni[jTj i4 =0,

(2 6)

where Or, aI Or
= -J', (2.12)

1- ao

A'; = — e„5'(x —x,), i =([i,, b, x).
g

We assume that the gauge-defining term I', is
linear in the fields and involves only A, , i.e. ,

(2.7) We also define the ghost propagator with the
gauge fields having the vacuum expectation values
8;:

S. [A] =S,,A, (2 6)
G[)~ [Q[]™[)))Qi+ Dii 61, - (2.13)

Then Mis given by

M~ [A] = E,i (A; + f;,A, ). (2.9)

where D is the boson propagator.
Using the relations (2.10)-(2.12) and the func-

tional identity

Repeated differentiation of Eil. (2.6) with respect
to the external sources J,q, q gives the series of
WT identities relating the connected Green's
functions of the theory.

However, it will be more convenient to look at
WT identities involving ProPer (one-particle-
irreducible) vertices. Therefore, writing W = e'
we introduce the first Legendre transform, '

5Z 5Z' — 5Z
S Q J & S

Q
& S 5q;

(2.11)

As is well known I is the generating functional of
all one-particle-irreducible vertices. From the
definitions (2.10) and (2.11) it follows that

r[tS, 4, 4] =Z[J, q, q] —J, I,. —q,. 4' —4,. q',

(2.10)

where the new variables g, , 4', , 4,. are defined
as follows:

5Vf —exp (iV[J]) = exp(iV[JJ)f 6
+

k

SJ J SJ

k

(2.14b)

D, , and S,, stand for the boson and fermion pro-
pagators, respectively. Reducible vertices, e.g. ,

which holds for arbitrary functionals f and V, it
is straightforward to rewrite Eil. (2.6) in terms of

and derive the following equation for the WT
identities in terms of proper vertices".

~r ~r, ~r
+a [@] 6 I ia + 64)

i'a 6y i'a =
S

(2.148)

where



2842 S.-H. H. TYE, E. TOMBOULIS, AND E. C. POGGIO

complete propagators, will be represented dia-
grammatically as shaded circles, whereas un-
shaded circles will represent proper vertices,
i.e., derivatives of I'. Other diagrammatic con-
ventions are shown in Fig. 1. B„.has then the
explicit representation shown in 1(b), similarly
for B;,. and B,", . To make things more transparent
we will use the condensed notation of Fig. 1(c).
Equation (2.14a) for the WT identities of proper
vertices has then the form shown in Fig. 2(a).

III. SYMMETRY BREAKING AND MASS GENERATION

A. Dynamical symmetry breaking

(a)

)j
BOI = gaia + tij

a&)a
(b)

Consider the Lagrangian (2.1), which is invar-
iant under the transformation (2.3).

Because of the non-Abel. lan nature of the system,
dynamical symmetry breaking may be introduced
in more than one way. The basis of the subse-
quent discussion will be Eq. (2.14).

Differentiating this equation with

B = -0--+===-.
OI 0 I

8'
oi a

Q II —-f-
ai I

(c)

8 8 18 —4 --T-----.—
Ol I

~+a &+», e=~= e=o

we obtain Fig. 2(b). Written out explicitly it has
the form shown in Fig. 2(c). By Lorentz invari-
ance the second term on the left-hand side in Fig.
2(c) is proportional to q" and the equation has the
structure

&&[~"+A" (~')] ~&!&(q, P, P+q)

=[&'3 '(P ~)]., —[&-'(P)2"].,
+ ~'" (v, P+ v) 3 '&& (P+ q) -A'"'(q, P) ~ '&. (P).

(3.1)

—F [ A l -&---~-=~ +0 a I I O I I

(d) O I I

FIG. 1. (a) Diagrammatic notations showing the various
particle lines and the relation between proper and im-
proper vertices. In this work straight lines are fermion
propagators; wavy, dashed, and dotted lines are meson,
ghost, and bound-state propagators, respectively. (b)
Diagrammatic representation of the quantity B~ occurr-
ing in (2.14). (c) Further diagrammatic notations con-
cerning the quantities B~'s and their derivatives. (d)
The generalized Ward identity for proper vertices,
Eq. (2.14), in graphical form.

-0--r=L
0 I

+ I I - Q - I I - ~ - = 0o i i k o i i j

(o)

p+ q, b

P, C

q,o

p+q, b

P&C

0= Tdc
d p+q, b

0
Tbd

c p, d

q, o

Td

j I p+q b

TI

J I P, C

-k

(b)

FIG. 2. (a) Ward identity for the meson-fermion-antifermion proper vertex. (b) More explicit representation of (a).
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The functions A, A"' are finite quantities in the
renormalized theory.

Dynamical symmetry breaking may be introduced
by assuming

T~- (P) —S-'(P) 7 ~0. (3.2)

[II "(P) I'] +(g"'P' P"P")A"'(P)[I-I(p ')I']

—(g"'P'-P"P')A""(P)[t'Ii(P')]„. (3.4)

For the moment let us neglect the A functions in

Eq. (3.3), which can then be written as

lim q" I'„"~'„(q,p, p+ q)
'u

= (g, „P'-P,P, )f.„(H.(P') -11,(P') . (3.5)

Here we have taken ll„(p') to be diagonal,
II«(P') = 5«II, (P'), without loss of generality.
Dynamical symmetry breaking introduces masses
for the vector mesons so that ll, (p'-0) = p,, '/p'.
If the vector-meson masses are different, then
Il, (p') —G,(p') x 0, and hence Eq. (3.4) implies
that I'p~', (q, p, p+ q) has a pole in q as q„- 0. The
inclusion of the A functions does not change this
conclusion. There will be massless bound-state
poles in other proper vertices as well. , as re-

The WT identity (3.1) now implies a pole in I"~~'

as q„-0 and gives the residue in terms of (3.2).
The pole will be attributed to a bound massless
excitation (Goldstone boson) in the fermion-anti-
fermion channel (Fig. 3).

The existence of this massless bound state will,
of course, result in poles in other Green's func-
tions of the theory. However, because of gauge
invariance, the residues of all these vertex func-
tions will be restricted and interrelated by WT
identities. In particular, consider the WT identity
satisfied by the 3-point vector-meson vertex. It
is obtained by differentiating Eq. (2.14) and is
shown diagrammatically in Fig. 4. As in the case
of Eq. (3.1), this equation, when written out ex-
plicitly, has the structure

q„(~"+A (q')) I'„~'.(q, P, P+ q)

=i [t'D '„,(p+ q)].,-i[D-'„(p) t '].,
+A'u. (P q)D '~p, (p+ q) -A~a (P, q)D 'x'„(p),

(3.3)

where D„'„'(P) is the meson propagator. Through-
out this work, we retain the real completely
antisymmetric property of the structure constants
(t ')„=f, even in the presence of symmetry
breaking.

Then, with A«", (p, q) =f«, A" (p, q), the right-
hand side of Eq. (3.3) becomes, in the limit q„- 0,

FIG. 3. The massless bound state in the fermion-
antifermion channel. T is one-particle-irreducible.

quired by WT identities. This is a rather general
situation of dynamical symmetry breaking. It is
quite complicated, involving a set oi coupled
Bethe-Salpeter equations for the various mass-
less bound-state wave functions.

From Lorentz invariance, we see that the
massless scalar pole contributions to
I" „'(q, p, p+ q), I'„&,'„(q, p, p+q), the ghost-ghost-
meson vertex function y~'(q, p, p+ q) and the four-
meson vertex function I'„„&t(q, p, p+ q+r, r) must
be of the following forms:

where the bound-state wave functions B and P,. are
assumed to be nonzero as q„-0.

There can also be present other poles, such as
in I'„"x'„(q,P, P+ q),

(q p, P q)l

[I (q )p (p+q p)

+I (q')q PR""(p+q p)] (3 10)

However, such poles (the last term on the right-

q, a

p+q, b, I

I

p
+

q,a p,c, X

p+q, b, v

p, c, )

p, c, X

+
+q, b, v

FIG. 4. Ward identity for the 3-point vector-meson
proper vertex.

I' „'(q, P+ q) I,.„=q„f"(q') .&'"(P—,p+ q), (3 6)

I'„'"; (q, P q)l,.„= q„f"(q ') ,P,'."(P—+ q, P), (3 'I)

~ „'(q, P + q)l p...= q„& (q ') —. I'"; (P, P + q), (3 .&)
q

I'„"„~t(q,P+ q+ r, r) I

(q') 2I3'v'k'p'(P, P+q+r, r), (3.9)
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hand side) are not required by the WT identity
and dynamical symmetry breaking. These poles
(which wil. l be called second-order poles) may
be present only when q„w0 as q'-0. We will not
discuss the existence or absence of all second-
order poles. In our discussions (e.g. , on the
Bethe-Salpeter equations) we take the limit q„-0
where these poles are negligible, if present.

In the weak-coupling limit, it has been shown"
that the Bethe-Salpeter equations do not have a
solution for the bound-state wave function
P'~"(P, P+ q), but can admit a second-order wave
function R'~ (p, p+ q). Consistency with the WT
identity (3.3) then requires that all the vector
mesons must have a common mass (induced by
dynamical symmetry breaking). We do not know
if the general case (i.e., unequal masses) exists
in the asymptotic free limit or not. Here we
consider, for the moment, only the case where
all vector mesons' masses are equal. Then
I"~~~'„(q, P, P+ q) does not have a pole in q at q= 0.
This is true also for the ghost-ghost-vector-
meson vertex; this follows from the %'ard-Slavnov
identity satisfied by this vertex which can be
obtained from (2.6). In fact, just from gauge
group symmetry, Bose symmetry, and I orentz
invariance, it is straightforward to see that
I &„', cannot have a scalar, massless simple pole
when the vector mesons (a, A. ), (h, g), and (c, ~)

have the same mass p, . However, the vector
meson does acquire a mass because the mass
generation mechanism exhibited below (Sec. III B)
is operative as l.ong as I'~' has a pole. The same
holds for all higher vertices that contain only
external vector-meson lines, in particular for
the 4-point vertex the WT identity for which is
given by Fig. 5(a).

As q„- 0, the only pole left is the fermion-anti-
fermion Goldstone pole, and the set of Bethe-
Sal.peter equations reduces to the simple one dis-
cussed in Sec. IV. The situation is then exactly
analogous to that in the Abelian case treated in
Refs, 2 and 3 where, from gauge invariance, we
again have q„I'" "' "=0 [Fig. 5(b)] for all vertices
containing only external photon lines. The only
difference in our case is that, as we shall see,

g, Q
+

g,O

= 0

r, X, b

0 0
g ~ o

~vC

(b)

FIG. 5. (a) Ward identity for the 4-point vector-meson
proper vertex. (b) Ward identity for n-point vector-
meson vertex: (i) in the Abelian case, (ii) in the non-
Abelian case in the limit q&- 0.

the substitution of a non-Abe1. ian vector meson
makes the theory asymptotically free and allows
a treatment of the Bethe-Salpeter equation beyond
the ladder approximation.

""()I,... =q"I (q') —,(-q'I" (q'))

; &0&v ~~~~~
(3.11)

where I (q )~,-o =— A.
' . Therefore, nonvanishing

'(P, P+q), R~&'„(P, P+q), etc. , provide a non-
vanishing mass matrix for the vector meson. In
the unequal-masses case, the P,. poles should be
added to Eq. (3.11) as well.

B. Vector-meson mass generation

Consider now the vacuum-polarization tensor
lI„,(q), the Dyson-Schwinger equation for which,
derived by standard methods, has the form shown
in Fig. 6. As q„-0, the pole part of lI(q') in
II „"„(q)is given by Eq. (3.11) (see Fig. 7)

FIG. 6. Dyson-schwinl, er equation for the vacuum-polarization tensor II».
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pole

~ ~ ~ +

~ ~ ~ +
-2

FIG. 7. Graphical representation of (3.11).

C. Decoupling of Goldstone boson dk
B(P') = Tr, S (k)B(k')S(k)K (k, P), (4 I)

The parts proportional to q"q' in the meson
propagator do not contribute when acting on on-
mass-shell vertices. This follows from the WT
identities as in the Abelian case. Therefore, the
demonstration of the decoupling" is exactly an-
alogous to that in Ref. 2 and need not be repeated
here.

IV. THE GOLDSTONE BOUND EXCITATIONS

In Secs. II and III we assumed that the theory
possesses an asymmetric solution and then pro-
ceeded to examine the consequences of this as-
sumption. This was accomplished with the help
of the general framework of WT identities and
Schwinger-Dyson equations that relate the various
Qreen's functions of the theory in a manner con-
sistent with the requirements of gauge invariance.
We next turn to the question of whether the as-
sumption can actually be implemented, i.e. ,

whether a symmetry breaking solution can exist.
The Bethe-Salpeter equations and the operator-
product expansion in conjunction with the asymp-
totically free behavior of non-Abelian field theory
will be our main tools in discussing this problem.

We consider the case where symmetry breaking
is introduced with a common vector-meson mass.
Then only the fermion-meson proper vertex func-
tion can have a pole in the single-meson channel.
(See Sec. V for the removal of this constraint. )

To obtain the fermion-antifermion bound-state
function B(p, p+ q), we reexpress the fermion-
meson vertex function in the Bethe-Salpeter form
in Fig. 8(a), where the Bethe-Salpeter (2-fermion
irreducible) kernels exclude the one-meson inter-
mediate state. Only the fermion-antifermion-
meson vertex function has a massless scalar pole
as q-0. Therefore, equating the pole terms of
Fig. 8(a), we obtain, using Eq. (3.6), Fig. 8(b).
Thus B(P,P} must obey this (forward} homogeneous
Bethe- Salpeter equation. Clearly, the function

B(p, p) = B(p') obeys multiplicative renormalization
so we can consider the renormalized version of
Fig. 8(b),

where the group indices are suppressed. S(k) is
the full fermion propagator.

In this section we will show that the bound-state
wave function satisfying the Bethe-Salpeter Eq.
(4.1) has a solution

B(P'), „(lnP') "[I+ O((lnP') '}j, A

(4.2)

and that, furthermore, this solution is obtained by

simply considering the simplified form of Eq.
(4 I)

B(P') = Tr, S(k)B(k')S(k)
d4k

x I'"(k, P)D„, (k —P)r"(k, P), (4.3)

where I" is the full proper fermion-meson vertex
function and D„, is the full meson propagator.
Note that this is not a ladder approximation (see
Fig. 9). Equation (4.3) and its solution, Eq. (4.2},
follow directly as a consequence of the fact that
non-Abelian theories are ultraviolet stable as the
effective coupling constant approaches zero (as-
ymptotic freedom). If the function B(p, p) were a
Qreen's function one could automatically establish
a result of the type Eq. (4.2) by using renormaliza-

(a)

+ O(q~)

FIG. 8. (a) Dyson-Schwinger equation for the fermion-
antifermion-meson proper vertex. (b) The zero-mass
scalar pole part of (a).
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tion-group Callan- Symanzik arguments. " In fact,
by using this type of arguments together with the
operator-product expansion" (in momentum space)
we find that these are in agreement with Eqs. (4.2)
and (4.3}, and that these provide the power A which
could not be otherwise simply obtained from the
Beth-Salpete r analysis.

To find A and study Eq. (4.3), we require some
of the known results of asymptotic free (renormal-
izable) theories. In the next two subsections,
relevant properties of the non-Abelian gauge theory
are summarized.

=~= n(g, ~), ~(0, g, n)= ~

t= 1n~.
(4.12)

FIG. 9. Graphical representation of Eq. (4.3).

If the above equations admit a solution such that
A. Asymptotic free theory»'

lim g (t, g, a )
.= g„, (4.13)

I "'(P;}= Zt„) "'r'„"„',„„„,„,.„,(P;), (4 4)

are finite functions of the renormalized charge g,
the gauge parameter n, and the renormalization
point p. I"'(P, ) then satisfies the renormalization-
group equation"

V
—+ P(g, ~) —~ "—(g, n)+ n(g, ~)—8 B |n] B

Bp Bg BQ

x F"(g, o. , p) = 0, (4.5)

where

13(g, ~)= t,
g„,a„,A t'ixed

(4.6)

1 Br'"'(g &) =
2 p e—(inZ&. i)I2 Bp, g, a+, A fixed

(4.7)

n(g, o) = -»~, (g, ~)

1= —2a —p. —ln Z,
aft ~t&xed

(4.8)

Pure dimensional analysis implies that

I'"'(x P;, g, t }= v' " I'"'&-n (n) ~pi
(4 8)

so that Eq. (4.5) can be rewritten as

[n] B

BA.
' Bg

A. ——P(g, n) ——4+ n+ y" (g, a) —q(g, a)—
BQ

xI "
(Ap;, g, p, a) = 0. (4.10)

This equation can be most effectively solved by
introducing the effective coupling constant g(t, g, u)
and the effective gauge parameter a(t, g, a):

d-
d, g= P(g, ~), g(0, g, o)= g (4.11)

The renormalized one-particle-irreducible (1PI)
Qreen's functions I'" (p;), given by (with Z~~ as
a product of the relevant renormalization constants)

d
P(g= 0) &0.

dg
(4.15)

The theory is also asymptotically determined by
the Landau gauge (n = 0} if

—q(a = 0) & 0. (4.16)

Since asymptotic freedom is a physically desir-
able feature, we will only consider theories that
are asymptotically free. From Eqs. (4.8) and

(4.10), we will note that if we begin in the Landau
gauge (a = 0) where q(g, a) = 0, then, the proper
vertex functions will remain in the Landau gauge
under a change in renormalization point. Thus we

may stay in the Landau gauge (a = 0) whenever
convenient. We will come back to discuss the
gauge dependence later.

B. The operator-product expansion for the g& B vertex

Following Callan, "using a generalization of the
Wilson operator-product expansion in momentum
space, we would like to analyze the behavior of
the vertex function I'&s&(P„P„P,) in the following
limits: (1}p, = p —q/2, p, = -p —q/2, p, = q, all

lima(t, g, o. }= a„, (4.14)

then we say that g„(o.„}is an ultraviolet fixed
point. This fixed point is determined by the zeros
of P(g, ~t) fq(g, u)~; t.e. , P(g„, o' ) = q(g„, &„)= 0
(there may exist more than one solution, of
course}. The fixed points g„of the renormaliza-
tion group will be ultraviolet (uv) stable if and

only if (d/dg)P(g, n) I,„&0, and similarly for the
gauge fixed points n„. The asymptotic behavior of
the Green's functions I""' are then governed by
the asymptotic values of the effective coupling
constant and the effective gauge parameter. In
particular, P(g= 0) = rt(a = 0) = 0 is true. Thus,
we conclude that the theory is asymptotically free
if and only if
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momenta large, with p larger than q (see Fig. 10).
This will help us to study the Bethe-Salpeter ker-
nel at certain asymptotic values of its momenta.
(2}p, = p —q/2, p, = p —q/2, p, = q, where p is
large and q is finite (and in fact the limit q„-0).

In the first case we have

Under these conditions Eqs. (4.18) to (4.20) can be
readily solved to yield

r&s&(p- k, q-k) cc g, (ink') ' o"0 'o"0

(4.24)
and

r~.&(p- q/2, -P —q/2, q) = pc~~(p)r~(q).

(4.17)

where [Q}sums over a complete set of operators
which make the expansion valid. F& is effectively
a "one-point" Q-inserted Green's function. As
P'-~, the leading operator in the sum is, of
course, the fermion operator g. I"&&~ obeys the
following renormalization-group equation (in the
Landau gauge) [see Eq. (4.5)]:

a a
u S

+ f)(g)S 2r~ rs r&s&(P, q) = 0.

(4.18)

Since F~&, with P as the fermion field operator,
obeys

rtpB 0( P —q/2, -P —q/2, q)

~~, g,(lnq') '~0"o(lnp') 'o"o
oo

x constant +0, . (4.25)
Inq2

lnp2

S(k) = i —S (ink')"o'"
a2 '

. k
= i „—,S~(k), (4.26a)

It should also be recalled that the asymptotic be-
havior of the vector-boson and fermion propagator
is given by

a a
v —+ P(g) —2r —r- (q) = o (4.19)

= —i5" g — " " —d (Ink'}"0"o
p2 y2 0

(4.26b)
we obtain, using Eqs. (4.17), (4.18), and (4.19),

such that

+ P(g)s——r C~ (P)= o,
8 8

(4.20) S~(k)d"'(k')rqsq(k) (4.26c)

where

r~ = f+'+ o(g'),

r. = c~'+ 0(g'),
(4.21)

Let us now consider the second case
r&&s(P —q/2, -P —q/2, q} where P is large and q
is finite. Introducing an operator-product expan-
sion

1 a

2 Blnh (4.22a}

8
a 2 81~ lnZ, , (4.22b)

P( g) = —
2 g '+ 0(g')~b

are, respectively, defined to be [following Eqs.
(4.6), (4.7), and (4.8}]

r«.(p-q/2, P q/2, q)--
gC', (P*q/2)r~(q)-, (4.27)

we can again use the renormalization-group equa-
tions analogous to Eqs. (4.18) to (4.20).

Since q„remains finite, the zero on the right-
hand side of Eq. (4.18) should be replaced by
EI &s&(P, q), which is r»& with a mass operator
insertion. We also have

""= 'si~(z ) (4.22c) , a a
, + p(g) —r —r .r (q) = &r(q)

Bp, Bg
(4.28)

Zy Z2 and Z, are the vertex, the fermion pro-
pagator, and the vacuum polarization renormaliza-
tion constants, respectively, and A is the ultra-
violet cutoff.

When the theory becomes asymptotically free,
the effective charge goes like

P) Pp

22 42~" b ink0
(4.23)

Pp

FIG. 10. The proper vertex with momenta P; .
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+ Il(li (q}(lnp2)cp/bp P 2 fp/bp 3/2 +

(4.30)

where we have used Eqs. (4.28) and (4.29), where
I "(q) is I'2(q). Clearly, if I'&bs(P, q) has a Pole
in the fermion-antifermion channel as q-0, as in
Eqs. (3.1) and (3.2),

B' .T'P 2-2( p, q)

then at least one of the I""(q) must have a pole as
q-0. If f "(q) has a pole then we get"

B(p2} ~
(1 p2)cp/bp-P -2 fp/ bp-I/2 (4.31)

where n I'(q) is I's(q) with a mass operator inser-
tion; it then follows from Eq. (4.28) and Eq. (4.18),
with &I'&s&(p, q) on its right-hand side, that

, a a [ai'(q) ~""]
8', Bg

+ P(g) + fy+ p C bib(P)I' s(q)

= 0, (4.29)

where

d, r = Cb~-, (p)nr"(q),

and

p = [&I'(q) —&I"(q)]/I'(q) I, -.
is a constant. Since the leading term in the opera-
tor-product expansion obviously comes from ft)

being the meson field operator, we obtain

I ~ Qp)( q()lnp2)+ cpb/p P 1/2 2fp/bp

Of course, we have assumed that I'~&&~ can have
a pole. To demonstrate the existence of such a
pole, we have to examine the Bethe-Salpeter equa-
tion.

C. Solution to the Bethe-Salpeter equation

We want to show that Eq. (4.2) is consistent with
a solution to the Bethe-Salpeter equation (4.1}.

Let us start by considering the no-loop, one-
boson exchange part of the kernel. This is given
by Eq. (4.3) where, for reasons of simplicity, we
do not display group and spin indices.

We will discuss Eq. (4.3) in the Euclidean space
(i.e., the standard Wick's rotation is performed).
Because of the presence of mass terms, the
usual infrared divergence of non-Abelian gauge
theory is removed. For large momentum k, the
mass terms can be neglected. Thus we can in
effect drop the mass terms and introduce an
effective lower cutoff A.'. We further assume that
&2 is large enough (and/or asymptotic behavior
sets in early enough) that asymptotic behavior is
valid inside the integral for A. &k&~. Since the
integration is carried out with fixed momentum

P, Eq. (4.25) for the proper vertex functions
I'„(p& k) and I'„(k & p) is substituted into Eq. (4.3).
The propagators are given by Eqs. (4.26) and (4.27).
Putting all these together, we obtain, in the Landau
gauge,

B(/Bl = B,f, B(k')g ' l ~ 0(,) ~ Bf'„",B(,k*)g.*(,'"",
) l 0( B), (4.32)

dx 1+xdx dx b, x ' (4.33)

where B,"' is the constant B, evaluated in the
Landau gauge. For x-~, we see immediately

where X' is an effective cutoff due to the presence
of mass terms (and the lack of infrared divergence).
The solution we obtain from Eq. (4.32) is indepen-
dent of ~', as should be the case if the assumption
on X' stands any chance of being correct. The con-
stant B, is a number [it contains the factor 1/(2w)'J
which depends on the Feynman rules, group
properties, angular integrations, and the coef-
ficient from the operator-product expansions.
B, is left undetermined, for the moment.

Now Eq. (4.32} can be solved simply by reducing
it into a differential equation. In particular, in
the Landau gauge f, = 0, and we neglect for the
moment the nonleading terms in Eq. (4.32). Then
we obtain that, with x= lnP',

that B(x) = x " can be a solution of Eq. (4.33).
Substituting it into Eq. (4.33) we obtain

I&;

A(A+1)x "2=Ax " '+ 'x " '
6,

so as x-~, there will be a solution of the form
(4.2) with

Bo
bo

We note that we have dropped lower-order terms
for the proper vertex function in the solution of
the Bethe-Salpeter equation. There may be present
terms of the order [(lnp')/ink']" for k'& p' which
will also contribute to the leading term of B(p').
These we can easily include, bringing only a change
in the coefficient B,. For consistency, maybe we

should also include the Goldstone excitation ex-
change into the kernel. This again changes only
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the coefficient B„giving the same logarithmic
form for B(P ) in the asymptotic limit, with A
being an undetermined number. As is clear, A
must be positive in order to render the integral

in the Bethe-Salpeter equation convergent. The
bound-state wave function B(P') must also satisfy
the Bethe-Salpeter normalization condition" (for
q„- 0}

d4k d4k'
T k, , kk(k) ktk k)s(k)(k )'k'(k —k ) ~ k[k'~ klk(kk((k, k', klk(k' k)k(k )]B( 'k)= kk

(4.34)

It is straightforward to see that for the integral to
converge, A must be greater than —,'. So the exis-
tence of a scalar massless pole requires A + —,'. The
normalization condition imposes a more stringent
requirement than the convergence of the Bethe-
Salpeter equation. We will discuss the constraint
on A later.

Of course the solution discussed so far has been
derived for the one-boson exchange diagram only.
But one can show that all higher-loop contributions
to the kernel are nonleading by powers of logs,
in comparison with the one-boson exchange part
of the kernel we just examined. This is a conse-
quence of asymptotic freedom. In the Appendix
we show this by evaluating the one-loop graphs
and then give a general argument for more than
one-loop graphs. We should stress that in leading
asymptotic order, we obtained a consistent solu-
tion for the (forward) Bethe-Salpeter problem.
This must be contrasted with the Abelian case
where the existence of a solution hinges crucially
on the ladder approximation and on a weak-cou-
pling assumption. We should stress that one could
proceed as in the Abelian ease and get a solution
B-(P') '. In view of our findings we see that the
usual ladder approximation does not pick up the
leading term of B(P') in asymptotic free theories.

We note that in a gauge where a 4 0, there is an
extra complication to the Bethe-Salpeter equation
(4.3). For a kk 0, the vector-meson propagator
will have an extra term proportional to (xk„k,/k'
in addition to its transverse part. For k- P,

r„(k, p) $„„-~(k - p, p)
(k

not contribute because of the transverse nature of
the vector-meson propagator (4.26b).

D. Discussion

In principle, the power A of B(P') should be ob-
tainable from the Bethe-Salpeter equation. Unfor-
tunately, we do not know how the calculate it.
However, from Eq. (4.30), we obtainA if

&. =
6 .8 C.(G)- —,'T(R)],1

6+ H~& —&)C2(G) —
3 &(R)],

1

f() = nC2(R) )
1

(4.35a)

(4.35b)

(4.35c)

vanishes. For the rest of the discussion, we as-
sume that p = 0 [i.e., AI (q} does not have a pole in
q]. The plausibility of this assumption is better
seen if we use the new renormalization-group ap-
proach. " The functions b f' and 4I' defined earlier
are replaced by mass derivative terms m, a/am,
operating on r»&(P, q) and r()(q}, respectively.
The mass derivative terms probably include both
the symmetric and symmetry-breaking masses.
Since they all vanish asymptotically (see Sec. V
for the asymmetric mass term), the leading be-
havior of Ca&& is given as if the extra term (= p) in
Eq. (4.29) is zero.

The normalization condition of the Bethe-
Salpeter wave function B(p') requires

A = —c,/5, + 2f,/b, + + j & —,',
where

Thus in Eq. (4.32) the right-hand side of the Bethe-
Salpeter equation will have an additional term due
to this pole term.

This additional term cannot be neglected and the
analysis of the Bethe-Salpeter equation (4.32) be-
comes much more complicated. In the Landau
gauge, the pole parts of r ~(k, p) and I', (k, p) do

and p has been taken to be zero (the rest of the
discussion on the gauge dependence can easily be
modified in the case where the assumption that

p is zero is not valid). The number j is an integer"
[see Eq. (4.30), where j = 0 for the leading term].
C,(G) is the value of the quadratic Casimir operator
for the adjoint representation of the gauge group
G: C,(SU(n))= n T(R) is defined . by N Tr(X'X )
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= T(R)o" where A' are the matrices of the repre-
sentation R of the gauge group 6, and N is the
number of such representations. From Eq. (4.35},
A becomes

13C2(G) —8T(R) —3a[C2(G) —2C, (R)]
22C, (G) —8T(R)

the gauge parameter behavior more closely. " To
order O(g'),

n( g, o) = —
16„2 [( v' —o)C,(G) ——',T(R)]g'

g' 13 8 T(R)8' ' 3 3C(G) )
(4.36)

In the Landau gauge, constraint (4.36) becomes

8(1 + j)T(R) & (13 + 22j)C, (G) . (4.37)

= a(b —a)a,
d'l(g& +)

(b 2 )
dQ

(4.40)

(4.41)

T(R) & ~C.,(G) . (4.38)

This means whenever we have a bound excitation,
the asymptotic free condition is automatically
satisfied; e.g. , if G is SU(3}, then one can accomo-
date up to 16 triplets of fermions with asymptotic
freedom, but the maximum number of triplets is
reduced according to Eq. (4.37} if we also want

Goldstone bound excitations for vector-meson
mass generations.

The condition (4.37)holds only in the Landau gauge.
However, we have learned earlier from the renor-
malization-group equationthat, following Eq. (4.8),
we can consistently work in the Landau gauge where
the renormalization-group equation is particularly
simple. In this gauge the leading term f "(q) in Eq.
(4.30) can have a Goldstone pole, and A is given by Eq.
(4.36) with o = j = 0. To see what happens if we
start at some other gauge o.w 0. let us first recall
that, from Eqs. (4.12) to (4.16), a = 0 (the Landau
gauge) is a uv-stable fixed point if Eq. (4.16) is
true.

In the asymptotic free limit, P(g, a) to the lowest
nontrivial order [O(g')) is gauge independent. This
gives the gauge-independent constraint (4.38}. In
the limit of small coupling constant g-0, we cal-
culate q(n, g} to lowest nontrivial order [O(g')].
From the definitions (4.8), (4.21), (4.22), and
(4.35), we obtain the following constraint from
Eq. (4.13):

T(R) & PC, (G) . (4.39)

For groups that satisfy Eqs. (4.38) and (4.39), if
we start at a gauge with small but nonzero e, the
effective gauge parameter a approaches zero
asymptotically so that the theory is determined
by the Landau-gauge behavior to the leading order.
For j= 0, however, conditions (4.37) and (4.39)
mutually exclude each other, since Eq. (4.37) be-
comes

T(R) & —", C,(G). (4.37 ')

To investigate Eq. (4.37a) we have to examine

Recall that the asymptotic free condition is, follow-
ing Eqs. (4.15), (4.21), (4.22), and (4.35),

When b & 0 [i.e. , '-,'C, (G) & T(R)], a = b is a uv-
stable point. This means if we begin with any
gauge parameter ot &0, the asymptotic behavior is
determined by the gauge n = 6 & 0"; that is, c,
vanishes asymptotically, and f, becomes a positive
number [see Eq. (4.35c)]. Again it is straight-
forward to see the normalization condition (4.34)
is satisfied for j= 0.

To summarize, we have shown that the Bethe-
Salpeter equation has a solution for the bound-
state wave function B(p ) in the large-p' limit
with the form (lnp') "provided A is greater than

This implies that, from the operator-product
expansion, the leading term [in Eq. (4.30)] I""(q)
can have a pole as q-O. Then the operator-pro-
duct expansion [Eq. (4.30)] tells us that B(P') is
given by"

B(P) - (InP')"'"-'"-'
&large

(4.42)

and the constraint (4.36a} must be satisfied. We
notice that, although B(P') is in general gauge
dependent, " the constraint (4.37a) should be a
gauge-independent statement. That B(P') is gauge
dependent should not be surprising since it is
effectively a mass-inserted propagator which is
well known to be gauge dependent. (One should
mention that in recent investigations" of the ef-
fective-potential method, an alternative analysis
of the symmetry-breaking problem, one finds the
potential, at least at the one-loop level, to be
gauge dependent too. ) Of course what should be
relevant is that physically meaningful objects be
gauge independent. For instance, the Goldstone
bound excitation, with a gauge-dependent coupling,
decouples in all physical amplitudes, independent
of the gauge.

We emphasize that the operator-product expan-
sion tells us that, if a massless, meson pole
exists in the fermion-antifermion channel of the
vertex function I'&@~, and if the existence of this
pole is consistent with asymptotic freedom, then
B(p') is given by Eq. (4.31), for large p . To
demonstrate the existence of such a pole consistent
with asymptotic freedom, we have to examine the
Bethe-Salpeter equation (4.1) for B(P'). Once we
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demonstrate the existence of such a solution with
A &, then it must be of the form (4.42)." For
the formula (4.31) to be meaningful, it is crucial
to note that the use of the renormalization-group
equation to obtain the asymptotic behavior of
Green's functions does not require the existence
of a convergent perturbation theory (e.g. , weak
coupling approximation). For asymptotic free
theories, it is sufficient to assume that perturba-
tion theory yields an asymptotic expansion of the
relevant functions. Thus one should not be sur-
prised to find consistency between the presence of
a pole in I'&&~ and asymptotic freedom.

We repeat that we obtain the logarithmic form
solution for B(P') with large P' by assuming that
the lower part (A. &k &0) of the integral [Eq. (4.3)]
is not dominant. We believe this assumption is
justified a Posteriori in the Landau gauge by the
solution one obtains from the operator-product
expansion (4.30) and (4.42}.

We conclude this section with two remarks:
(1}We note that the following form of the effec-

tive coupling constant has been suggested in the
lite rature4:

2=
1+ ~k+lnk

2

Q lgP20

The same asymptotic form can be reached by
letting g' get large and keeping k away from unity.
For string interactions, g is probably quite large;
hence, in this case at least, the asymptotic ap-
proximation used in this section is valid even for
intermediate Euclidean momenta. Here one as-
sumes that P(g) has no other zero besides the
one at g= 0.

(2) As an illustration, consider the following
artificial model: an SU(2) gauge group with three

doublets of fermions, whose prcpagators are given
by

S; '(p} = p- Z, (p}—Z, (p)o; (i not summed),

where i = 1, 2, 3, for the three fermion doublets
and [o;,c,] = i~,»o„. The three independent sym-
metry-breaking masses Z,"(p) can be adjusted so
that the three vector-meson masses are equal.
This happens with Z; (P) being all equal. In the
case where second-order poles exist, there will
be enough free parameters that a common vector-
meson mass can be achieved much more easily.

V. D1SCUSSION OF THE GENERAL CASE

Up to now we have discussed and analyzed in
detail what happens if the vector mesons' masses
are all equal. Here we briefly discuss some of
the consequences when the vector mesons' masses
are different. Now all the basic vertices of the
theory, /BE, BBB, BEBOP, and @By, are assumed
to contain a zero-mass bound-state excitation.
Using the general Schwinger-Dyson equations re-
lating these vertex functions, and the expressions
for them in the Bethe-Salpeter form, we deduce
that the various bound-state functions obey a set
of coupled Bethe-Saipeter equations [neglecting
O(q') terms] (see Fig. 11) where B,P„P„P,are
the two-fermion, two-meson, three-meson, and
two-ghost bound-state wave functions, respec-
tively; the kernels K„, K„, K,3 K4 K2 K23,
K24, K33 K34 and K44 are the two-fermions, the
two fermions to two mesons, the two fermions
to three mesons, the two fermions to two ghosts,
the two-rnesons, the two rnesons to three mesons,
the two mesons to two ghosts, three-mesons, the
three mesons to two ghosts, and the two-ghosts
irreducible kernels, respectively. If there exists
a zero-mass excitation pole in the 3-meson ver-

~ e Ki~ +" Pp Kgi + ~ ~

~ ~ e P~ ~ ~ 0 P K(g + ~ - pg Kpp + " Pp~==—Kgp + - P4 ,'K@4
t

'"(B) 23 2 "'QP2 223 3 ~ ~ e p4 K34

~ ~ ~ p B K)4( + --- Pg Ky)
/

]+ " Ppy -=K~l
WWW /

+ -~ P4 I
M W

FIG. 11. Complete coupled set of Bethe-Salpeter equations for the bound-state wave functions B, P, .
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tex function, then following the steps of Sec. IV
we can study, using the operator-product expan-
sion methods, the behavior of the three-meson
vertex function 1 t,'„'„(q, XP„XP,) as X becomes
asymptotically large. The result is

I'~b„', ~ A(lnx) coybt& ' '[u'"(q)+u'"(q)(ink} '

+ 1 (»)
This suggests the wave function P, to have the
form

(5 2)

The asymptotic behavior of the other bound-state
wave functions P; and 8; can be obtained similarly
if we can establish their existence. However, the
investigation of the existence of poles in the vari-
ous proper vertices via the complicated set of
coupled Bethe-Salpeter equations is difficult. In-
stead of investigating this general situation, we
discuss some consequences of the bound-state
wave functions P, and P, .

The presence of ghosts is nothing but a gauge
effect. We take their masses to remain zero.
Then the massless ghosts do not have the neces-
sary binding energy to form a bound state. Of
course, they may still couple to the Goldstone
bound state via other channels, such as the two-
meson channel. For the rest of this section, we
neglect the ghost-ghost bound state. Alternatively,
one may want to carry the discussion in a ghost-
free gauge. For example, in the axial gauge, the
only change in the WT identity derived in Sec. II is
to drop the A functions. " To simplify the rest of
the discussions, we neglect the A functions in the
WT identity (2.14} since they are irrelevant to the
argument.

We first show that the leading contributions of
the bound-state wave functions P, and P, to the
mass generation is zero. We then argue that the
asymptotic behavior of the function B(p') obtained
earlier is not changed even in the presence of P,
and P, . These results seem to indicate that the
fermion-antifermion channel Goldstone pole dom-
inates in the study of dynamical symmetry break-
ing in non-Abelian gauge models.

Combining Eqs. (3.4) and (3.7)

,",",y (P, S, r) =f,baf. by I'"t'.t"(P, S, r)

+fabcf My I'cZC (P, S, r)(~df)

+f.by f.ab "xc (P, s, r),~cdb) (5.6)

where I",qb(P, s, r) =f,by It't, byt(P, s, r) so that the
structure constant in I'„'zb(P, s, tt) is explicitly dis-
played. Because of symmetry breaking,
I','q', '(p, s, r) is still dependent on the quantum
numbers of the mesons (p, tt, c), (s, x, b), and

(r, f, p). [The superscript (cbf) is just for the
purpose of identifying the quantum numbers of the
individual mesons. j In the absence of symmetry
breaking, or when the vector mesons' masses
ib, ', ub', sty' are equal, I'„'zb (P, s, r) is indepen-
dent of the quantum numbers c, b, and f, and the
right-hand side of Eq. (5.6) consequently vanishes
as expected.

Substituting Eq. (5.6} into the mass generation
calculation of Eq. (3.11), Eq. (5.6} is multiplied
to the bare four-meson vertex

+fcbtftya (g 8g' 'g ) (5 7)

The dominant contribution to mass generation
from the three-meson channel pole is proportional
to, for the first term of Eq. (5.7),

faacy (Pi S r)fcatf tyb =0 t

c,d, f, 1

(5.8)

where the identity

Thus the leading contribution of the two-meson
channel Goldstone bound state to the mass gen-
eration is zero.

Similarly, we obtain from Eqs. (3.9) and (3.11)
that

q„ I',","bye (q, p, s, r) ~ t'I'"(q ') P 'a~bey(q, p, s, r)
a 0

=fabc I c t,p (Pt s + qt r)

+f„,I;",', (p+q, s, r)

+faby I"tj'ttt(P, S, r+q) . (5.5)

In the limit q„-0, the right-hand side can be
written as

~.a &.'t'(P P) f: (11'ub(P) —11'w(p)}, (5.3)
fabaf cat +facaf ab t +factf batt

= 0 (5.9)

Q f. b(II lu(p) 11'u (P))f.tb—
Cbb

(5.4)

where the right-hand side is symmetric under the
interchange of b and c. Substituting Eq. (5.3) into
the mass generation calculation of Eq. (3.13), we
obtain that the leading contribution in the ultra-
viplet region is prppprtipnal tp"' ~

has been repeatedly used; similarly for the other
two terms of Eq. (5.7). Hence we conclude that in
the case where the pure vector-meson proper ver-
tex functions have Goldstone poles, their dominant
contributions to the mass generation vanish be-
cause of the symmetry. (The functions P, and P,
may still contribute to the mass generation via
the infrared region. But this is outside the scope
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of this investigation. )
The above facts give us the hope that the pres-

ence of P, and P, in the Bethe-Salpeter equation
for B(P') does not change the asymptotic behavior
of B(P'). To argue that this is indeed the case,
consider the symmetry-breaking part of the ferm-
ion self-energy Z"(P) which obeys the Dyson-
Schwinger gap equation

4
Z"(P) = Tr 4 g„y" T D„,(k —P) I"(k, P) S(k)

x Z" (k) S(k), (5.10)

where g„y"T is the bare vertex (T is a matrix
depending on the representations). Defining the
renormalized coupling constant g~ =Z, X 'g„, Eq.
(5.10) can be written in renormalized quantities
[where 8 =D„Z„S=SsZ„Z~~(p) =Z, Z"(p),
I'= I'„Z, 'Z, ], with the exception of an extra factor
of the renormalization constant Z =Z,X on the
right-hand side,

)'"())=T J, (g„Z)y'TD„p, tk —))

x I'"(k, p)S (k) Z (k) S (k) . (5.11)

In order to express Eq. (5.11) in terms of renor-
malized quantities, we use Fig. 8(a}, which can be
written in the following form:

I'~(4), p) = Zgsy" T

+ Tr Ss(k) I'z(k) Ss(k) Ks(k, p)
d4O

+ ~ ~ ~ (5.12)

[We note that the term Zgsy" T drops out in Eq.
(4.1}.] To the one-loop approximation, Zgsy" I'
in Eq. (5.11) is replaced by I'„"((I,p), and the re-
sulting equation takes the same form as the Bethe-
Salpeter equation (4.3) we discussed in Sec. IV. It
then follows Z„"(P) -(lnP') ' is a solution of Eq.
(5.11). Multiloop contributions to g„Z in Eq. (5.11)
do not change the asymptotic form of Zs(P), as
can be seen following the arguments in Sec. IV
and the Appendix. The WT identity (3.1) then tells
us that B(P) also must have an asymptotic form
(lnP') as we have obtained earlier. The A(P) in

Eq. (3.1) vanishes as P'- ~ can be shown following
the discussion in Sec. IV. Since the power a is in-
dependent of the absence or presence of P, and P,
and it also fixes the power A. via the WT identity
(3.1), we conclude that the power A obtained in

Sec. IV is not changed in the presence of P, and

P, . This means that, even in the case of unequal
vector-meson masses, the behavior of B(p ) ob-
tained in Sec. IV remains true.

Vl. CONCLUS1ON

The present investigation demonstrates that
dynamically induced spontaneous symmetry break-
ing can generate masses for Yang-Mills mesons.
Despite the formal complexities of non-Abelian
gauge theories, the acquisition of vector-meson
masses via symmetry-breaking fermion mass
terms is essentially the same as in the Abelian
case. One should investigate further in asymptotic
free theories the possibility of an effective com-
putational method bypassing ordinary perturbation
theory. This should make model building basing on
a dynamical symmetry breaking very attractive.

In strong interactions one can take hadrons to be
bound states of fermion quarks mediated by "color"
vector gluons so that form factors and scattering
amplitudes may be computable. In weak interac-
tions one can build unified theories of weak and
electromagnetic interactions. Since the Lagran-
gians do not have scalar fields and hence have
fewer parameters, one has a good chance of ca.l-
culating quantities like the mass ratios (e.g. ,
m„/m, ). Such models probably have asymptotic
freedom for weak interactions, and possibly for
QED as well. In fact, asymptotic freedom for QED
can be checked experimentally, at least in prin-
ciple, by going to very large transverse momenta
in high-energy scattering processes, because
experimentally, strong interactions have very
sharp transverse momentum cutoffs.

On the theoretical side, an immediate problem
is to understand better the gauge dependence of
the function B(P'), and the gauge invariance of
themassof a vector meson in terms of the sym-
metry-breaking part of the fermion masses should
be demonstrated. We note that the gauge depen-
dence of dynamical symmetry breaking has been
discussed by Cornwall, "who emphasizes the im-
portance of the Landau gauge.

After the completion of an earlier version of
this work, we received two reports on the same
subject. Cornwall" used a phenomenological non-
local, nonpolynomial Lagrangian. Feinberg and
Eichten" studied the weak-coupling limit.
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APPENDIX: HIGHER-LOOP CONTRIBUTION

TO THE BETHE-SALPETER KERNEL

In this appendix we will explicitly work out a
one-loop contribution to the Bethe-Salpeter kernel
and we will show that it is down by one power of
an inverse logarithm in momentum compared to
the one-vector-boson exchange contribution. " Then
we will give a general argument to extend this
particular result to all loops and therefore con-
firm that, asymptotically, the kernel has the sim-
ple form (in the Landau gauge)

K(k, p) =, „, I +01 1
k ink ink

The one-loop part of the kernel is shown in Fig.
12.

It is given by (group indices suppressed)

d's
K,(k, P)=, I' (k, s)S(s) I'„(s, P)

k Iv k-s+p

The remaining four cases contribute at most as

K (k P} ~ —(Inkk} 'p ko (InPk)'p/kp /-
g&p&s& ~ ~

K (k p) ~ —(Ink')" 'o ' '(lnp') 'o 'ok

k&k&$&k P

FIG. 12. One-loop approximation to the Bethe-Salpeter
kernel discussed in Eq. (4.1).

xD,„(p-s) r, (k -s+ p, k)

xS(k —s + p) I s(k —s + p, p) D s (k —s) .
(A I)

We assume the same lower cutoff A' as in the one-
meson exchange graph and divide the rest of the
integral (Al) into three regions for both K&p and
E&p.

1
K,(k, p) ~ —,(ink'} ',

p)„~ k'

K,(k, P) ~ —(lnP') ' .
s&p &0

Therefore, the one-loop contribution to the kernel
is down by either a power orafactorof alogarithm.
We notice that this follows from

(1)s&k&p,

(2) k&s&p,

(4) p&k&s&x,

(5) p&s &k,

"dy (lnx}—„(lny} — „,n &Ix"

K,(k, p)
s&A &p

~p (ink')

Similarly for case (2)
3 Jt

K,(k, p) ~ (ink') '0 ko ', ds(lns')'o ko g,
Q )g&p k p2

~—(ink') ' .

(8) k & p&s & X, (6) s & p&k.

For the first case, in the Landau gauge, using Eq.
(4.25) to (4.28), we obtain

-(lnx)"', n = I

where the power of the logarithm increases by one
only when n = 1. One can convince oneself that in

general, for a multiloop graph of the kernel, there
is at least one loop integral of the above form with
n &1. Since the extra coupling-constant factors
gk' introduce extra powers of (ink'} ', the graph
is therefore down by at least a factor of a loga-
rithm in comparison with the one-meson exchange
graph discussed in the text.

Actually for our solution to be valid, all that
is required is that the multiloop graphs of the
kernel contribute at most to the same order as
the one-meson exchange graph.
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