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All 3-dimensional, time-dependent classical Hamiltonian systems are shown to possess
the dynamical symmetries SU; and O;. As an example, the Newtonian, linearly damped,
isotropic harmonic oscillator in a time-dependent external field is treated.

I. INTRODUCTION

The group algebraic properties of certain clas-
sical and quantum-mechanical systems have re-
cently received considerable attention,’™® as one
wishes to exploit the connections between dynam-
ical symmetries and quantum-mechanical degen-
eracies and energy spectra. Dynamical symme-
tries of classical systems are usually expressed
via the Poisson-bracket algebra developed among
certain constants of the motion, in the expectation
of finding corresponding relations for the com-
mutators among quantum operators. A classic
example is the O, algebra among the angular mo-
mentum and Runge-Lenz vector components for the
3-dimensional Kepler particle.

For all classical conservative central-force
problems, Fradkin® has explicitly constructed
constants of the motion exhibiting O, and SU, alge-
bras, for both Newtonian and relativistic particles.
Mukunda® has shown in a very general way that
all single-particle, 3-dimensional classical sys-
tems characterized by time-independent Hamil-
tonians possess O, and SU, algebras. No such
generalization appears possible, however, for the
corresponding quantum systems.? 3

One question which remains is whether such
algebraic structures are characteristic only of
conservative systems. We show that all 3-dim-
ensional classical Hamiltonian systems share the
O, and SU, symmetries. (These results should
readily generalize to #» dimensions.) As an ex-
ample, we treat explicitly the Newtonian, linearly
damped, three-dimensional isotropic harmonic
oscillator (DHO) in an arbitrarily time-dependent
external field.

II. GENERAL TIME-DEPENDENT SYSTEM

Consider a time-dependent classical mechanical
system with three degrees of freedom. Let the
(relativistic or nonrelativistic) Hamiltonian be
given by

H(’V,', pi; t) ’ (1)

where 7; and p; are canonical coordinates and their
conjugate momenta, respectively. A realization
of the invariance of the above system under the O,
and SU,; Lie algebras is afforded by a finite can-
onical transformation and proceeds as follows:

Let us choose, for example, the class of can-
onical transformations (7;, p;) = (R;, P;) whose
generators are of the form*

Fy(F, B, t) . (2)

We then make a canonical transformation to a
frame of reference in which the new Hamiltonian
H is time-independent, i.e.,

oF, oF, [ OF,
H(?i,'é‘;g,t)+~5f=H<-é?2.,Pi> . (3)
i i

The above partial differential equation can, in
principle, be solved for F,(v;, P;, t) if the form of
H is prescribed. The problem has thus been re-
duced to that for the conservative system H(R;, P;)
for which the generators of the O, and SU, algebras
can be obtained by the prescription of Mukunda.?
These generators, when expressed in terms of the
original canonical variables and time (7;, p;, t),
provide us with O, and SU; algebras for the time-
dependent system (1). We shall now construct
these algebras for a forced, linearly damped, iso-
tropic harmonic oscillator.

III. FORCED DHO
The equation of motion for a forced DHO is given
by

d*r dr

T . 1=
%2—+2yd—t+w02r=af(t), (4)

which can be obtained from the Hamiltonian

H= 5%2;6"2 7+ imw,2r2e? Y —f-Fert , (5)
where

p= m% et (6)
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Construction of SU; and O, algebras for the above
can be accomplished by letting

_ p? N
H(R,-,Pi)=2—n7+%m PR WP =w - yP W)

so that (3) becomes

1 ovef 0F, \ -, aF,
s— eV 222 ) s imw ettt —f.F etV 4 —2
2m 97, e "o 8t

2

:2—lm— p? +§mw2<g—§j—> . (8)
Rather than solve the above nonlinear partial dif-
ferential equation for F,(T, P, t), we can perform
a series of canonical transformations, as shown
in the Appendix, which is equivalent to a single
canonical transformation generated by

Fy(F, B, ) =(F-1)-P e’ +pF

—%m’ye“‘(i"-z)z—fLodt, (9)

where
Lo=gm e (E2- w2 £?) (10)
L (1)

dt ’
and £ is a particular solution of (4).
Let us now construct SU; and O, algebras for
the harmonic oscillator (7).2
SU, algebra

Consider the conserved canonical angular mo-
mentum

L=RxP, (12)
and the symmetric tensor

1
A”:m_—w Pin+meiRj . (13)

We have the following Poisson-bracket relations
(note that H =% wA;;):

{Ay;, #2={L;,H}=0, (14)
{Li Li}=€ijuLn (15)
{Li,Ajk}=€ijnAnk+€mnA;n ) (16)
{A;;, A1 = (i, €510 +05 1 €j0m

+6jk €i1n+ 01 €ipn) Ly - (17)

The SU; algebra can be constructed from T and
the five traceless components of A.

O, algebra
Consider the (conserved) Runge-Lenz vector®
E=(4/2mw)’? (LPU? —mH +mwA) ™2
X[(~mH +mwA) (R/R) +UP xL] , (18)

where
U=R™, A=(H?-*1?)""*/w . (19)
It follows that
{Ai,ﬁ}:{Li,IT}=O ’ (20)
{Li, L}=eijnls (21)
{Li, A= €04, (22)
{AL A =€, Ly - (23)

The six quantities A and T form a closed algebra
of O, structure.

To obtain the algebras for the system (5), we
express all the above algebraic elements in terms
of the original variables (#;, p;, ¢) via (9), i.e

F-Fer, (24)
=F-Be) e " tmye? (F-F) . (25)
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il

ACKNOWLEDGMENT

The authors would like to thank Professor D. M.
Fradkin for several stimulating conversations.

APPENDIX

Let us perform a series of canonical transforma-
tions equivalent to (9). First, we remove the ef-
fect of the force T (#) via the transformation (r;, ;)
—(7{, p{), for which the new Hamiltonian is

12
H’:riy)m e—zyt+%mw027./2ezyt . (Al)

The linearity of (4) suggests setting

->

r=Fr-£, (A2)
where E is a particular solution of (4). From (5),
(A1), and (A2), it follows that

p'=p-De, (A3)
where

Be=m % e

> >,

The generating function F,(%, p’, ¢) is then obtained
from the integration of the relations

8F2 I'.’/ — BFZ

oF D’

and the condition

ok,

H=H + 57

and it is found to be

Fy =t 450 - E5'- [ Loar , (a4)
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where L, is given by (10).

The transformation of the DHO (A1) to an un-
damped harmonic oscillator proceeds as follows:
The Lagrangian corresponding to (Al) is

L'=3me*" (#2 = w2v'?) . (A5)

We consider the invariance of L’ under the com-

bined timetranslations and simultaneous coordinate

scale transformations
t=t+0, v!~(1+a)7!, a#-1.
If 1+a=e"7% L’is invariant. Since
vl =vrle
are invariant under this transformation, and
P =eV (7 +yr)

are first differential invariants, the transforma-
tion to these variables is suggested. This yields
the time-independent Lagrangian

L"(#f,v{)=L"(r}, 7}, t)

=gm(7 —yr!)? —zmw’r{®, (A8)

and the corresponding Hamiltonian

H” = __(pt +m‘y1’”)2 zmwz,},nz wz:woz_,yz
(AT)

The above coordinate transformation corresponds
to the canonical transformation (v, p{) -~ (v#, p!)
generated by

Fy(F", D' t)=—e VT ", (A8)

which can be obtained in a manner similar to that
leading to (A4).

A final canonical transformation (+/, p/) -~ (R;, P;)
with generator

F (", P)=P-F" - tmyr”? (A9)
transforms (A7) to

— 1

H:_Z—n—q_ P2iimw?R?.
We note that the generator (9) is the sum of the
generators (A4), (A8), and (A9), expressed in
terms of the initial and final variables.
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5The Runge-Lenz vector (18) for the isotropic harmonic
oscillator is only piecewise conserved. It is constant
between two successive apogees pointing toward one

perigee, and discontinuously reverses its direction
each time the particle passes an apogee. However,

the orbit geometry and the dynamics are not affected by
this discontinuity. In a forthcoming note (in prepar-
ation), we show that this behavior of the Runge vector
follows from the symmetry of the orbit. On the other
hand, Serebrennikov and Shabad (Ref. 1) define a
smoothly varying Runge vector (of constant magnitude),
resulting in a ‘“broken” O, symmetry for the harmonic
oscillator (and also for more general central-force
problems with nonclosed orbits).



