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Lorentz-invariant Newtonian mechanics for two particles
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Many ordinary Newtonian equations of motion in the center-of-mass frame can be made into
Lorentz-invariant equations valid in all inertial frames. This is shown by outlining a construction of
Poincare-invariant Newtonian equations of motion, using global Lorentz transformations, starting with
the assumption that at zero center-of-mass velocity the center-of-mass acceleration is zero, and the
relative acceleration is specified as a function of the relative position and relative velocity, subject to
some weak conditions. The only remarkable condition is a limit on repulsive forces, needed to keep the
transformed center-of-mass velocity from being zero. This is generally satisfied up to energies
comparable with the rest-mass energy. For Coulomb forces, it fails for higher energies, when the particles
get closer than the classical electron radius and violate the uncertainty principle.

INTRODUCTION

There is an awakening interest in the description
of relativistic particle interactions in terms of
particle variables alone, without fields. This
could be a useful complement to field theory, for
example in handling bound states, which has al-
ways been difficult in field theory, as well as
another area for investigating fundamental ques-
tions.

Here we consider particle interactions described
in the most primitive form, Newtonian equations
of motion, which specify the acceleration of each
particle as a function of the positions and veloc-
ities of the particles at one time. This can be
Lorentz-invariant, which means the equations
of motion are the same for a moving reference
frame, in terms of the variables of that frame
at one time in that frame.

The conditions for Lorentz invariance of New-
tonian equations of motion can be expressed,
using infinitesimal Lorentz transformations, as
differential equations for the acceleration func-
tions or forces. ' ' They are difficult to solve,
because they are nonlinear and the accelerations
of the different particles are coupled. There-
fore, examples have not been known, and recent
research has found it difficult to produce examples
without physically artificial features. "

This problem has been posed in an equivalent
manifestly invariant form. ' Perturbation expan-
sions have been developed for electrodynamics
and other interactions. ' ' "'" The Hamiltonian
form has been stud ied, f irst in the natural repre-
sentation of the Poincard group with canonical
transformations~'" which was found to be in-
adequate, '4 and then using alternative approach-
es" " including noncanonical representations
equivalent to invariant Newtonian equations. "

The promise of many interesting Lorentz-in-

variant Newtonian equations of motion for two
particles was evident in Ref. 1: Currie' showed
that for parity-conserving forces for two identical
particles in one-dimensional space, a solution of
the Lorentz-invariance conditions can be con-
structed, using power series, with infinitesimal
Lorentz transformations, starting from the speci-
fication of the accelerations as functions of the
relative position and relative velocity when the
center-of-mass velocity is zero. This has since
been put on a mathematically rigorous basis. "
The parity-conserving forces for two identical
particles are a particular case of those considered
in the present paper.

Here we will see that Lorentz-invariant New-
tonian equations of motion for two particles in
three-dimensional space can be constructed, by

making global Lorentz transformations, from a
specification of the relative acceleration as a func-
tion of the relative position and relative velocity
at zero center-of-mass velocity, if the center-of-
mass acceleration is assumed to be zero at zero
center-of-mass velocity. We use the ordinary
nonrelativistic definition of the center of mass.
The relative acceleration in the center-of-mass
frame can be specified as we choose, subject to
only rather weak conditions. Thus many ordinary
Newtonian equations of motion in the center-of-
mass frame can be made into Lorentz-invariant
Newtonian equations of motion valid in all inertial
frames. For example, we will see that the con-
ditions are satisfied by "nonrelativistic" repul-
sive Coulomb forces (up to a certain energy) in

the center-of-mass frame.
The conditions to be met in specifying the rela-

tive acceleration in the center-of-mass frame are
mostly rather obvious, such as rotation invar-
iance, or the requirement that the particles not
move faster than light. The one condition that
was not anticipated is a limit on the strength of
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repulsive forces, which is required to keep the
world lines from bending so sharply that a Lo-
rentz transformation from the center-of-mass
frame can give zero for the transformed center-
of-mass velocity. This condition is generally
satisfied if the energy of the interaction between
the particles is not as large as their rest-mass
energy. In the example of repulsive Coulomb
forces it fails to be satisfied when the potential
energy is larger than the rest-mass energy,
which means the particles are closer than the
classical electron radius and the uncertainty
principle is violated.

This is a condition on those Lorentz-invariant
Newtonian equations that can be constructed as
outlined here, those for which it can be assumed
that the center-of-mass acceleration is zero
when the center-of-mass velocity is zero. This
assumption, using the nonrelativistic center of
mass, is surely not valid in general for all Lo-
rentz-invariant Newtonian equations. However,
it does hold, in particular, for parity-conserving
forces for identical particles, to which we give
some special attention. The method of construct-
ing invariant equations of motion is also described
in a more general form of wider applicability.

For comparison, we outline the analogous con-
struction of Galilei-invariant equations of motion.
Galilei transformations at time zero change only
the center -of -mass veloc ity; they do not change
the accelerations. Therefore, the accelerations
are independent of the center-of-mass velocity;
they are the same in any frame as in the center-
of-mass frame. In contrast, the accelerations
for the Lorentz-invariant equations of motion
depend on the center-of-mass velocity in a com-
plicated way.

In particular, the center-of-mass acceleration
for the Galilei-invariant equations of motion is
zero in every frame; the center of mass moves
with constant velocity. For Lorentz-invariant
equations of motion for two interacting particles,
the center-of-mass velocity is not constant in

every frame' (neither is the total relativistic
kinematic particle momentum, nor the angular
momentum, for two or three particles""' ).

The Lorentz invariance of Newtonian equations
of motion is not a manifest invariance of four-
vector or tensor forms for transformations at
fixed space-time points. When we make a Lorentz
transformation we go from variables at one time
in the original frame to variables at one time in

the new frame. The transformed center-of-mass
velocity involves particle velocities at different
times in the or iginal frame. So it is not easy, as
it is in the Galilei case, to find a Lorentz trans-
format ion to the center-of -mass frame.

Instead we simply start in the center-of-mass
frame and see what we get by making Lorentz
transformations. We may not get all positions
and velocities that the particles can have, as we

do with Galilei transformations, which give all
center-of-mass velocities without changing the
positions or relative velocity. If the particles
can have positions and velocities that are not ob-
tained by making Lorentz transformations from
the center-of-mass frame, the accelerations for
those positions and velocities are not related by
Lorentz transformations to the accelerations in

the center-of-mass frame; they must be specified
independently.

For justification of ignoring Einstein causality in

considering Newtonian equations of motion for a
closed system of two particles, we refer to the
very clear explanations given by Havas. ""
CONSTRUCTION OF INVARIANT EQUATIONS OF MOTION

For each frame of reference of space-time
coordinates x, t, the world lines of the particles
are determined by their positions x, and x, and
velocities v, and v, (where v„=dx„jdt) at t =0.
Consider the transformations of these initial po-
sitions and velocities resulting from the Poincarb
group of transformations of space-time coordi-
nates, that is, the group made from translations
in space and time, rotations, and Lorentz trans-
formations. For example, for a Lorentz trans-
formation

x —x

X =3'y

z —Pt
(& p')'" '

t —pz
(i p2)1/2 &

with velocity P in the z direction (we use units
such that c= 1), we must have

for t' =0; so for the positions and velocities in
the new frame, at t' = 0, we get

x„' =x„(t=Pz„),

y„' =y„(t = pz„),

z.' = (i p')'"z. (t =—pz. ),

(i p2)l/3 tlX( p tl)

i —p~.,(t = pz. )
'

(i p. )
/2 &.,(~ = pz. )

1 —pv„,(t = pz„) '

v„,(t = pz„) —p
i p~, (t = pz. )-
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2

dv„', /dt' =
(1 „(f„,—pv„,f„,+ pv„„f„,)—PVffg J t= 8g„

2

dv„', /dt' =(,(f„„—Pv„,f„„+Pv„,f„,)1 Pvffg) t= 8g„

for n = 1, 2. The x„(t = pz„) and v„(t= pz„) are de-
termined from x»x„v»v, at t=0, so we have
a transformation, depending on P, from these
positions and velocities at t =0 to the positions
and velocities x,', x,', v,', v,' at t' = 0. When we
want to simplify the notation we will let x stand
for x»x„v»v„and Lx stand for the xy x2 vy v2

thus obtained for the various transformations of
the Poincarb group.

The equations of motion specify the accelerations
as functions of the positions and velocities,

d v„/dt = f„(x„„v„v,)
for n= 1, 2. We calculate transformations of
time-zero accelerations just as positions and ve-
locities, but use the equations of motion to ex-
press the accelerations for the original frame as
functions of positions and velocities. For our
example Lorentz transformation we find that the
accelerations in the new frame, at t'=0, are

tions. Let

x = x —x21 2 P

v = d x/dt = v, —v, ,

dv/dt =f =f, -f2,
1X= (m 3X~ + m2X2),?s, +m,

V =dX/dt = (m,v, +m, v, ),sc, +m,

dV/dt = F = (m,f, +m, f, ) .
PS] +m2

For V =0 and a set S, of x, v we let

F=0,
f = f2(x, v),

specifying So and f, as we choose, subject to the

following conditions.
If V=0 at t =0, then Vqt} =0 for all t; so X is con-

stant, and the motion is described by x(t) and v(t),
which must be determined by the equation of mo-
tion

dv/dt =f0(x, v)

for any initial x, v in S~. We must have

(1 p2)3/2
dv„', /dt' =

(I },f„,
t= Sg„

and

I v, (t) I
&1

for n=1, 2, where the components of v„shown and

the x„x„vy v2 in f„are all at t=13z„. Remember-
ing that these are determined from the initial
positions and velocities, we can think of this
transformation of accelerations as defining func-
tions f„' of the x» x„v» v, at t = 0 so that

d v„/dt = f„(x3,x2, v3, v2)

or

and

I v, (t}l &I,

I
v(t) I

&
? 2

for n = 1, 2. Our simplified notation will be f(x}
for f,(x„x„v„v,), f,(x„x„v„v,) and Lf(x) for
f', (x„x„v„v,},f,(x„x„v„v,).

Invariance of the equations of motion means that
the acceleration is specified by the same function
of the positions and velocities for every frame,

d v„'/dt ' =f„(x,', x,', v,', v,'),
or

for n= 1, 2. In our simplified notation, invariant
equations of motion are those for which

Lf(x) =f(Lx)

for all the transformations in the Poincard group.
We construct invariant equations of motion by

starting with equations of motion for the center-
of-mass frame and making Lorentz transforma-

I v(t)I &

to have each world line cross t =P ~ x once, so
the times t=P x„ in our Lorentz transformations
will be well defined for all P and all initial x, v

in S, and X. This also prevents singularities oc-
curring from the factors 1 —P v„ in the denomi-
nators in the Lorentz transformations.

The set So of x, v being considered with V=O
must be invariant for rotations and the changes
of x and v in time. For example, if

VV([x[),

So could be the set of x, v for which

is less than some specified value.
The equations of motion in the center-of-mass

frame are invariant for time translations,
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so

tp because at t' = 0 we have t = tp and

x' =x(t = to),
v' =v(t = t,),
d v'/dt ' = f,(x(t = t, ), v(t = t,)),

V=O and x, v in Sp, so that

x= Lpx,

for some transformation in the Poincard group;
we let

f (x) = Lofo(xo),

d v'/dt' = fo(x', v'),

and we have

V' =V(t= to) =0

and

dV'/dt =0.
The equations of motion in the center-of-mass
frame are invariant for space translations, be-
cause velocities and accelerations are not changed
by a space translation and f, is not changed, be-
cause it depends only on x and v and not on X.
A rotation does not change V = 0 and dV/dt =0.
To make the equations of motion in the center-of-
mass frame rotation-invariant, we choose f, to
be a rotational vector function of x and v, so that
it rotates when x and v are rotated; we require
that

Rf, (x, v) =f,(Rx, Rv),

so that

dv'/dt = dRv/dt

where fo(xo) is the f(xo) we have specified, namely,
F =0 and f=fp.

The set S of x, v, X, V to which we have assigned
accelerations is invariant for the Poincard group
of transformations. Any world lines determined
from initial positions and velocities in S in one
frame of reference are also determined from
initial positions and velocities in S in all frames
related by the Poincard group. But we cannot be
certain that S includes all values of x, v, X, V
that the two particles could have, even if S, in-
cludes all values of x, v that the two particles
could have with V = 0. If there are x, v, X, V that
cannot be obtained with Lorentz transformations
from V=O, the accelerations for them are not
related by the Poincard group to the accelerations
for V=0; they must be specified independently.

It remains to show that our construction does
produce well-defined, invariant equations of mo-
tion. First we show that the accelerations are
specified uniquely as functions of the positions
and velocities. Suppose x is obtained from both

xp and xpp, two different x, v in S, and X with V = 0
for both, with two different transformations,

=Rfp(x, v)

= fo(Rx, Rv)

= f,(x', v'),
and

x= Lpxp

x= Lppxpp.

where R denotes the rotation of the vectors.
There will be one more condition on fp that we

will discuss later, putting a limit on the strength
of repulsive accelerations, so that a Lorentz
transformation from V=O cannot yield V' =0.

Consider the set, which we call S, of all values
of x, v, X, V that we get from the Poincarb group
of transformations, starting with V=0, all values
of x, v in S„and all X. These are actually just
the values that we get from Lorentz transforma-
tions, because every transformation in the
Poincard group is a product of space and time
translations followed by a rotation followed by a
Lorentz transformation, "' and only the Lorentz
transformation changes V = 0. From our example
Lorentz transformation, we can see how to ob-
tain these transformed positions and velocities,
a,nd also the transformed accelerations. Our con-
struction is simply to assign the transformed ac-
celerations to the transformed positions and ve-
locities: For each x in S there is an x, with

We have to show that

~ofo(+o) = ~oofo(&oo) .

This is equivalent to

fo(+o) = I o f'oofo(+oo) ~

We have

xp = Lp 'Lppxpp

so we just need to know that the equations of mo-
tion for V=0 are invariant under the transfor-
mation Lp Lpp They are if this transformation
is a product of space and time translations fol-
lowed by a rotation but no Lorentz transforma-
tion. It is, because it preserves V=0 in taking
x~ to xp. We are assuming that the motion for
V=0 is such that a Lorentz transformation never
preserves V =0. This is the condition we have to
look at later.

Finally we show that the equations of motion are
invariant, that
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f(Lx) = I.f(x) .

Let

x= Loxo

for xp an x, v in Sp and X with V= 0. Then

LX = LLoxo ~

f(x) =L,f,(x,),
f(Lx) = LLO fo(xo) = Lf (x) .

COMPARISON WITH GALILEI IN VARIANCE

If we use Galilei transformations in place of
Lorentz transformations, our construction of
invariant equations of motion is trivial. For a
Galilei transformation,

x' =x -Pt,

at t' = 0 we have t = 0 and

n Xn~

v„'=v„-P,

d v„'/dt ' = d v„/dt

for n = 1, 2. After making a Galilei transforma-
tion, starting from V = 0, we have

V=-P,
but nothing else is changed, not x, v, X or the

accelerations; we still have

dV/dt =0

and

d v/dt = fo(x, v),

so these are the equations of motion for all
x, v, X, V. Their Galilei invariance is evident;
the accelerations do not depend on V. The con-
struction defines F and f for all real x, v, X, V.

The only condition on f, is that of rotation in-
variance. A Galilei transformation cannot pre-
serve V =0, and there can be no ambiguity about
where the world lines cross t' =O.

This construction does not produce all Galilei-
invariant equations of motion, but only those for
which F =0. Galilei invariance does not imply that
F =0. It requires only that F and f be independent

of V.

PARITY -CONSERVING FORCES FOR IDENTICAL

PARTICLES

Our construction does not produce all Lorentz-
invariant equations of motion, just as it does not

produce all Galilei-invariant equations of motion.

It gives only those for which F =0 when V=O. The
latter include all parity-conserving forces for
two identical particles, which are what Currie'
considered. For V=O, invariance under inter-
change of the two particles, for m, =m„ implies

F(-x, -v) = F(x, v),

whereas invariance under space reflection implies

F(-x, -v) = -F(x, v),

so the only possibility is F =0 when V=0. Either
identical-particle or space-reflection symmetry
implies

f(-x, -v) = f(x, v)

for V=O.
Conversely, if we let nip m„choose Sp to be

invariant under particle interchange or space re-
flection, and let

f,(-x, -v) = -f,(x, v),

our construction yields equations of motion that
are invariant for both particle interchange and

space reflection. We consider particle inter-
change first.

For each x we have

x= Lpxo,

with L, a pure Lorentz transformation and V =0
for xp. Let x' and x,' be obtained from x and xo

by interchanging x, with x, and v, with v, . From
our example of Lorentz transformation of posi-
tions and velocities, we can see that

x = Loxo,C

because for V=0 interchanging the initial posi-
tions and velocities interchanges the world lines,
since the equations of motion are assumed invar-
iant for V =0. From our example of Lorentz trans-
formation of accelerations, we can see that

f(x') = Lofo(xo)

is obtained from

f (x) = L,f,(x,)

by interchanging the accelerations of the two par-
ticles, since we have assumed this for f, .

The argument for space-reflection invariance is
similar. For each x denoting x„x„vy V2 and f
denoting f„f„ let -x denote -x„-x„-vy v2 and

fdenote -f„—-f, . For each x we have

x Lpxp

with L, a pure Lorentz transformation and V = 0
for xp. From our example of Lorentz transforma-
tion of positions and velocities, we can see that

x=L,-'( x,),
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because for V =0 reflection of the initial positions
and velocities produces the reflection of the world
lines, since the equations of motion are assumed
invariant for V =0. From our example of Lorentz
transformation of accelerations, we can see that

L,-'f,{-x,) = -L,f,(x,),
because we have assumed that

fo(-xo) = fo(-xo) ~

Thus we have

f( x) =L-o 'f,(-x,) = L,f,(-x,) = f(x) . -

GENERALIZATION

The method of constructing invariant equations
of motion, being so simple, can easily be de-
scribed in a more general form of wider applica-
bility. All that is needed is the specification of a
set of xo, values of x„x„v„v„and accelerations
fo(xo) for each xo, such that:

(i) The world lines are determined by fo for
initial positions and velocities x, . The particle
speeds of these world lines never exceed the speed
of light.

(ii) The set of xo is invariant for time transla-
tions, space translations, and rotations.

(iii) The equations of motion defined by f, for
the xo are invariant for time translations, space
translations, and rotations.

(iv) A Lorentz transform of an xo is not an xo.
For example, one can use the relativistic free-

particle momentum variables

appears to be difficult, because the center-of-
mass position and the conserved total momentum
cannot be defined in general independent of the
interaction. "'

LIMIT REQUIRED ON ACCELERATIONS

For the construction of invariant equations of
motion, we have required that a Lorentz transfor-
mation never takes V =0 to V' =0. The fastest way
to see what this involves is to look at Minkowski
diagrams. Figure 1 shows world lines for two
identical particles that have V=0 at t=0 and V'=0
at t'=0. At t=0 both particles have zero velocity
in the unprimed frame, because both world lines
have zero slope relative to x=O. At t' =0 the
particle on the left has a (negative) velocity in the
primed frame, as indicated by the slope of its
world line relative to x'=0, and the particle on

the right has an equal but opposite (positive) ve-
locity in the primed frame. For this to happen,
the world line on the right has to be bent from
zero slope to about twice the slope of x'=0, be-
tween t =0 and t'=0. By drawing diagrams like
this, one can see that the only way one can get
V=O at t=0 and V'=0 at t'=0 is to have repulsive
forces and a change of particle velocity &v of

magnitude

tv=Pc

in a time interval 4t of magnitude given by

cb, t = Pr,

let

u „=m„v„ /(l —v„')'",

U=u, +u, ,

where r is the distance between the particles and

Pc is the velocity of the Lorentz transformation.
This implies a particle acceleration of magnitude

a = n, v/n, t = c'/r .
specify a set S+ of x, v, define an x, to be an x, v
in S, with any X and U =0, and define f, by

dU/dt =0

and

dv/dt =fo(x, v),

with fo a rotational vector function of x and v. The
remaining conditions are (i) that the particle
speeds for U =0 be less than the speed of light;
(ii) that So be invariant for rotations and the
changes of x and v in time for U =0; and (iv) that
a Lorentz transformation from U =0 never gives
U'=0.

%e might get an idea of what is needed for a
completely general construction of all Lorentz-
invariant Newtonian equations by considering a
more appropriate definition of the center of mass
for a, relativistic system of particles. '5 This

Therefore, the particle accelerations for repulsive
forces have to be limited in magnitude by

ar &c'

FIG. 1. World lines for which V=O at t =0 and V'=0
at t' =0.
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or

mar &mc2,

where m is the mass of the particle. We can in-
terpret this as meaning that the potential energy
of the interaction between the two particles must
not be as great as their rest-mass energy.

To bring some familiar magnitudes into play,
we can look at "nonrelativistic" Coulomb forces
and substitute

ma =e'/r'.

Then our condition is

e'/mc' &r,

which means the particles must not get closer than
the classical electron radius for their mass and

charge, or

(e'/hc)K&rmc,

which is satisfied by more than two orders of
magnitude, with

e'/gc =
+. ..

and v&c, if the uncertainty relation

h &tv
is satisfied.

It seems our requirement is satisfied up to a
point where it is clear that quantum effects cannot
be ignored. In the next section we will look at the
Coulomb example in more detail, and see that
when the particles get closer than the classical
electron radius, there are Lorentz transforma-
tions that take V=O to V'=0, and the construction
of invariant equations of motion breaks down.

Lorentz transformations if we venture into the
forbidden high-energy region.

We choose positions and velocities along the z
axis, at some time, with z &0, Z=O, and V=O.
Then this is the case for all times. The particles
approach each other along the z axis to a minimum
separation z and then move apart along the z
axis, with particle 1 on the right and particle 2 on
the left. At any time we have z, = —z, =-,'z and

v, = —v, = —,'v. Let t=0 be when the particles are
closest to each other. Then z(- t) =z(t) and
v(- t) = —v(f), with v(t) &0 for f &0. The time
t =Pz, /c is the negative of the time t =Pz,/c, so

v, (f = Pz, /c) = v (I = Pz, /c),

and a Lorentz transformation in the z direction
gives vy v2 Thus V = vy which is zero if

v, (t = pz, /c) =pc

or

v(t = Pz/2c) = 2Pc.

If this last equation holds, our construction of
invariant equations of motion breaks down, for
then V' is zero at t'=0, but V' is in general not
zero for t'e 0. (You can check that in fact
d'V'/dt" is not zero at t'=0.) It remains to be
seen how this can happen in our example.

From the energy equation

e2 82
—,
' m~~+ — =—

z15

we have

Z/2—= v =2am-"z-" —' —1

EXAMPLE OF TOO MUCH ACCELERATION

We again consider "nonrelativistic" Coulomb
forces, specifying the relative acceleration

2e2

with m, =m, =m. For V =0,
2eF —~gv+~

is constant. We get particle speeds less than c,
or v &2c, if we specify Sp to include only x, v

for which E &mc'. Then

2

The solution satisfying the boundary condition that
z =z at t=O is

-, X/2

2m t= ———1

+ln — + ——1

We let t =Pz/2c, and for P substitute the value ob-
tained from v =2Pc. Using the above equation for
v in terms of z, we get

—z

From the last section, we know that if we limit
Sp to lower energies, we will not find a Lorentz
transformation that takes V =0 to V' =0. Here we

give an example to show that we will find such

= ln — + —-1

as the condition for V' to be zero at t'= 0. Here
z means the value at t=Pz/2c or t=Pz, /c. We get
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V'=0 only if
2

z
PIC

Then the energy equation implies that the parti-
cles move faster than light, v&2c, as z -~. This
does not mean that the particles are moving faster
than light when V'=0. For example, we get

z(t = Pz, /c} = 1.lz

if z =0.616e'/mc', and then

v, (t = Pz, /c) = Pc = 0.42c.

and gives no further acceleration, when the dis-
tance between the particles becomes larger than

that at which V'=0.
Alternatively, we can use the relativistic mo-

mentum to define 7, by letting
1~ 2

dt (1- —'v /c )'i' ixi

for V = 0, with m, = m, = m. Then for V= 0 the en-

It is easy to modify our example to get V'=0 with

particles never moving faster than light. Just
change 7, so that it drops to zero rather abruptly,

is constant. The particle speeds are always less
than c, that is, v&2c, for any energy. If we re-
work the last paragraph, we get

1+s —s'q. ..t, (2s+1}q—s —1+[(2s+1)(q—l)(2sq q —1))' '
s"(sq+ q —1) s

as the condition for V' to be zero at t' = 0, where

2mz-S=
e

and

1
q = z(t = pz, /c—).

zm

For example, a solution is q = 1.1 and s =0.94
which, for comparison with the previous case,

means that

z(t =Pz, /c) = l.lz.
if z =0.47e /mc, and then

v, (t =Pz,/c) =Pc =0.4lc.

It seems there are solutions only for s &1, which
would mean that the construction of invariant equa-
tions breaks down only if the particles get closer
than e2/2mc and the potential energy (kinetic
energy at infinite separation) is more than 2mc .
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